blob: 30ff0a38d47414abf1639dcb34ec909b8074b8aa [file] [log] [blame]
/*
* Copyright (c) 2015-2018, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <errno.h>
#include <stddef.h>
#include <string.h>
#include <platform_def.h>
#include <arch.h>
#include <arch_helpers.h>
#include <bl31/bl31.h>
#include <common/bl_common.h>
#include <common/debug.h>
#include <cortex_a53.h>
#include <cortex_a57.h>
#include <denver.h>
#include <drivers/console.h>
#include <lib/mmio.h>
#include <lib/utils.h>
#include <lib/utils_def.h>
#include <plat/common/platform.h>
#include <memctrl.h>
#include <profiler.h>
#include <tegra_def.h>
#include <tegra_platform.h>
#include <tegra_private.h>
/* length of Trusty's input parameters (in bytes) */
#define TRUSTY_PARAMS_LEN_BYTES (4096*2)
extern void memcpy16(void *dest, const void *src, unsigned int length);
/*******************************************************************************
* Declarations of linker defined symbols which will help us find the layout
* of trusted SRAM
******************************************************************************/
IMPORT_SYM(uint64_t, __RW_START__, BL31_RW_START);
IMPORT_SYM(uint64_t, __RW_END__, BL31_RW_END);
IMPORT_SYM(uint64_t, __RODATA_START__, BL31_RODATA_BASE);
IMPORT_SYM(uint64_t, __RODATA_END__, BL31_RODATA_END);
IMPORT_SYM(uint64_t, __TEXT_START__, TEXT_START);
IMPORT_SYM(uint64_t, __TEXT_END__, TEXT_END);
extern uint64_t tegra_bl31_phys_base;
extern uint64_t tegra_console_base;
static entry_point_info_t bl33_image_ep_info, bl32_image_ep_info;
static plat_params_from_bl2_t plat_bl31_params_from_bl2 = {
.tzdram_size = TZDRAM_SIZE
};
static unsigned long bl32_mem_size;
static unsigned long bl32_boot_params;
/*******************************************************************************
* This variable holds the non-secure image entry address
******************************************************************************/
extern uint64_t ns_image_entrypoint;
/*******************************************************************************
* The following platform setup functions are weakly defined. They
* provide typical implementations that will be overridden by a SoC.
******************************************************************************/
#pragma weak plat_early_platform_setup
#pragma weak plat_get_bl31_params
#pragma weak plat_get_bl31_plat_params
void plat_early_platform_setup(void)
{
; /* do nothing */
}
struct tegra_bl31_params *plat_get_bl31_params(void)
{
return NULL;
}
plat_params_from_bl2_t *plat_get_bl31_plat_params(void)
{
return NULL;
}
/*******************************************************************************
* Return a pointer to the 'entry_point_info' structure of the next image for
* security state specified. BL33 corresponds to the non-secure image type
* while BL32 corresponds to the secure image type.
******************************************************************************/
entry_point_info_t *bl31_plat_get_next_image_ep_info(uint32_t type)
{
entry_point_info_t *ep = NULL;
/* return BL32 entry point info if it is valid */
if (type == NON_SECURE) {
ep = &bl33_image_ep_info;
} else if ((type == SECURE) && (bl32_image_ep_info.pc != 0U)) {
ep = &bl32_image_ep_info;
}
return ep;
}
/*******************************************************************************
* Return a pointer to the 'plat_params_from_bl2_t' structure. The BL2 image
* passes this platform specific information.
******************************************************************************/
plat_params_from_bl2_t *bl31_get_plat_params(void)
{
return &plat_bl31_params_from_bl2;
}
/*******************************************************************************
* Perform any BL31 specific platform actions. Populate the BL33 and BL32 image
* info.
******************************************************************************/
void bl31_early_platform_setup2(u_register_t arg0, u_register_t arg1,
u_register_t arg2, u_register_t arg3)
{
struct tegra_bl31_params *arg_from_bl2 = (struct tegra_bl31_params *) arg0;
plat_params_from_bl2_t *plat_params = (plat_params_from_bl2_t *)arg1;
image_info_t bl32_img_info = { {0} };
uint64_t tzdram_start, tzdram_end, bl32_start, bl32_end;
uint32_t console_clock;
int32_t ret;
/*
* For RESET_TO_BL31 systems, BL31 is the first bootloader to run so
* there's no argument to relay from a previous bootloader. Platforms
* might use custom ways to get arguments, so provide handlers which
* they can override.
*/
if (arg_from_bl2 == NULL) {
arg_from_bl2 = plat_get_bl31_params();
}
if (plat_params == NULL) {
plat_params = plat_get_bl31_plat_params();
}
/*
* Copy BL3-3, BL3-2 entry point information.
* They are stored in Secure RAM, in BL2's address space.
*/
assert(arg_from_bl2 != NULL);
assert(arg_from_bl2->bl33_ep_info != NULL);
bl33_image_ep_info = *arg_from_bl2->bl33_ep_info;
if (arg_from_bl2->bl32_ep_info != NULL) {
bl32_image_ep_info = *arg_from_bl2->bl32_ep_info;
bl32_mem_size = arg_from_bl2->bl32_ep_info->args.arg0;
bl32_boot_params = arg_from_bl2->bl32_ep_info->args.arg2;
}
/*
* Parse platform specific parameters - TZDRAM aperture base and size
*/
assert(plat_params != NULL);
plat_bl31_params_from_bl2.tzdram_base = plat_params->tzdram_base;
plat_bl31_params_from_bl2.tzdram_size = plat_params->tzdram_size;
plat_bl31_params_from_bl2.uart_id = plat_params->uart_id;
plat_bl31_params_from_bl2.l2_ecc_parity_prot_dis = plat_params->l2_ecc_parity_prot_dis;
/*
* It is very important that we run either from TZDRAM or TZSRAM base.
* Add an explicit check here.
*/
if ((plat_bl31_params_from_bl2.tzdram_base != (uint64_t)BL31_BASE) &&
(TEGRA_TZRAM_BASE != BL31_BASE)) {
panic();
}
/*
* Reference clock used by the FPGAs is a lot slower.
*/
if (tegra_platform_is_fpga()) {
console_clock = TEGRA_BOOT_UART_CLK_13_MHZ;
} else {
console_clock = TEGRA_BOOT_UART_CLK_408_MHZ;
}
/*
* Get the base address of the UART controller to be used for the
* console
*/
tegra_console_base = plat_get_console_from_id(plat_params->uart_id);
if (tegra_console_base != 0U) {
/*
* Configure the UART port to be used as the console
*/
(void)console_init(tegra_console_base, console_clock,
TEGRA_CONSOLE_BAUDRATE);
}
/*
* The previous bootloader passes the base address of the shared memory
* location to store the boot profiler logs. Sanity check the
* address and initilise the profiler library, if it looks ok.
*/
if (plat_params->boot_profiler_shmem_base != 0ULL) {
ret = bl31_check_ns_address(plat_params->boot_profiler_shmem_base,
PROFILER_SIZE_BYTES);
if (ret == (int32_t)0) {
/* store the membase for the profiler lib */
plat_bl31_params_from_bl2.boot_profiler_shmem_base =
plat_params->boot_profiler_shmem_base;
/* initialise the profiler library */
boot_profiler_init(plat_params->boot_profiler_shmem_base,
TEGRA_TMRUS_BASE);
}
}
/*
* Add timestamp for platform early setup entry.
*/
boot_profiler_add_record("[TF] early setup entry");
/*
* Initialize delay timer
*/
tegra_delay_timer_init();
/*
* Do initial security configuration to allow DRAM/device access.
*/
tegra_memctrl_tzdram_setup(plat_bl31_params_from_bl2.tzdram_base,
(uint32_t)plat_bl31_params_from_bl2.tzdram_size);
/*
* The previous bootloader might not have placed the BL32 image
* inside the TZDRAM. We check the BL32 image info to find out
* the base/PC values and relocate the image if necessary.
*/
if (arg_from_bl2->bl32_image_info != NULL) {
bl32_img_info = *arg_from_bl2->bl32_image_info;
/* Relocate BL32 if it resides outside of the TZDRAM */
tzdram_start = plat_bl31_params_from_bl2.tzdram_base;
tzdram_end = plat_bl31_params_from_bl2.tzdram_base +
plat_bl31_params_from_bl2.tzdram_size;
bl32_start = bl32_img_info.image_base;
bl32_end = bl32_img_info.image_base + bl32_img_info.image_size;
assert(tzdram_end > tzdram_start);
assert(bl32_end > bl32_start);
assert(bl32_image_ep_info.pc > tzdram_start);
assert(bl32_image_ep_info.pc < tzdram_end);
/* relocate BL32 */
if ((bl32_start >= tzdram_end) || (bl32_end <= tzdram_start)) {
INFO("Relocate BL32 to TZDRAM\n");
(void)memcpy16((void *)(uintptr_t)bl32_image_ep_info.pc,
(void *)(uintptr_t)bl32_start,
bl32_img_info.image_size);
/* clean up non-secure intermediate buffer */
zeromem((void *)(uintptr_t)bl32_start,
bl32_img_info.image_size);
}
}
/* Early platform setup for Tegra SoCs */
plat_early_platform_setup();
/*
* Add timestamp for platform early setup exit.
*/
boot_profiler_add_record("[TF] early setup exit");
INFO("BL3-1: Boot CPU: %s Processor [%lx]\n",
(((read_midr() >> MIDR_IMPL_SHIFT) & MIDR_IMPL_MASK)
== DENVER_IMPL) ? "Denver" : "ARM", read_mpidr());
}
#ifdef SPD_trusty
void plat_trusty_set_boot_args(aapcs64_params_t *args)
{
args->arg0 = bl32_mem_size;
args->arg1 = bl32_boot_params;
args->arg2 = TRUSTY_PARAMS_LEN_BYTES;
/* update EKS size */
if (args->arg4 != 0U) {
args->arg2 = args->arg4;
}
/* Profiler Carveout Base */
args->arg3 = args->arg5;
}
#endif
/*******************************************************************************
* Initialize the gic, configure the SCR.
******************************************************************************/
void bl31_platform_setup(void)
{
/*
* Add timestamp for platform setup entry.
*/
boot_profiler_add_record("[TF] plat setup entry");
/* Initialize the gic cpu and distributor interfaces */
plat_gic_setup();
/*
* Setup secondary CPU POR infrastructure.
*/
plat_secondary_setup();
/*
* Initial Memory Controller configuration.
*/
tegra_memctrl_setup();
/*
* Set up the TZRAM memory aperture to allow only secure world
* access
*/
tegra_memctrl_tzram_setup(TEGRA_TZRAM_BASE, TEGRA_TZRAM_SIZE);
/*
* Add timestamp for platform setup exit.
*/
boot_profiler_add_record("[TF] plat setup exit");
INFO("BL3-1: Tegra platform setup complete\n");
}
/*******************************************************************************
* Perform any BL3-1 platform runtime setup prior to BL3-1 cold boot exit
******************************************************************************/
void bl31_plat_runtime_setup(void)
{
/*
* During boot, USB3 and flash media (SDMMC/SATA) devices need
* access to IRAM. Because these clients connect to the MC and
* do not have a direct path to the IRAM, the MC implements AHB
* redirection during boot to allow path to IRAM. In this mode
* accesses to a programmed memory address aperture are directed
* to the AHB bus, allowing access to the IRAM. This mode must be
* disabled before we jump to the non-secure world.
*/
tegra_memctrl_disable_ahb_redirection();
/*
* Add final timestamp before exiting BL31.
*/
boot_profiler_add_record("[TF] bl31 exit");
boot_profiler_deinit();
}
/*******************************************************************************
* Perform the very early platform specific architectural setup here. At the
* moment this only intializes the mmu in a quick and dirty way.
******************************************************************************/
void bl31_plat_arch_setup(void)
{
uint64_t rw_start = BL31_RW_START;
uint64_t rw_size = BL31_RW_END - BL31_RW_START;
uint64_t rodata_start = BL31_RODATA_BASE;
uint64_t rodata_size = BL31_RODATA_END - BL31_RODATA_BASE;
uint64_t code_base = TEXT_START;
uint64_t code_size = TEXT_END - TEXT_START;
const mmap_region_t *plat_mmio_map = NULL;
#if USE_COHERENT_MEM
uint32_t coh_start, coh_size;
#endif
const plat_params_from_bl2_t *params_from_bl2 = bl31_get_plat_params();
/*
* Add timestamp for arch setup entry.
*/
boot_profiler_add_record("[TF] arch setup entry");
/* add memory regions */
mmap_add_region(rw_start, rw_start,
rw_size,
MT_MEMORY | MT_RW | MT_SECURE);
mmap_add_region(rodata_start, rodata_start,
rodata_size,
MT_RO_DATA | MT_SECURE);
mmap_add_region(code_base, code_base,
code_size,
MT_CODE | MT_SECURE);
/* map TZDRAM used by BL31 as coherent memory */
if (TEGRA_TZRAM_BASE == tegra_bl31_phys_base) {
mmap_add_region(params_from_bl2->tzdram_base,
params_from_bl2->tzdram_base,
BL31_SIZE,
MT_DEVICE | MT_RW | MT_SECURE);
}
#if USE_COHERENT_MEM
coh_start = total_base + (BL_COHERENT_RAM_BASE - BL31_RO_BASE);
coh_size = BL_COHERENT_RAM_END - BL_COHERENT_RAM_BASE;
mmap_add_region(coh_start, coh_start,
coh_size,
(uint8_t)MT_DEVICE | (uint8_t)MT_RW | (uint8_t)MT_SECURE);
#endif
/* map on-chip free running uS timer */
mmap_add_region(page_align(TEGRA_TMRUS_BASE, 0),
page_align(TEGRA_TMRUS_BASE, 0),
TEGRA_TMRUS_SIZE,
(uint8_t)MT_DEVICE | (uint8_t)MT_RO | (uint8_t)MT_SECURE);
/* add MMIO space */
plat_mmio_map = plat_get_mmio_map();
if (plat_mmio_map != NULL) {
mmap_add(plat_mmio_map);
} else {
WARN("MMIO map not available\n");
}
/* set up translation tables */
init_xlat_tables();
/* enable the MMU */
enable_mmu_el3(0);
/*
* Add timestamp for arch setup exit.
*/
boot_profiler_add_record("[TF] arch setup exit");
INFO("BL3-1: Tegra: MMU enabled\n");
}
/*******************************************************************************
* Check if the given NS DRAM range is valid
******************************************************************************/
int32_t bl31_check_ns_address(uint64_t base, uint64_t size_in_bytes)
{
uint64_t end = base + size_in_bytes - U(1);
int32_t ret = 0;
/*
* Check if the NS DRAM address is valid
*/
if ((base < TEGRA_DRAM_BASE) || (base >= TEGRA_DRAM_END) ||
(end > TEGRA_DRAM_END)) {
ERROR("NS address is out-of-bounds!\n");
ret = -EFAULT;
}
/*
* TZDRAM aperture contains the BL31 and BL32 images, so we need
* to check if the NS DRAM range overlaps the TZDRAM aperture.
*/
if ((base < (uint64_t)TZDRAM_END) && (end > tegra_bl31_phys_base)) {
ERROR("NS address overlaps TZDRAM!\n");
ret = -ENOTSUP;
}
/* valid NS address */
return ret;
}