blob: 8ecd6d7afbe567fd36917c26a4cec0a8be071e8d [file] [log] [blame]
/*
* Copyright (c) 2013-2018, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <errno.h>
#include <bl31/bl31.h>
#include <common/bl_common.h>
#include <common/debug.h>
#include <drivers/console.h>
#include <plat_arm.h>
#include <plat_private.h>
#include <plat/common/platform.h>
#define BL31_END (unsigned long)(&__BL31_END__)
static entry_point_info_t bl32_image_ep_info;
static entry_point_info_t bl33_image_ep_info;
/*
* Return a pointer to the 'entry_point_info' structure of the next image for
* the security state specified. BL33 corresponds to the non-secure image type
* while BL32 corresponds to the secure image type. A NULL pointer is returned
* if the image does not exist.
*/
entry_point_info_t *bl31_plat_get_next_image_ep_info(uint32_t type)
{
assert(sec_state_is_valid(type));
if (type == NON_SECURE)
return &bl33_image_ep_info;
return &bl32_image_ep_info;
}
/*
* Set the build time defaults. We want to do this when doing a JTAG boot
* or if we can't find any other config data.
*/
static inline void bl31_set_default_config(void)
{
bl32_image_ep_info.pc = BL32_BASE;
bl32_image_ep_info.spsr = arm_get_spsr_for_bl32_entry();
bl33_image_ep_info.pc = plat_get_ns_image_entrypoint();
bl33_image_ep_info.spsr = SPSR_64(MODE_EL2, MODE_SP_ELX,
DISABLE_ALL_EXCEPTIONS);
}
/*
* Perform any BL31 specific platform actions. Here is an opportunity to copy
* parameters passed by the calling EL (S-EL1 in BL2 & EL3 in BL1) before they
* are lost (potentially). This needs to be done before the MMU is initialized
* so that the memory layout can be used while creating page tables.
*/
void bl31_early_platform_setup2(u_register_t arg0, u_register_t arg1,
u_register_t arg2, u_register_t arg3)
{
/* Initialize the console to provide early debug support */
console_init(ZYNQMP_UART_BASE, zynqmp_get_uart_clk(),
ZYNQMP_UART_BAUDRATE);
/* Initialize the platform config for future decision making */
zynqmp_config_setup();
/* There are no parameters from BL2 if BL31 is a reset vector */
assert(arg0 == 0U);
assert(arg1 == 0U);
/*
* Do initial security configuration to allow DRAM/device access. On
* Base ZYNQMP only DRAM security is programmable (via TrustZone), but
* other platforms might have more programmable security devices
* present.
*/
/* Populate common information for BL32 and BL33 */
SET_PARAM_HEAD(&bl32_image_ep_info, PARAM_EP, VERSION_1, 0);
SET_SECURITY_STATE(bl32_image_ep_info.h.attr, SECURE);
SET_PARAM_HEAD(&bl33_image_ep_info, PARAM_EP, VERSION_1, 0);
SET_SECURITY_STATE(bl33_image_ep_info.h.attr, NON_SECURE);
if (zynqmp_get_bootmode() == ZYNQMP_BOOTMODE_JTAG) {
bl31_set_default_config();
} else {
/* use parameters from FSBL */
enum fsbl_handoff ret = fsbl_atf_handover(&bl32_image_ep_info,
&bl33_image_ep_info);
if (ret == FSBL_HANDOFF_NO_STRUCT)
bl31_set_default_config();
else if (ret != FSBL_HANDOFF_SUCCESS)
panic();
}
NOTICE("BL31: Secure code at 0x%lx\n", bl32_image_ep_info.pc);
NOTICE("BL31: Non secure code at 0x%lx\n", bl33_image_ep_info.pc);
}
/* Enable the test setup */
#ifndef ZYNQMP_TESTING
static void zynqmp_testing_setup(void) { }
#else
static void zynqmp_testing_setup(void)
{
uint32_t actlr_el3, actlr_el2;
/* Enable CPU ACTLR AND L2ACTLR RW access from non-secure world */
actlr_el3 = read_actlr_el3();
actlr_el2 = read_actlr_el2();
actlr_el3 |= ACTLR_EL3_L2ACTLR_BIT | ACTLR_EL3_CPUACTLR_BIT;
actlr_el2 |= ACTLR_EL3_L2ACTLR_BIT | ACTLR_EL3_CPUACTLR_BIT;
write_actlr_el3(actlr_el3);
write_actlr_el2(actlr_el2);
}
#endif
#if ZYNQMP_WDT_RESTART
static interrupt_type_handler_t type_el3_interrupt_table[MAX_INTR_EL3];
int request_intr_type_el3(uint32_t id, interrupt_type_handler_t handler)
{
/* Validate 'handler' and 'id' parameters */
if (!handler || id >= MAX_INTR_EL3)
return -EINVAL;
/* Check if a handler has already been registered */
if (type_el3_interrupt_table[id])
return -EALREADY;
type_el3_interrupt_table[id] = handler;
return 0;
}
static uint64_t rdo_el3_interrupt_handler(uint32_t id, uint32_t flags,
void *handle, void *cookie)
{
uint32_t intr_id;
interrupt_type_handler_t handler;
intr_id = plat_ic_get_pending_interrupt_id();
handler = type_el3_interrupt_table[intr_id];
if (handler != NULL)
handler(intr_id, flags, handle, cookie);
return 0;
}
#endif
void bl31_platform_setup(void)
{
/* Initialize the gic cpu and distributor interfaces */
plat_arm_gic_driver_init();
plat_arm_gic_init();
zynqmp_testing_setup();
}
void bl31_plat_runtime_setup(void)
{
#if ZYNQMP_WDT_RESTART
uint64_t flags = 0;
uint64_t rc;
set_interrupt_rm_flag(flags, NON_SECURE);
rc = register_interrupt_type_handler(INTR_TYPE_EL3,
rdo_el3_interrupt_handler, flags);
if (rc)
panic();
#endif
}
/*
* Perform the very early platform specific architectural setup here.
*/
void bl31_plat_arch_setup(void)
{
plat_arm_interconnect_init();
plat_arm_interconnect_enter_coherency();
const mmap_region_t bl_regions[] = {
MAP_REGION_FLAT(BL31_BASE, BL31_END - BL31_BASE,
MT_MEMORY | MT_RW | MT_SECURE),
MAP_REGION_FLAT(BL_CODE_BASE, BL_CODE_END - BL_CODE_BASE,
MT_CODE | MT_SECURE),
MAP_REGION_FLAT(BL_RO_DATA_BASE, BL_RO_DATA_END - BL_RO_DATA_BASE,
MT_RO_DATA | MT_SECURE),
MAP_REGION_FLAT(BL_COHERENT_RAM_BASE,
BL_COHERENT_RAM_END - BL_COHERENT_RAM_BASE,
MT_DEVICE | MT_RW | MT_SECURE),
{0}
};
setup_page_tables(bl_regions, plat_arm_get_mmap());
enable_mmu_el3(0);
}