blob: ba9d90d42cd3a3500ff595da78de3851357da664 [file] [log] [blame]
/*
* Copyright (c) 2016-2024, Arm Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch.h>
#include <asm_macros.S>
#include <common/bl_common.h>
#include <common/runtime_svc.h>
#include <context.h>
#include <el3_common_macros.S>
#include <lib/el3_runtime/cpu_data.h>
#include <lib/pmf/aarch32/pmf_asm_macros.S>
#include <lib/runtime_instr.h>
#include <lib/xlat_tables/xlat_tables_defs.h>
#include <smccc_helpers.h>
#include <smccc_macros.S>
.globl sp_min_vector_table
.globl sp_min_entrypoint
.globl sp_min_warm_entrypoint
.globl sp_min_handle_smc
.globl sp_min_handle_fiq
#define FIXUP_SIZE ((BL32_LIMIT) - (BL32_BASE))
.macro route_fiq_to_sp_min reg
/* -----------------------------------------------------
* FIQs are secure interrupts trapped by Monitor and non
* secure is not allowed to mask the FIQs.
* -----------------------------------------------------
*/
ldcopr \reg, SCR
orr \reg, \reg, #SCR_FIQ_BIT
bic \reg, \reg, #SCR_FW_BIT
stcopr \reg, SCR
.endm
.macro clrex_on_monitor_entry
#if (ARM_ARCH_MAJOR == 7)
/*
* ARMv7 architectures need to clear the exclusive access when
* entering Monitor mode.
*/
clrex
#endif
.endm
vector_base sp_min_vector_table
b sp_min_entrypoint
b plat_panic_handler /* Undef */
b sp_min_handle_smc /* Syscall */
b report_prefetch_abort /* Prefetch abort */
b report_data_abort /* Data abort */
b plat_panic_handler /* Reserved */
b plat_panic_handler /* IRQ */
b sp_min_handle_fiq /* FIQ */
/*
* The Cold boot/Reset entrypoint for SP_MIN
*/
func sp_min_entrypoint
/* ---------------------------------------------------------------
* Stash the previous bootloader arguments r0 - r3 for later use.
* ---------------------------------------------------------------
*/
mov r9, r0
mov r10, r1
mov r11, r2
mov r12, r3
#if !RESET_TO_SP_MIN
/* ---------------------------------------------------------------------
* For !RESET_TO_SP_MIN systems, only the primary CPU ever reaches
* sp_min_entrypoint() during the cold boot flow, so the cold/warm boot
* and primary/secondary CPU logic should not be executed in this case.
*
* Also, assume that the previous bootloader has already initialised the
* SCTLR, including the CPU endianness, and has initialised the memory.
* ---------------------------------------------------------------------
*/
el3_entrypoint_common \
_init_sctlr=0 \
_warm_boot_mailbox=0 \
_secondary_cold_boot=0 \
_init_memory=0 \
_init_c_runtime=1 \
_exception_vectors=sp_min_vector_table \
_pie_fixup_size=FIXUP_SIZE
#else
/* ---------------------------------------------------------------------
* For RESET_TO_SP_MIN systems which have a programmable reset address,
* sp_min_entrypoint() is executed only on the cold boot path so we can
* skip the warm boot mailbox mechanism.
* ---------------------------------------------------------------------
*/
el3_entrypoint_common \
_init_sctlr=1 \
_warm_boot_mailbox=!PROGRAMMABLE_RESET_ADDRESS \
_secondary_cold_boot=!COLD_BOOT_SINGLE_CPU \
_init_memory=1 \
_init_c_runtime=1 \
_exception_vectors=sp_min_vector_table \
_pie_fixup_size=FIXUP_SIZE
#endif /* RESET_TO_SP_MIN */
#if SP_MIN_WITH_SECURE_FIQ
route_fiq_to_sp_min r4
#endif
/* ---------------------------------------------------------------------
* Relay the previous bootloader's arguments to the platform layer
* ---------------------------------------------------------------------
*/
mov r0, r9
mov r1, r10
mov r2, r11
mov r3, r12
bl sp_min_setup
/* Jump to the main function */
bl sp_min_main
/* -------------------------------------------------------------
* Clean the .data & .bss sections to main memory. This ensures
* that any global data which was initialised by the primary CPU
* is visible to secondary CPUs before they enable their data
* caches and participate in coherency.
* -------------------------------------------------------------
*/
ldr r0, =__DATA_START__
ldr r1, =__DATA_END__
sub r1, r1, r0
bl clean_dcache_range
ldr r0, =__BSS_START__
ldr r1, =__BSS_END__
sub r1, r1, r0
bl clean_dcache_range
bl smc_get_next_ctx
/* r0 points to `smc_ctx_t` */
/* The PSCI cpu_context registers have been copied to `smc_ctx_t` */
b sp_min_exit
endfunc sp_min_entrypoint
/*
* SMC handling function for SP_MIN.
*/
func sp_min_handle_smc
/* On SMC entry, `sp` points to `smc_ctx_t`. Save `lr`. */
str lr, [sp, #SMC_CTX_LR_MON]
#if ENABLE_RUNTIME_INSTRUMENTATION
/*
* Read the timestamp value and store it on top of the C runtime stack.
* The value will be saved to the per-cpu data once the C stack is
* available, as a valid stack is needed to call _cpu_data()
*/
strd r0, r1, [sp, #SMC_CTX_GPREG_R0]
ldcopr16 r0, r1, CNTPCT_64
ldr lr, [sp, #SMC_CTX_SP_MON]
strd r0, r1, [lr, #-8]!
str lr, [sp, #SMC_CTX_SP_MON]
ldrd r0, r1, [sp, #SMC_CTX_GPREG_R0]
#endif
smccc_save_gp_mode_regs
clrex_on_monitor_entry
/*
* `sp` still points to `smc_ctx_t`. Save it to a register
* and restore the C runtime stack pointer to `sp`.
*/
mov r2, sp /* handle */
ldr sp, [r2, #SMC_CTX_SP_MON]
#if ENABLE_RUNTIME_INSTRUMENTATION
/* Save handle to a callee saved register */
mov r6, r2
/*
* Restore the timestamp value and store it in per-cpu data. The value
* will be extracted from per-cpu data by the C level SMC handler and
* saved to the PMF timestamp region.
*/
ldrd r4, r5, [sp], #8
bl _cpu_data
strd r4, r5, [r0, #CPU_DATA_PMF_TS0_OFFSET]
/* Restore handle */
mov r2, r6
#endif
ldr r0, [r2, #SMC_CTX_SCR]
and r3, r0, #SCR_NS_BIT /* flags */
/* Switch to Secure Mode*/
bic r0, #SCR_NS_BIT
stcopr r0, SCR
isb
ldr r0, [r2, #SMC_CTX_GPREG_R0] /* smc_fid */
/* Check whether an SMC64 is issued */
tst r0, #(FUNCID_CC_MASK << FUNCID_CC_SHIFT)
beq 1f
/* SMC32 is not detected. Return error back to caller */
mov r0, #SMC_UNK
str r0, [r2, #SMC_CTX_GPREG_R0]
mov r0, r2
b sp_min_exit
1:
/* SMC32 is detected */
mov r1, #0 /* cookie */
bl handle_runtime_svc
/* `r0` points to `smc_ctx_t` */
b sp_min_exit
endfunc sp_min_handle_smc
/*
* Secure Interrupts handling function for SP_MIN.
*/
func sp_min_handle_fiq
#if !SP_MIN_WITH_SECURE_FIQ
b plat_panic_handler
#else
/* FIQ has a +4 offset for lr compared to preferred return address */
sub lr, lr, #4
/* On SMC entry, `sp` points to `smc_ctx_t`. Save `lr`. */
str lr, [sp, #SMC_CTX_LR_MON]
smccc_save_gp_mode_regs
clrex_on_monitor_entry
/* load run-time stack */
mov r2, sp
ldr sp, [r2, #SMC_CTX_SP_MON]
/* Switch to Secure Mode */
ldr r0, [r2, #SMC_CTX_SCR]
bic r0, #SCR_NS_BIT
stcopr r0, SCR
isb
push {r2, r3}
bl sp_min_fiq
pop {r0, r3}
b sp_min_exit
#endif
endfunc sp_min_handle_fiq
/*
* The Warm boot entrypoint for SP_MIN.
*/
func sp_min_warm_entrypoint
#if ENABLE_RUNTIME_INSTRUMENTATION
/*
* This timestamp update happens with cache off. The next
* timestamp collection will need to do cache maintenance prior
* to timestamp update.
*/
pmf_calc_timestamp_addr rt_instr_svc, RT_INSTR_EXIT_HW_LOW_PWR
ldcopr16 r2, r3, CNTPCT_64
strd r2, r3, [r0]
#endif
/*
* On the warm boot path, most of the EL3 initialisations performed by
* 'el3_entrypoint_common' must be skipped:
*
* - Only when the platform bypasses the BL1/BL32 (SP_MIN) entrypoint by
* programming the reset address do we need to initialied the SCTLR.
* In other cases, we assume this has been taken care by the
* entrypoint code.
*
* - No need to determine the type of boot, we know it is a warm boot.
*
* - Do not try to distinguish between primary and secondary CPUs, this
* notion only exists for a cold boot.
*
* - No need to initialise the memory or the C runtime environment,
* it has been done once and for all on the cold boot path.
*/
el3_entrypoint_common \
_init_sctlr=PROGRAMMABLE_RESET_ADDRESS \
_warm_boot_mailbox=0 \
_secondary_cold_boot=0 \
_init_memory=0 \
_init_c_runtime=0 \
_exception_vectors=sp_min_vector_table \
_pie_fixup_size=0
/*
* We're about to enable MMU and participate in PSCI state coordination.
*
* The PSCI implementation invokes platform routines that enable CPUs to
* participate in coherency. On a system where CPUs are not
* cache-coherent without appropriate platform specific programming,
* having caches enabled until such time might lead to coherency issues
* (resulting from stale data getting speculatively fetched, among
* others). Therefore we keep data caches disabled even after enabling
* the MMU for such platforms.
*
* On systems with hardware-assisted coherency, or on single cluster
* platforms, such platform specific programming is not required to
* enter coherency (as CPUs already are); and there's no reason to have
* caches disabled either.
*/
#if HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY
mov r0, #0
#else
mov r0, #DISABLE_DCACHE
#endif
bl bl32_plat_enable_mmu
#if SP_MIN_WITH_SECURE_FIQ
route_fiq_to_sp_min r0
#endif
bl sp_min_warm_boot
bl smc_get_next_ctx
/* r0 points to `smc_ctx_t` */
/* The PSCI cpu_context registers have been copied to `smc_ctx_t` */
#if ENABLE_RUNTIME_INSTRUMENTATION
/* Save smc_ctx_t */
mov r5, r0
pmf_calc_timestamp_addr rt_instr_svc, RT_INSTR_EXIT_PSCI
mov r4, r0
/*
* Invalidate before updating timestamp to ensure previous timestamp
* updates on the same cache line with caches disabled are properly
* seen by the same core. Without the cache invalidate, the core might
* write into a stale cache line.
*/
mov r1, #PMF_TS_SIZE
bl inv_dcache_range
ldcopr16 r0, r1, CNTPCT_64
strd r0, r1, [r4]
/* Restore smc_ctx_t */
mov r0, r5
#endif
b sp_min_exit
endfunc sp_min_warm_entrypoint
/*
* The function to restore the registers from SMC context and return
* to the mode restored to SPSR.
*
* Arguments : r0 must point to the SMC context to restore from.
*/
func sp_min_exit
monitor_exit
endfunc sp_min_exit