| /* |
| * Copyright 2018-2023 NXP |
| * |
| * SPDX-License-Identifier: BSD-3-Clause |
| */ |
| |
| #include <drivers/delay_timer.h> |
| #include <lib/mmio.h> |
| |
| #include <dram.h> |
| |
| void ddr4_mr_write(uint32_t mr, uint32_t data, uint32_t mr_type, |
| uint32_t rank, uint32_t dram_type) |
| { |
| uint32_t val, mr_mirror, data_mirror; |
| |
| /* |
| * 1. Poll MRSTAT.mr_wr_busy until it is 0 to make sure |
| * that there is no outstanding MR transAction. |
| */ |
| |
| /* |
| * ERR050712: |
| * When performing a software driven MR access, the following sequence |
| * must be done automatically before performing other APB register accesses. |
| * 1. Set MRCTRL0.mr_wr=1 |
| * 2. Check for MRSTAT.mr_wr_busy=0. If not, go to step (2) |
| * 3. Check for MRSTAT.mr_wr_busy=0 again (for the second time). If not, go to step (2) |
| */ |
| mmio_setbits_32(DDRC_MRCTRL0(0), BIT(31)); |
| |
| do { |
| while (mmio_read_32(DDRC_MRSTAT(0)) & 0x1) { |
| ; |
| } |
| |
| } while (mmio_read_32(DDRC_MRSTAT(0)) & 0x1); |
| |
| /* |
| * 2. Write the MRCTRL0.mr_type, MRCTRL0.mr_addr, MRCTRL0.mr_rank |
| * and (for MRWs) MRCTRL1.mr_data to define the MR transaction. |
| */ |
| val = mmio_read_32(DDRC_DIMMCTL(0)); |
| if ((val & 0x2) && (rank == 0x2)) { |
| mr_mirror = (mr & 0x4) | ((mr & 0x1) << 1) | ((mr & 0x2) >> 1); /* BA0, BA1 swap */ |
| if (dram_type == DDRC_DDR4) { |
| data_mirror = (data & 0x1607) | ((data & 0x8) << 1) | ((data & 0x10) >> 1) | |
| ((data & 0x20) << 1) | ((data & 0x40) >> 1) | ((data & 0x80) << 1) | |
| ((data & 0x100) >> 1) | ((data & 0x800) << 2) | ((data & 0x2000) >> 2) ; |
| } else { |
| data_mirror = (data & 0xfe07) | ((data & 0x8) << 1) | ((data & 0x10) >> 1) | |
| ((data & 0x20) << 1) | ((data & 0x40) >> 1) | ((data & 0x80) << 1) | |
| ((data & 0x100) >> 1); |
| } |
| } else { |
| mr_mirror = mr; |
| data_mirror = data; |
| } |
| |
| mmio_write_32(DDRC_MRCTRL0(0), mr_type | (mr_mirror << 12) | (rank << 4)); |
| mmio_write_32(DDRC_MRCTRL1(0), data_mirror); |
| |
| /* |
| * 3. In a separate APB transaction, write the MRCTRL0.mr_wr to 1. |
| * This bit is self-clearing, and triggers the MR transaction. |
| * The uMCTL2 then asserts the MRSTAT.mr_wr_busy while it performs |
| * the MR transaction to SDRAM, and no further accesses can be |
| * initiated until it is deasserted. |
| */ |
| mmio_setbits_32(DDRC_MRCTRL0(0), BIT(31)); |
| |
| while (mmio_read_32(DDRC_MRSTAT(0))) { |
| ; |
| } |
| } |
| |
| void dram_cfg_all_mr(struct dram_info *info, uint32_t pstate) |
| { |
| uint32_t num_rank = info->num_rank; |
| uint32_t dram_type = info->dram_type; |
| /* |
| * 15. Perform MRS commands as required to re-program |
| * timing registers in the SDRAM for the new frequency |
| * (in particular, CL, CWL and WR may need to be changed). |
| */ |
| |
| for (int i = 1; i <= num_rank; i++) { |
| for (int j = 0; j < 6; j++) { |
| ddr4_mr_write(j, info->mr_table[pstate][j], 0, i, dram_type); |
| } |
| ddr4_mr_write(6, info->mr_table[pstate][7], 0, i, dram_type); |
| } |
| } |
| |
| void sw_pstate(uint32_t pstate, uint32_t drate) |
| { |
| uint32_t val; |
| |
| mmio_write_32(DDRC_SWCTL(0), 0x0); |
| |
| /* |
| * Update any registers which may be required to |
| * change for the new frequency. |
| */ |
| mmio_write_32(DDRC_MSTR2(0), pstate); |
| mmio_setbits_32(DDRC_MSTR(0), (0x1 << 29)); |
| |
| /* |
| * Toggle RFSHCTL3.refresh_update_level to allow the |
| * new refresh-related register values to propagate |
| * to the refresh logic. |
| */ |
| val = mmio_read_32(DDRC_RFSHCTL3(0)); |
| if (val & 0x2) { |
| mmio_write_32(DDRC_RFSHCTL3(0), val & 0xFFFFFFFD); |
| } else { |
| mmio_write_32(DDRC_RFSHCTL3(0), val | 0x2); |
| } |
| |
| /* |
| * 19. If required, trigger the initialization in the PHY. |
| * If using the gen2 multiPHY, PLL initialization should |
| * be triggered at this point. See the PHY databook for |
| * details about the frequency change procedure. |
| */ |
| mmio_write_32(DDRC_DFIMISC(0), 0x00000000 | (pstate << 8)); |
| mmio_write_32(DDRC_DFIMISC(0), 0x00000020 | (pstate << 8)); |
| |
| /* wait DFISTAT.dfi_init_complete to 0 */ |
| while (mmio_read_32(DDRC_DFISTAT(0)) & 0x1) { |
| ; |
| } |
| |
| /* change the clock to the target frequency */ |
| dram_clock_switch(drate, false); |
| |
| mmio_write_32(DDRC_DFIMISC(0), 0x00000000 | (pstate << 8)); |
| |
| /* wait DFISTAT.dfi_init_complete to 1 */ |
| while (!(mmio_read_32(DDRC_DFISTAT(0)) & 0x1)) { |
| ; |
| } |
| |
| /* |
| * When changing frequencies the controller may violate the JEDEC |
| * requirement that no more than 16 refreshes should be issued within |
| * 2*tREFI. These extra refreshes are not expected to cause a problem |
| * in the SDRAM. This issue can be avoided by waiting for at least 2*tREFI |
| * before exiting self-refresh in step 19. |
| */ |
| udelay(14); |
| |
| /* 14. Exit the self-refresh state by setting PWRCTL.selfref_sw = 0. */ |
| mmio_clrbits_32(DDRC_PWRCTL(0), (1 << 5)); |
| |
| while ((mmio_read_32(DDRC_STAT(0)) & 0x3f) == 0x23) { |
| ; |
| } |
| } |
| |
| void ddr4_swffc(struct dram_info *info, unsigned int pstate) |
| { |
| uint32_t drate = info->timing_info->fsp_table[pstate]; |
| |
| /* |
| * 1. set SWCTL.sw_done to disable quasi-dynamic register |
| * programming outside reset. |
| */ |
| mmio_write_32(DDRC_SWCTL(0), 0x0); |
| |
| /* |
| * 2. Write 0 to PCTRL_n.port_en. This blocks AXI port(s) |
| * from taking any transaction (blocks traffic on AXI ports). |
| */ |
| mmio_write_32(DDRC_PCTRL_0(0), 0x0); |
| |
| /* |
| * 3. Poll PSTAT.rd_port_busy_n=0 and PSTAT.wr_port_busy_n=0. |
| * Wait until all AXI ports are idle (the uMCTL2 core has to |
| * be idle). |
| */ |
| while (mmio_read_32(DDRC_PSTAT(0)) & 0x10001) { |
| ; |
| } |
| |
| /* |
| * 4. Write 0 to SBRCTL.scrub_en. Disable SBR, required only if |
| * SBR instantiated. |
| * 5. Poll SBRSTAT.scrub_busy=0. |
| * 6. Set DERATEEN.derate_enable = 0, if DERATEEN.derate_eanble = 1 |
| * and the read latency (RL) value needs to change after the frequency |
| * change (LPDDR2/3/4 only). |
| * 7. Set DBG1.dis_hif=1 so that no new commands will be accepted by the uMCTL2. |
| */ |
| mmio_setbits_32(DDRC_DBG1(0), (0x1 << 1)); |
| |
| /* |
| * 8. Poll DBGCAM.dbg_wr_q_empty and DBGCAM.dbg_rd_q_empty to ensure |
| * that write and read data buffers are empty. |
| */ |
| while ((mmio_read_32(DDRC_DBGCAM(0)) & 0x06000000) != 0x06000000) { |
| ; |
| } |
| |
| /* |
| * 9. For DDR4, update MR6 with the new tDLLK value via the Mode |
| * Register Write signals |
| * 10. Set DFILPCFG0.dfi_lp_en_sr = 0, if DFILPCFG0.dfi_lp_en_sr = 1, |
| * and wait until DFISTAT.dfi_lp_ack |
| * 11. If DFI PHY Master interface is active in uMCTL2, then disable it |
| * 12. Wait until STAT.operating_mode[1:0]!=11 indicating that the |
| * controller is not in self-refresh mode. |
| */ |
| if ((mmio_read_32(DDRC_STAT(0)) & 0x3) == 0x3) { |
| VERBOSE("DRAM is in Self Refresh\n"); |
| } |
| |
| /* |
| * 13. Assert PWRCTL.selfref_sw for the DWC_ddr_umctl2 core to enter |
| * the self-refresh mode. |
| */ |
| mmio_setbits_32(DDRC_PWRCTL(0), (1 << 5)); |
| |
| /* |
| * 14. Wait until STAT.operating_mode[1:0]==11 indicating that the |
| * controller core is in self-refresh mode. |
| */ |
| while ((mmio_read_32(DDRC_STAT(0)) & 0x3f) != 0x23) { |
| ; |
| } |
| |
| sw_pstate(pstate, drate); |
| dram_cfg_all_mr(info, pstate); |
| |
| /* 23. Enable HIF commands by setting DBG1.dis_hif=0. */ |
| mmio_clrbits_32(DDRC_DBG1(0), (0x1 << 1)); |
| |
| /* |
| * 24. Reset DERATEEN.derate_enable = 1 if DERATEEN.derate_enable |
| * has been set to 0 in step 6. |
| * 25. If DFI PHY Master interface was active before step 11 then |
| * enable it back by programming DFIPHYMSTR.phymstr_en = 1'b1. |
| * 26. Write 1 to PCTRL_n.port_en. AXI port(s) are no longer blocked |
| * from taking transactions (Re-enable traffic on AXI ports) |
| */ |
| mmio_write_32(DDRC_PCTRL_0(0), 0x1); |
| |
| /* |
| * 27. Write 1 to SBRCTL.scrub_en. Enable SBR if desired, only |
| * required if SBR instantiated. |
| */ |
| |
| /* |
| * set SWCTL.sw_done to enable quasi-dynamic register programming |
| * outside reset. |
| */ |
| mmio_write_32(DDRC_SWCTL(0), 0x1); |
| |
| /* wait SWSTAT.sw_done_ack to 1 */ |
| while (!(mmio_read_32(DDRC_SWSTAT(0)) & 0x1)) { |
| ; |
| } |
| } |