blob: 2df11d653561f8b6cdafdcc28b66ea765193fa69 [file] [log] [blame]
/*
* Copyright (c) 2013-2018, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arm_config.h>
#include <arm_def.h>
#include <arm_spm_def.h>
#include <arm_xlat_tables.h>
#include <assert.h>
#include <cci.h>
#include <ccn.h>
#include <debug.h>
#include <gicv2.h>
#include <mmio.h>
#include <plat_arm.h>
#include <secure_partition.h>
#include <v2m_def.h>
#include "../fvp_def.h"
#include "fvp_private.h"
/* Defines for GIC Driver build time selection */
#define FVP_GICV2 1
#define FVP_GICV3 2
#define FVP_GICV3_LEGACY 3
/*******************************************************************************
* arm_config holds the characteristics of the differences between the three FVP
* platforms (Base, A53_A57 & Foundation). It will be populated during cold boot
* at each boot stage by the primary before enabling the MMU (to allow
* interconnect configuration) & used thereafter. Each BL will have its own copy
* to allow independent operation.
******************************************************************************/
arm_config_t arm_config;
#define MAP_DEVICE0 MAP_REGION_FLAT(DEVICE0_BASE, \
DEVICE0_SIZE, \
MT_DEVICE | MT_RW | MT_SECURE)
#define MAP_DEVICE1 MAP_REGION_FLAT(DEVICE1_BASE, \
DEVICE1_SIZE, \
MT_DEVICE | MT_RW | MT_SECURE)
/*
* Need to be mapped with write permissions in order to set a new non-volatile
* counter value.
*/
#define MAP_DEVICE2 MAP_REGION_FLAT(DEVICE2_BASE, \
DEVICE2_SIZE, \
MT_DEVICE | MT_RW | MT_SECURE)
/*
* Table of memory regions for various BL stages to map using the MMU.
* This doesn't include Trusted SRAM as arm_setup_page_tables() already
* takes care of mapping it.
*
* The flash needs to be mapped as writable in order to erase the FIP's Table of
* Contents in case of unrecoverable error (see plat_error_handler()).
*/
#ifdef IMAGE_BL1
const mmap_region_t plat_arm_mmap[] = {
ARM_MAP_SHARED_RAM,
V2M_MAP_FLASH0_RW,
V2M_MAP_IOFPGA,
MAP_DEVICE0,
MAP_DEVICE1,
#if TRUSTED_BOARD_BOOT
/* To access the Root of Trust Public Key registers. */
MAP_DEVICE2,
/* Map DRAM to authenticate NS_BL2U image. */
ARM_MAP_NS_DRAM1,
#endif
{0}
};
#endif
#ifdef IMAGE_BL2
const mmap_region_t plat_arm_mmap[] = {
ARM_MAP_SHARED_RAM,
V2M_MAP_FLASH0_RW,
V2M_MAP_IOFPGA,
MAP_DEVICE0,
MAP_DEVICE1,
ARM_MAP_NS_DRAM1,
#ifdef AARCH64
ARM_MAP_DRAM2,
#endif
#ifdef SPD_tspd
ARM_MAP_TSP_SEC_MEM,
#endif
#if TRUSTED_BOARD_BOOT
/* To access the Root of Trust Public Key registers. */
MAP_DEVICE2,
#endif
#if ENABLE_SPM
ARM_SP_IMAGE_MMAP,
#endif
#if ARM_BL31_IN_DRAM
ARM_MAP_BL31_SEC_DRAM,
#endif
#ifdef SPD_opteed
ARM_MAP_OPTEE_CORE_MEM,
ARM_OPTEE_PAGEABLE_LOAD_MEM,
#endif
{0}
};
#endif
#ifdef IMAGE_BL2U
const mmap_region_t plat_arm_mmap[] = {
MAP_DEVICE0,
V2M_MAP_IOFPGA,
{0}
};
#endif
#ifdef IMAGE_BL31
const mmap_region_t plat_arm_mmap[] = {
ARM_MAP_SHARED_RAM,
ARM_MAP_EL3_TZC_DRAM,
V2M_MAP_IOFPGA,
MAP_DEVICE0,
MAP_DEVICE1,
ARM_V2M_MAP_MEM_PROTECT,
#if ENABLE_SPM
ARM_SPM_BUF_EL3_MMAP,
#endif
{0}
};
#if ENABLE_SPM && defined(IMAGE_BL31)
const mmap_region_t plat_arm_secure_partition_mmap[] = {
V2M_MAP_IOFPGA_EL0, /* for the UART */
MAP_REGION_FLAT(DEVICE0_BASE, \
DEVICE0_SIZE, \
MT_DEVICE | MT_RO | MT_SECURE | MT_USER),
ARM_SP_IMAGE_MMAP,
ARM_SP_IMAGE_NS_BUF_MMAP,
ARM_SP_IMAGE_RW_MMAP,
ARM_SPM_BUF_EL0_MMAP,
{0}
};
#endif
#endif
#ifdef IMAGE_BL32
const mmap_region_t plat_arm_mmap[] = {
#ifdef AARCH32
ARM_MAP_SHARED_RAM,
#endif
V2M_MAP_IOFPGA,
MAP_DEVICE0,
MAP_DEVICE1,
{0}
};
#endif
ARM_CASSERT_MMAP
#if FVP_INTERCONNECT_DRIVER != FVP_CCN
static const int fvp_cci400_map[] = {
PLAT_FVP_CCI400_CLUS0_SL_PORT,
PLAT_FVP_CCI400_CLUS1_SL_PORT,
};
static const int fvp_cci5xx_map[] = {
PLAT_FVP_CCI5XX_CLUS0_SL_PORT,
PLAT_FVP_CCI5XX_CLUS1_SL_PORT,
};
static unsigned int get_interconnect_master(void)
{
unsigned int master;
u_register_t mpidr;
mpidr = read_mpidr_el1();
master = (arm_config.flags & ARM_CONFIG_FVP_SHIFTED_AFF) ?
MPIDR_AFFLVL2_VAL(mpidr) : MPIDR_AFFLVL1_VAL(mpidr);
assert(master < FVP_CLUSTER_COUNT);
return master;
}
#endif
#if ENABLE_SPM && defined(IMAGE_BL31)
/*
* Boot information passed to a secure partition during initialisation. Linear
* indices in MP information will be filled at runtime.
*/
static secure_partition_mp_info_t sp_mp_info[] = {
[0] = {0x80000000, 0},
[1] = {0x80000001, 0},
[2] = {0x80000002, 0},
[3] = {0x80000003, 0},
[4] = {0x80000100, 0},
[5] = {0x80000101, 0},
[6] = {0x80000102, 0},
[7] = {0x80000103, 0},
};
const secure_partition_boot_info_t plat_arm_secure_partition_boot_info = {
.h.type = PARAM_SP_IMAGE_BOOT_INFO,
.h.version = VERSION_1,
.h.size = sizeof(secure_partition_boot_info_t),
.h.attr = 0,
.sp_mem_base = ARM_SP_IMAGE_BASE,
.sp_mem_limit = ARM_SP_IMAGE_LIMIT,
.sp_image_base = ARM_SP_IMAGE_BASE,
.sp_stack_base = PLAT_SP_IMAGE_STACK_BASE,
.sp_heap_base = ARM_SP_IMAGE_HEAP_BASE,
.sp_ns_comm_buf_base = ARM_SP_IMAGE_NS_BUF_BASE,
.sp_shared_buf_base = PLAT_SPM_BUF_BASE,
.sp_image_size = ARM_SP_IMAGE_SIZE,
.sp_pcpu_stack_size = PLAT_SP_IMAGE_STACK_PCPU_SIZE,
.sp_heap_size = ARM_SP_IMAGE_HEAP_SIZE,
.sp_ns_comm_buf_size = ARM_SP_IMAGE_NS_BUF_SIZE,
.sp_shared_buf_size = PLAT_SPM_BUF_SIZE,
.num_sp_mem_regions = ARM_SP_IMAGE_NUM_MEM_REGIONS,
.num_cpus = PLATFORM_CORE_COUNT,
.mp_info = &sp_mp_info[0],
};
const struct mmap_region *plat_get_secure_partition_mmap(void *cookie)
{
return plat_arm_secure_partition_mmap;
}
const struct secure_partition_boot_info *plat_get_secure_partition_boot_info(
void *cookie)
{
return &plat_arm_secure_partition_boot_info;
}
#endif
/*******************************************************************************
* A single boot loader stack is expected to work on both the Foundation FVP
* models and the two flavours of the Base FVP models (AEMv8 & Cortex). The
* SYS_ID register provides a mechanism for detecting the differences between
* these platforms. This information is stored in a per-BL array to allow the
* code to take the correct path.Per BL platform configuration.
******************************************************************************/
void fvp_config_setup(void)
{
unsigned int rev, hbi, bld, arch, sys_id;
sys_id = mmio_read_32(V2M_SYSREGS_BASE + V2M_SYS_ID);
rev = (sys_id >> V2M_SYS_ID_REV_SHIFT) & V2M_SYS_ID_REV_MASK;
hbi = (sys_id >> V2M_SYS_ID_HBI_SHIFT) & V2M_SYS_ID_HBI_MASK;
bld = (sys_id >> V2M_SYS_ID_BLD_SHIFT) & V2M_SYS_ID_BLD_MASK;
arch = (sys_id >> V2M_SYS_ID_ARCH_SHIFT) & V2M_SYS_ID_ARCH_MASK;
if (arch != ARCH_MODEL) {
ERROR("This firmware is for FVP models\n");
panic();
}
/*
* The build field in the SYS_ID tells which variant of the GIC
* memory is implemented by the model.
*/
switch (bld) {
case BLD_GIC_VE_MMAP:
ERROR("Legacy Versatile Express memory map for GIC peripheral"
" is not supported\n");
panic();
break;
case BLD_GIC_A53A57_MMAP:
break;
default:
ERROR("Unsupported board build %x\n", bld);
panic();
}
/*
* The hbi field in the SYS_ID is 0x020 for the Base FVP & 0x010
* for the Foundation FVP.
*/
switch (hbi) {
case HBI_FOUNDATION_FVP:
arm_config.flags = 0;
/*
* Check for supported revisions of Foundation FVP
* Allow future revisions to run but emit warning diagnostic
*/
switch (rev) {
case REV_FOUNDATION_FVP_V2_0:
case REV_FOUNDATION_FVP_V2_1:
case REV_FOUNDATION_FVP_v9_1:
case REV_FOUNDATION_FVP_v9_6:
break;
default:
WARN("Unrecognized Foundation FVP revision %x\n", rev);
break;
}
break;
case HBI_BASE_FVP:
arm_config.flags |= (ARM_CONFIG_BASE_MMAP | ARM_CONFIG_HAS_TZC);
/*
* Check for supported revisions
* Allow future revisions to run but emit warning diagnostic
*/
switch (rev) {
case REV_BASE_FVP_V0:
arm_config.flags |= ARM_CONFIG_FVP_HAS_CCI400;
break;
case REV_BASE_FVP_REVC:
arm_config.flags |= (ARM_CONFIG_FVP_HAS_SMMUV3 |
ARM_CONFIG_FVP_HAS_CCI5XX);
break;
default:
WARN("Unrecognized Base FVP revision %x\n", rev);
break;
}
break;
default:
ERROR("Unsupported board HBI number 0x%x\n", hbi);
panic();
}
/*
* We assume that the presence of MT bit, and therefore shifted
* affinities, is uniform across the platform: either all CPUs, or no
* CPUs implement it.
*/
if (read_mpidr_el1() & MPIDR_MT_MASK)
arm_config.flags |= ARM_CONFIG_FVP_SHIFTED_AFF;
}
void fvp_interconnect_init(void)
{
#if FVP_INTERCONNECT_DRIVER == FVP_CCN
if (ccn_get_part0_id(PLAT_ARM_CCN_BASE) != CCN_502_PART0_ID) {
ERROR("Unrecognized CCN variant detected. Only CCN-502"
" is supported");
panic();
}
plat_arm_interconnect_init();
#else
uintptr_t cci_base = 0;
const int *cci_map = 0;
unsigned int map_size = 0;
if (!(arm_config.flags & (ARM_CONFIG_FVP_HAS_CCI400 |
ARM_CONFIG_FVP_HAS_CCI5XX))) {
return;
}
/* Initialize the right interconnect */
if (arm_config.flags & ARM_CONFIG_FVP_HAS_CCI5XX) {
cci_base = PLAT_FVP_CCI5XX_BASE;
cci_map = fvp_cci5xx_map;
map_size = ARRAY_SIZE(fvp_cci5xx_map);
} else if (arm_config.flags & ARM_CONFIG_FVP_HAS_CCI400) {
cci_base = PLAT_FVP_CCI400_BASE;
cci_map = fvp_cci400_map;
map_size = ARRAY_SIZE(fvp_cci400_map);
}
assert(cci_base);
assert(cci_map);
cci_init(cci_base, cci_map, map_size);
#endif
}
void fvp_interconnect_enable(void)
{
#if FVP_INTERCONNECT_DRIVER == FVP_CCN
plat_arm_interconnect_enter_coherency();
#else
unsigned int master;
if (arm_config.flags & (ARM_CONFIG_FVP_HAS_CCI400 |
ARM_CONFIG_FVP_HAS_CCI5XX)) {
master = get_interconnect_master();
cci_enable_snoop_dvm_reqs(master);
}
#endif
}
void fvp_interconnect_disable(void)
{
#if FVP_INTERCONNECT_DRIVER == FVP_CCN
plat_arm_interconnect_exit_coherency();
#else
unsigned int master;
if (arm_config.flags & (ARM_CONFIG_FVP_HAS_CCI400 |
ARM_CONFIG_FVP_HAS_CCI5XX)) {
master = get_interconnect_master();
cci_disable_snoop_dvm_reqs(master);
}
#endif
}