| /* |
| * Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved. |
| * |
| * SPDX-License-Identifier: BSD-3-Clause |
| */ |
| |
| #include <arch.h> |
| #include <arch_helpers.h> |
| #include <assert.h> |
| #include <common_def.h> |
| #include <context.h> |
| #include <context_mgmt.h> |
| #include <debug.h> |
| #include <platform_def.h> |
| #include <platform.h> |
| #include <secure_partition.h> |
| #include <string.h> |
| #include <xlat_tables_v2.h> |
| |
| #include "spm_private.h" |
| #include "spm_shim_private.h" |
| |
| /* Setup context of the Secure Partition */ |
| void spm_sp_setup(sp_context_t *sp_ctx) |
| { |
| cpu_context_t *ctx = &(sp_ctx->cpu_ctx); |
| |
| /* |
| * Initialize CPU context |
| * ---------------------- |
| */ |
| |
| entry_point_info_t ep_info = {0}; |
| |
| SET_PARAM_HEAD(&ep_info, PARAM_EP, VERSION_1, SECURE | EP_ST_ENABLE); |
| ep_info.pc = BL32_BASE; |
| ep_info.spsr = SPSR_64(MODE_EL0, MODE_SP_EL0, DISABLE_ALL_EXCEPTIONS); |
| |
| cm_setup_context(ctx, &ep_info); |
| |
| /* |
| * General-Purpose registers |
| * ------------------------- |
| */ |
| |
| /* |
| * X0: Virtual address of a buffer shared between EL3 and Secure EL0. |
| * The buffer will be mapped in the Secure EL1 translation regime |
| * with Normal IS WBWA attributes and RO data and Execute Never |
| * instruction access permissions. |
| * |
| * X1: Size of the buffer in bytes |
| * |
| * X2: cookie value (Implementation Defined) |
| * |
| * X3: cookie value (Implementation Defined) |
| * |
| * X4 to X30 = 0 (already done by cm_init_my_context()) |
| */ |
| write_ctx_reg(get_gpregs_ctx(ctx), CTX_GPREG_X0, PLAT_SPM_BUF_BASE); |
| write_ctx_reg(get_gpregs_ctx(ctx), CTX_GPREG_X1, PLAT_SPM_BUF_SIZE); |
| write_ctx_reg(get_gpregs_ctx(ctx), CTX_GPREG_X2, PLAT_SPM_COOKIE_0); |
| write_ctx_reg(get_gpregs_ctx(ctx), CTX_GPREG_X3, PLAT_SPM_COOKIE_1); |
| |
| /* |
| * SP_EL0: A non-zero value will indicate to the SP that the SPM has |
| * initialized the stack pointer for the current CPU through |
| * implementation defined means. The value will be 0 otherwise. |
| */ |
| write_ctx_reg(get_gpregs_ctx(ctx), CTX_GPREG_SP_EL0, |
| PLAT_SP_IMAGE_STACK_BASE + PLAT_SP_IMAGE_STACK_PCPU_SIZE); |
| |
| /* |
| * Setup translation tables |
| * ------------------------ |
| */ |
| |
| #if ENABLE_ASSERTIONS |
| |
| /* Get max granularity supported by the platform. */ |
| |
| u_register_t id_aa64mmfr0_el1 = read_id_aa64mmfr0_el1(); |
| |
| int tgran64_supported = |
| ((id_aa64mmfr0_el1 >> ID_AA64MMFR0_EL1_TGRAN64_SHIFT) & |
| ID_AA64MMFR0_EL1_TGRAN64_MASK) == |
| ID_AA64MMFR0_EL1_TGRAN64_SUPPORTED; |
| |
| int tgran16_supported = |
| ((id_aa64mmfr0_el1 >> ID_AA64MMFR0_EL1_TGRAN16_SHIFT) & |
| ID_AA64MMFR0_EL1_TGRAN16_MASK) == |
| ID_AA64MMFR0_EL1_TGRAN16_SUPPORTED; |
| |
| int tgran4_supported = |
| ((id_aa64mmfr0_el1 >> ID_AA64MMFR0_EL1_TGRAN4_SHIFT) & |
| ID_AA64MMFR0_EL1_TGRAN4_MASK) == |
| ID_AA64MMFR0_EL1_TGRAN4_SUPPORTED; |
| |
| uintptr_t max_granule_size; |
| |
| if (tgran64_supported) { |
| max_granule_size = 64 * 1024; |
| } else if (tgran16_supported) { |
| max_granule_size = 16 * 1024; |
| } else { |
| assert(tgran4_supported); |
| max_granule_size = 4 * 1024; |
| } |
| |
| VERBOSE("Max translation granule supported: %lu KiB\n", |
| max_granule_size / 1024); |
| |
| uintptr_t max_granule_size_mask = max_granule_size - 1; |
| |
| /* Base must be aligned to the max granularity */ |
| assert((ARM_SP_IMAGE_NS_BUF_BASE & max_granule_size_mask) == 0); |
| |
| /* Size must be a multiple of the max granularity */ |
| assert((ARM_SP_IMAGE_NS_BUF_SIZE & max_granule_size_mask) == 0); |
| |
| #endif /* ENABLE_ASSERTIONS */ |
| |
| /* This region contains the exception vectors used at S-EL1. */ |
| const mmap_region_t sel1_exception_vectors = |
| MAP_REGION_FLAT(SPM_SHIM_EXCEPTIONS_START, |
| SPM_SHIM_EXCEPTIONS_SIZE, |
| MT_CODE | MT_SECURE | MT_PRIVILEGED); |
| mmap_add_region_ctx(sp_ctx->xlat_ctx_handle, |
| &sel1_exception_vectors); |
| |
| mmap_add_ctx(sp_ctx->xlat_ctx_handle, |
| plat_get_secure_partition_mmap(NULL)); |
| |
| init_xlat_tables_ctx(sp_ctx->xlat_ctx_handle); |
| |
| /* |
| * MMU-related registers |
| * --------------------- |
| */ |
| |
| /* Set attributes in the right indices of the MAIR */ |
| u_register_t mair_el1 = |
| MAIR_ATTR_SET(ATTR_DEVICE, ATTR_DEVICE_INDEX) | |
| MAIR_ATTR_SET(ATTR_IWBWA_OWBWA_NTR, ATTR_IWBWA_OWBWA_NTR_INDEX) | |
| MAIR_ATTR_SET(ATTR_NON_CACHEABLE, ATTR_NON_CACHEABLE_INDEX); |
| |
| write_ctx_reg(get_sysregs_ctx(ctx), CTX_MAIR_EL1, mair_el1); |
| |
| /* Setup TCR_EL1. */ |
| u_register_t tcr_ps_bits = tcr_physical_addr_size_bits(PLAT_PHY_ADDR_SPACE_SIZE); |
| |
| u_register_t tcr_el1 = |
| /* Size of region addressed by TTBR0_EL1 = 2^(64-T0SZ) bytes. */ |
| (64 - __builtin_ctzl(PLAT_VIRT_ADDR_SPACE_SIZE)) | |
| /* Inner and outer WBWA, shareable. */ |
| TCR_SH_INNER_SHAREABLE | TCR_RGN_OUTER_WBA | TCR_RGN_INNER_WBA | |
| /* Set the granularity to 4KB. */ |
| TCR_TG0_4K | |
| /* Limit Intermediate Physical Address Size. */ |
| tcr_ps_bits << TCR_EL1_IPS_SHIFT | |
| /* Disable translations using TBBR1_EL1. */ |
| TCR_EPD1_BIT |
| /* The remaining fields related to TBBR1_EL1 are left as zero. */ |
| ; |
| |
| tcr_el1 &= ~( |
| /* Enable translations using TBBR0_EL1 */ |
| TCR_EPD0_BIT |
| ); |
| |
| write_ctx_reg(get_sysregs_ctx(ctx), CTX_TCR_EL1, tcr_el1); |
| |
| /* Setup SCTLR_EL1 */ |
| u_register_t sctlr_el1 = read_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1); |
| |
| sctlr_el1 |= |
| /*SCTLR_EL1_RES1 |*/ |
| /* Don't trap DC CVAU, DC CIVAC, DC CVAC, DC CVAP, or IC IVAU */ |
| SCTLR_UCI_BIT | |
| /* RW regions at xlat regime EL1&0 are forced to be XN. */ |
| SCTLR_WXN_BIT | |
| /* Don't trap to EL1 execution of WFI or WFE at EL0. */ |
| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT | |
| /* Don't trap to EL1 accesses to CTR_EL0 from EL0. */ |
| SCTLR_UCT_BIT | |
| /* Don't trap to EL1 execution of DZ ZVA at EL0. */ |
| SCTLR_DZE_BIT | |
| /* Enable SP Alignment check for EL0 */ |
| SCTLR_SA0_BIT | |
| /* Allow cacheable data and instr. accesses to normal memory. */ |
| SCTLR_C_BIT | SCTLR_I_BIT | |
| /* Alignment fault checking enabled when at EL1 and EL0. */ |
| SCTLR_A_BIT | |
| /* Enable MMU. */ |
| SCTLR_M_BIT |
| ; |
| |
| sctlr_el1 &= ~( |
| /* Explicit data accesses at EL0 are little-endian. */ |
| SCTLR_E0E_BIT | |
| /* Accesses to DAIF from EL0 are trapped to EL1. */ |
| SCTLR_UMA_BIT |
| ); |
| |
| write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_el1); |
| |
| uint64_t *xlat_base = |
| ((xlat_ctx_t *)sp_ctx->xlat_ctx_handle)->base_table; |
| |
| /* Point TTBR0_EL1 at the tables of the context created for the SP. */ |
| write_ctx_reg(get_sysregs_ctx(ctx), CTX_TTBR0_EL1, |
| (u_register_t)xlat_base); |
| |
| /* |
| * Setup other system registers |
| * ---------------------------- |
| */ |
| |
| /* Shim Exception Vector Base Address */ |
| write_ctx_reg(get_sysregs_ctx(ctx), CTX_VBAR_EL1, |
| SPM_SHIM_EXCEPTIONS_PTR); |
| |
| /* |
| * FPEN: Allow the Secure Partition to access FP/SIMD registers. |
| * Note that SPM will not do any saving/restoring of these registers on |
| * behalf of the SP. This falls under the SP's responsibility. |
| * TTA: Enable access to trace registers. |
| * ZEN (v8.2): Trap SVE instructions and access to SVE registers. |
| */ |
| write_ctx_reg(get_sysregs_ctx(ctx), CTX_CPACR_EL1, |
| CPACR_EL1_FPEN(CPACR_EL1_FP_TRAP_NONE)); |
| |
| /* |
| * Prepare information in buffer shared between EL3 and S-EL0 |
| * ---------------------------------------------------------- |
| */ |
| |
| void *shared_buf_ptr = (void *) PLAT_SPM_BUF_BASE; |
| |
| /* Copy the boot information into the shared buffer with the SP. */ |
| assert((uintptr_t)shared_buf_ptr + sizeof(secure_partition_boot_info_t) |
| <= (PLAT_SPM_BUF_BASE + PLAT_SPM_BUF_SIZE)); |
| |
| assert(PLAT_SPM_BUF_BASE <= (UINTPTR_MAX - PLAT_SPM_BUF_SIZE + 1)); |
| |
| const secure_partition_boot_info_t *sp_boot_info = |
| plat_get_secure_partition_boot_info(NULL); |
| |
| assert(sp_boot_info != NULL); |
| |
| memcpy((void *) shared_buf_ptr, (const void *) sp_boot_info, |
| sizeof(secure_partition_boot_info_t)); |
| |
| /* Pointer to the MP information from the platform port. */ |
| secure_partition_mp_info_t *sp_mp_info = |
| ((secure_partition_boot_info_t *) shared_buf_ptr)->mp_info; |
| |
| assert(sp_mp_info != NULL); |
| |
| /* |
| * Point the shared buffer MP information pointer to where the info will |
| * be populated, just after the boot info. |
| */ |
| ((secure_partition_boot_info_t *) shared_buf_ptr)->mp_info = |
| (secure_partition_mp_info_t *) ((uintptr_t)shared_buf_ptr |
| + sizeof(secure_partition_boot_info_t)); |
| |
| /* |
| * Update the shared buffer pointer to where the MP information for the |
| * payload will be populated |
| */ |
| shared_buf_ptr = ((secure_partition_boot_info_t *) shared_buf_ptr)->mp_info; |
| |
| /* |
| * Copy the cpu information into the shared buffer area after the boot |
| * information. |
| */ |
| assert(sp_boot_info->num_cpus <= PLATFORM_CORE_COUNT); |
| |
| assert((uintptr_t)shared_buf_ptr |
| <= (PLAT_SPM_BUF_BASE + PLAT_SPM_BUF_SIZE - |
| (sp_boot_info->num_cpus * sizeof(*sp_mp_info)))); |
| |
| memcpy(shared_buf_ptr, (const void *) sp_mp_info, |
| sp_boot_info->num_cpus * sizeof(*sp_mp_info)); |
| |
| /* |
| * Calculate the linear indices of cores in boot information for the |
| * secure partition and flag the primary CPU |
| */ |
| sp_mp_info = (secure_partition_mp_info_t *) shared_buf_ptr; |
| |
| for (unsigned int index = 0; index < sp_boot_info->num_cpus; index++) { |
| u_register_t mpidr = sp_mp_info[index].mpidr; |
| |
| sp_mp_info[index].linear_id = plat_core_pos_by_mpidr(mpidr); |
| if (plat_my_core_pos() == sp_mp_info[index].linear_id) |
| sp_mp_info[index].flags |= MP_INFO_FLAG_PRIMARY_CPU; |
| } |
| } |