| /* |
| * Copyright (c) 2015, ARM Limited and Contributors. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are met: |
| * |
| * Redistributions of source code must retain the above copyright notice, this |
| * list of conditions and the following disclaimer. |
| * |
| * Redistributions in binary form must reproduce the above copyright notice, |
| * this list of conditions and the following disclaimer in the documentation |
| * and/or other materials provided with the distribution. |
| * |
| * Neither the name of ARM nor the names of its contributors may be used |
| * to endorse or promote products derived from this software without specific |
| * prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE |
| * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| * POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include <arch.h> |
| #include <arch_helpers.h> |
| #include <assert.h> |
| #include <debug.h> |
| #include <gic_common.h> |
| #include "gicv2_private.h" |
| |
| /* |
| * Accessor to read the GIC Distributor ITARGETSR corresponding to the |
| * interrupt `id`, 4 interrupt IDs at a time. |
| */ |
| unsigned int gicd_read_itargetsr(uintptr_t base, unsigned int id) |
| { |
| unsigned n = id >> ITARGETSR_SHIFT; |
| return mmio_read_32(base + GICD_ITARGETSR + (n << 2)); |
| } |
| |
| /* |
| * Accessor to read the GIC Distributor CPENDSGIR corresponding to the |
| * interrupt `id`, 4 interrupt IDs at a time. |
| */ |
| unsigned int gicd_read_cpendsgir(uintptr_t base, unsigned int id) |
| { |
| unsigned n = id >> CPENDSGIR_SHIFT; |
| return mmio_read_32(base + GICD_CPENDSGIR + (n << 2)); |
| } |
| |
| /* |
| * Accessor to read the GIC Distributor SPENDSGIR corresponding to the |
| * interrupt `id`, 4 interrupt IDs at a time. |
| */ |
| unsigned int gicd_read_spendsgir(uintptr_t base, unsigned int id) |
| { |
| unsigned n = id >> SPENDSGIR_SHIFT; |
| return mmio_read_32(base + GICD_SPENDSGIR + (n << 2)); |
| } |
| |
| /* |
| * Accessor to write the GIC Distributor ITARGETSR corresponding to the |
| * interrupt `id`, 4 interrupt IDs at a time. |
| */ |
| void gicd_write_itargetsr(uintptr_t base, unsigned int id, unsigned int val) |
| { |
| unsigned n = id >> ITARGETSR_SHIFT; |
| mmio_write_32(base + GICD_ITARGETSR + (n << 2), val); |
| } |
| |
| /* |
| * Accessor to write the GIC Distributor CPENDSGIR corresponding to the |
| * interrupt `id`, 4 interrupt IDs at a time. |
| */ |
| void gicd_write_cpendsgir(uintptr_t base, unsigned int id, unsigned int val) |
| { |
| unsigned n = id >> CPENDSGIR_SHIFT; |
| mmio_write_32(base + GICD_CPENDSGIR + (n << 2), val); |
| } |
| |
| /* |
| * Accessor to write the GIC Distributor SPENDSGIR corresponding to the |
| * interrupt `id`, 4 interrupt IDs at a time. |
| */ |
| void gicd_write_spendsgir(uintptr_t base, unsigned int id, unsigned int val) |
| { |
| unsigned n = id >> SPENDSGIR_SHIFT; |
| mmio_write_32(base + GICD_SPENDSGIR + (n << 2), val); |
| } |
| |
| /* |
| * Accessor to write the GIC Distributor ITARGETSR corresponding to the |
| * interrupt `id`. |
| */ |
| void gicd_set_itargetsr(uintptr_t base, unsigned int id, unsigned int target) |
| { |
| unsigned byte_off = id & ((1 << ITARGETSR_SHIFT) - 1); |
| unsigned int reg_val = gicd_read_itargetsr(base, id); |
| |
| gicd_write_itargetsr(base, id, reg_val | (target << (byte_off << 3))); |
| } |
| |
| /******************************************************************************* |
| * Get the current CPU bit mask from GICD_ITARGETSR0 |
| ******************************************************************************/ |
| unsigned int gicv2_get_cpuif_id(uintptr_t base) |
| { |
| unsigned int val; |
| |
| val = gicd_read_itargetsr(base, 0); |
| return val & GIC_TARGET_CPU_MASK; |
| } |
| |
| /******************************************************************************* |
| * Helper function to configure the default attributes of SPIs. |
| ******************************************************************************/ |
| void gicv2_spis_configure_defaults(uintptr_t gicd_base) |
| { |
| unsigned int index, num_ints; |
| |
| num_ints = gicd_read_typer(gicd_base); |
| num_ints &= TYPER_IT_LINES_NO_MASK; |
| num_ints = (num_ints + 1) << 5; |
| |
| /* |
| * Treat all SPIs as G1NS by default. The number of interrupts is |
| * calculated as 32 * (IT_LINES + 1). We do 32 at a time. |
| */ |
| for (index = MIN_SPI_ID; index < num_ints; index += 32) |
| gicd_write_igroupr(gicd_base, index, ~0U); |
| |
| /* Setup the default SPI priorities doing four at a time */ |
| for (index = MIN_SPI_ID; index < num_ints; index += 4) |
| gicd_write_ipriorityr(gicd_base, |
| index, |
| GICD_IPRIORITYR_DEF_VAL); |
| |
| /* Treat all SPIs as level triggered by default, 16 at a time */ |
| for (index = MIN_SPI_ID; index < num_ints; index += 16) |
| gicd_write_icfgr(gicd_base, index, 0); |
| } |
| |
| /******************************************************************************* |
| * Helper function to configure secure G0 SPIs. |
| ******************************************************************************/ |
| void gicv2_secure_spis_configure(uintptr_t gicd_base, |
| unsigned int num_ints, |
| const unsigned int *sec_intr_list) |
| { |
| unsigned int index, irq_num; |
| |
| /* If `num_ints` is not 0, ensure that `sec_intr_list` is not NULL */ |
| assert(num_ints ? (uintptr_t)sec_intr_list : 1); |
| |
| for (index = 0; index < num_ints; index++) { |
| irq_num = sec_intr_list[index]; |
| if (irq_num >= MIN_SPI_ID) { |
| /* Configure this interrupt as a secure interrupt */ |
| gicd_clr_igroupr(gicd_base, irq_num); |
| |
| /* Set the priority of this interrupt */ |
| gicd_write_ipriorityr(gicd_base, |
| irq_num, |
| GIC_HIGHEST_SEC_PRIORITY); |
| |
| /* Target the secure interrupts to primary CPU */ |
| gicd_set_itargetsr(gicd_base, irq_num, |
| gicv2_get_cpuif_id(gicd_base)); |
| |
| /* Enable this interrupt */ |
| gicd_set_isenabler(gicd_base, irq_num); |
| } |
| } |
| |
| } |
| |
| /******************************************************************************* |
| * Helper function to configure secure G0 SGIs and PPIs. |
| ******************************************************************************/ |
| void gicv2_secure_ppi_sgi_setup(uintptr_t gicd_base, |
| unsigned int num_ints, |
| const unsigned int *sec_intr_list) |
| { |
| unsigned int index, irq_num, sec_ppi_sgi_mask = 0; |
| |
| /* If `num_ints` is not 0, ensure that `sec_intr_list` is not NULL */ |
| assert(num_ints ? (uintptr_t)sec_intr_list : 1); |
| |
| /* |
| * Disable all SGIs (imp. def.)/PPIs before configuring them. This is a |
| * more scalable approach as it avoids clearing the enable bits in the |
| * GICD_CTLR. |
| */ |
| gicd_write_icenabler(gicd_base, 0, ~0); |
| |
| /* Setup the default PPI/SGI priorities doing four at a time */ |
| for (index = 0; index < MIN_SPI_ID; index += 4) |
| gicd_write_ipriorityr(gicd_base, |
| index, |
| GICD_IPRIORITYR_DEF_VAL); |
| |
| for (index = 0; index < num_ints; index++) { |
| irq_num = sec_intr_list[index]; |
| if (irq_num < MIN_SPI_ID) { |
| /* We have an SGI or a PPI. They are Group0 at reset */ |
| sec_ppi_sgi_mask |= 1U << irq_num; |
| |
| /* Set the priority of this interrupt */ |
| gicd_write_ipriorityr(gicd_base, |
| irq_num, |
| GIC_HIGHEST_SEC_PRIORITY); |
| } |
| } |
| |
| /* |
| * Invert the bitmask to create a mask for non-secure PPIs and |
| * SGIs. Program the GICD_IGROUPR0 with this bit mask. |
| */ |
| gicd_write_igroupr(gicd_base, 0, ~sec_ppi_sgi_mask); |
| |
| /* Enable the Group 0 SGIs and PPIs */ |
| gicd_write_isenabler(gicd_base, 0, sec_ppi_sgi_mask); |
| } |