blob: 3d352afb07f36761bffe337dbd69f37afe069c35 [file] [log] [blame]
/*
* Copyright (C) 2018-2024, STMicroelectronics - All Rights Reserved
*
* SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
*/
#include <assert.h>
#include <errno.h>
#include <stdint.h>
#include <stdio.h>
#include <arch.h>
#include <arch_helpers.h>
#include <common/debug.h>
#include <common/fdt_wrappers.h>
#include <drivers/clk.h>
#include <drivers/delay_timer.h>
#include <drivers/st/stm32mp_clkfunc.h>
#include <drivers/st/stm32mp1_clk.h>
#include <drivers/st/stm32mp1_rcc.h>
#include <dt-bindings/clock/stm32mp1-clksrc.h>
#include <lib/mmio.h>
#include <lib/spinlock.h>
#include <lib/utils_def.h>
#include <libfdt.h>
#include <plat/common/platform.h>
#include <platform_def.h>
enum stm32mp1_pllcfg {
PLLCFG_M,
PLLCFG_N,
PLL_DIV_MN_NB,
PLLCFG_P = PLL_DIV_MN_NB,
PLLCFG_Q,
PLLCFG_R,
PLLCFG_O,
PLLCFG_NB
};
#define PLL_DIV_MN_NB 2
#define PLL_DIV_PQR_NB 3
enum stm32mp1_pllcsg {
PLLCSG_MOD_PER,
PLLCSG_INC_STEP,
PLLCSG_SSCG_MODE,
PLLCSG_NB
};
struct stm32_pll_dt_cfg {
bool status;
uint32_t src;
uint32_t cfg[PLLCFG_NB];
uint32_t frac;
bool csg_enabled;
uint32_t csg[PLLCSG_NB];
};
struct stm32_clk_platdata {
uint32_t npll;
struct stm32_pll_dt_cfg *pll;
uint32_t nclksrc;
uint32_t *clksrc;
uint32_t nclkdiv;
uint32_t *clkdiv;
bool lse_css;
};
struct stm32_clk_priv {
uintptr_t base;
const struct mux_cfg *parents;
const uint32_t nb_parents;
const struct div_cfg *div;
const uint32_t nb_div;
void *pdata;
};
static struct stm32_clk_priv *stm32_clock_data;
static struct stm32_clk_priv *clk_stm32_get_priv(void)
{
return stm32_clock_data;
}
static int clk_stm32_init(struct stm32_clk_priv *priv, uintptr_t base)
{
stm32_clock_data = priv;
priv->base = base;
return 0;
}
#define MAX_HSI_HZ 64000000
#define USB_PHY_48_MHZ 48000000
#define TIMEOUT_US_200MS U(200000)
#define TIMEOUT_US_1S U(1000000)
#define PLLRDY_TIMEOUT TIMEOUT_US_200MS
#define CLKSRC_TIMEOUT TIMEOUT_US_200MS
#define CLKDIV_TIMEOUT TIMEOUT_US_200MS
#define HSIDIV_TIMEOUT TIMEOUT_US_200MS
#define OSCRDY_TIMEOUT TIMEOUT_US_1S
struct mux_cfg {
uint16_t offset;
uint8_t shift;
uint8_t width;
uint8_t bitrdy;
};
struct div_cfg {
uint16_t offset;
uint8_t shift;
uint8_t width;
uint8_t bitrdy;
};
#define DIV_NO_BIT_RDY UINT8_MAX
#define DIV_CFG(_id, _offset, _shift, _width, _bitrdy)\
[(_id)] = {\
.offset = (_offset),\
.shift = (_shift),\
.width = (_width),\
.bitrdy = (_bitrdy),\
}
static const struct div_cfg dividers_mp15[] = {
DIV_CFG(DIV_MPU, RCC_MPCKDIVR, 0, 4, 31),
DIV_CFG(DIV_AXI, RCC_AXIDIVR, 0, 3, 31),
DIV_CFG(DIV_MCU, RCC_MCUDIVR, 0, 4, 31),
DIV_CFG(DIV_APB1, RCC_APB1DIVR, 0, 3, 31),
DIV_CFG(DIV_APB2, RCC_APB2DIVR, 0, 3, 31),
DIV_CFG(DIV_APB3, RCC_APB3DIVR, 0, 3, 31),
DIV_CFG(DIV_APB4, RCC_APB4DIVR, 0, 3, 31),
DIV_CFG(DIV_APB5, RCC_APB5DIVR, 0, 3, 31),
DIV_CFG(DIV_RTC, RCC_RTCDIVR, 0, 6, DIV_NO_BIT_RDY),
DIV_CFG(DIV_MCO1, RCC_MCO1CFGR, 4, 4, DIV_NO_BIT_RDY),
DIV_CFG(DIV_MCO2, RCC_MCO2CFGR, 4, 4, DIV_NO_BIT_RDY),
DIV_CFG(DIV_TRACE, RCC_DBGCFGR, 0, 3, DIV_NO_BIT_RDY),
DIV_CFG(DIV_ETHPTP, RCC_ETHCKSELR, 4, 4, DIV_NO_BIT_RDY),
};
/*
* MUX CONFIG
*/
#define MUX_NO_BIT_RDY UINT8_MAX
#define MUXRDY_CFG(_id, _offset, _shift, _width, _bitrdy)\
[(_id)] = {\
.offset = (_offset),\
.shift = (_shift),\
.width = (_width),\
.bitrdy = (_bitrdy),\
}
#define MUX_CFG(_id, _offset, _shift, _width)\
MUXRDY_CFG(_id, _offset, _shift, _width, MUX_NO_BIT_RDY)
static const struct mux_cfg parent_mp15[MUX_NB] = {
MUX_CFG(MUX_PLL12, RCC_RCK12SELR, 0, 2),
MUX_CFG(MUX_PLL3, RCC_RCK3SELR, 0, 2),
MUX_CFG(MUX_PLL4, RCC_RCK4SELR, 0, 2),
MUX_CFG(MUX_CKPER, RCC_CPERCKSELR, 0, 2),
MUXRDY_CFG(MUX_MPU, RCC_MPCKSELR, 0, 2, 31),
MUXRDY_CFG(MUX_AXI, RCC_ASSCKSELR, 0, 3, 31),
MUXRDY_CFG(MUX_MCU, RCC_MSSCKSELR, 0, 2, 31),
MUX_CFG(MUX_RTC, RCC_BDCR, 16, 2),
MUX_CFG(MUX_SDMMC12, RCC_SDMMC12CKSELR, 0, 3),
MUX_CFG(MUX_SPI2S23, RCC_SPI2S23CKSELR, 0, 3),
MUX_CFG(MUX_SPI45, RCC_SPI45CKSELR, 0, 3),
MUX_CFG(MUX_I2C12, RCC_I2C12CKSELR, 0, 3),
MUX_CFG(MUX_I2C35, RCC_I2C35CKSELR, 0, 3),
MUX_CFG(MUX_LPTIM23, RCC_LPTIM23CKSELR, 0, 3),
MUX_CFG(MUX_LPTIM45, RCC_LPTIM45CKSELR, 0, 3),
MUX_CFG(MUX_UART24, RCC_UART24CKSELR, 0, 3),
MUX_CFG(MUX_UART35, RCC_UART35CKSELR, 0, 3),
MUX_CFG(MUX_UART78, RCC_UART78CKSELR, 0, 3),
MUX_CFG(MUX_SAI1, RCC_SAI1CKSELR, 0, 3),
MUX_CFG(MUX_ETH, RCC_ETHCKSELR, 0, 2),
MUX_CFG(MUX_I2C46, RCC_I2C46CKSELR, 0, 3),
MUX_CFG(MUX_RNG2, RCC_RNG2CKSELR, 0, 2),
MUX_CFG(MUX_SDMMC3, RCC_SDMMC3CKSELR, 0, 3),
MUX_CFG(MUX_FMC, RCC_FMCCKSELR, 0, 2),
MUX_CFG(MUX_QSPI, RCC_QSPICKSELR, 0, 2),
MUX_CFG(MUX_USBPHY, RCC_USBCKSELR, 0, 2),
MUX_CFG(MUX_USBO, RCC_USBCKSELR, 4, 1),
MUX_CFG(MUX_SPDIF, RCC_SPDIFCKSELR, 0, 2),
MUX_CFG(MUX_SPI2S1, RCC_SPI2S1CKSELR, 0, 3),
MUX_CFG(MUX_CEC, RCC_CECCKSELR, 0, 2),
MUX_CFG(MUX_LPTIM1, RCC_LPTIM1CKSELR, 0, 3),
MUX_CFG(MUX_UART6, RCC_UART6CKSELR, 0, 3),
MUX_CFG(MUX_FDCAN, RCC_FDCANCKSELR, 0, 2),
MUX_CFG(MUX_SAI2, RCC_SAI2CKSELR, 0, 3),
MUX_CFG(MUX_SAI3, RCC_SAI3CKSELR, 0, 3),
MUX_CFG(MUX_SAI4, RCC_SAI4CKSELR, 0, 3),
MUX_CFG(MUX_ADC, RCC_ADCCKSELR, 0, 2),
MUX_CFG(MUX_DSI, RCC_DSICKSELR, 0, 1),
MUX_CFG(MUX_RNG1, RCC_RNG1CKSELR, 0, 2),
MUX_CFG(MUX_STGEN, RCC_STGENCKSELR, 0, 2),
MUX_CFG(MUX_UART1, RCC_UART1CKSELR, 0, 3),
MUX_CFG(MUX_SPI6, RCC_SPI6CKSELR, 0, 3),
MUX_CFG(MUX_MCO1, RCC_MCO1CFGR, 0, 3),
MUX_CFG(MUX_MCO2, RCC_MCO2CFGR, 0, 3),
};
#define MASK_WIDTH_SHIFT(_width, _shift) \
GENMASK(((_width) + (_shift) - 1U), (_shift))
int clk_mux_get_parent(struct stm32_clk_priv *priv, uint32_t mux_id)
{
const struct mux_cfg *mux;
uint32_t mask;
if (mux_id >= priv->nb_parents) {
panic();
}
mux = &priv->parents[mux_id];
mask = MASK_WIDTH_SHIFT(mux->width, mux->shift);
return (mmio_read_32(priv->base + mux->offset) & mask) >> mux->shift;
}
static int clk_mux_set_parent(struct stm32_clk_priv *priv, uint16_t pid, uint8_t sel)
{
const struct mux_cfg *mux = &priv->parents[pid];
uintptr_t address = priv->base + mux->offset;
uint32_t mask;
uint64_t timeout;
mask = MASK_WIDTH_SHIFT(mux->width, mux->shift);
mmio_clrsetbits_32(address, mask, (sel << mux->shift) & mask);
if (mux->bitrdy == MUX_NO_BIT_RDY) {
return 0;
}
timeout = timeout_init_us(CLKSRC_TIMEOUT);
mask = BIT(mux->bitrdy);
while ((mmio_read_32(address) & mask) == 0U) {
if (timeout_elapsed(timeout)) {
return -ETIMEDOUT;
}
}
return 0;
}
static int stm32_clk_configure_mux(struct stm32_clk_priv *priv, uint32_t val)
{
uint32_t data = val & CMD_DATA_MASK;
int mux = (data & MUX_ID_MASK) >> MUX_ID_SHIFT;
int sel = (data & MUX_SEL_MASK) >> MUX_SEL_SHIFT;
return clk_mux_set_parent(priv, mux, sel);
}
int clk_stm32_set_div(struct stm32_clk_priv *priv, uint32_t div_id, uint32_t value)
{
const struct div_cfg *divider;
uintptr_t address;
uint64_t timeout;
uint32_t mask;
if (div_id >= priv->nb_div) {
panic();
}
divider = &priv->div[div_id];
address = priv->base + divider->offset;
mask = MASK_WIDTH_SHIFT(divider->width, divider->shift);
mmio_clrsetbits_32(address, mask, (value << divider->shift) & mask);
if (divider->bitrdy == DIV_NO_BIT_RDY) {
return 0;
}
timeout = timeout_init_us(CLKSRC_TIMEOUT);
mask = BIT(divider->bitrdy);
while ((mmio_read_32(address) & mask) == 0U) {
if (timeout_elapsed(timeout)) {
return -ETIMEDOUT;
}
}
return 0;
}
const char *stm32mp_osc_node_label[NB_OSC] = {
[_LSI] = "clk-lsi",
[_LSE] = "clk-lse",
[_HSI] = "clk-hsi",
[_HSE] = "clk-hse",
[_CSI] = "clk-csi",
[_I2S_CKIN] = "i2s_ckin",
};
enum stm32mp1_parent_id {
/* Oscillators are defined in enum stm32mp_osc_id */
/* Other parent source */
_HSI_KER = NB_OSC,
_HSE_KER,
_HSE_KER_DIV2,
_HSE_RTC,
_CSI_KER,
_PLL1_P,
_PLL1_Q,
_PLL1_R,
_PLL2_P,
_PLL2_Q,
_PLL2_R,
_PLL3_P,
_PLL3_Q,
_PLL3_R,
_PLL4_P,
_PLL4_Q,
_PLL4_R,
_ACLK,
_PCLK1,
_PCLK2,
_PCLK3,
_PCLK4,
_PCLK5,
_HCLK6,
_HCLK2,
_CK_PER,
_CK_MPU,
_CK_MCU,
_USB_PHY_48,
_PARENT_NB,
_UNKNOWN_ID = 0xff,
};
/* Lists only the parent clock we are interested in */
enum stm32mp1_parent_sel {
_I2C12_SEL,
_I2C35_SEL,
_STGEN_SEL,
_I2C46_SEL,
_SPI6_SEL,
_UART1_SEL,
_RNG1_SEL,
_UART6_SEL,
_UART24_SEL,
_UART35_SEL,
_UART78_SEL,
_SDMMC12_SEL,
_SDMMC3_SEL,
_QSPI_SEL,
_FMC_SEL,
_AXIS_SEL,
_MCUS_SEL,
_USBPHY_SEL,
_USBO_SEL,
_MPU_SEL,
_CKPER_SEL,
_RTC_SEL,
_PARENT_SEL_NB,
_UNKNOWN_SEL = 0xff,
};
/* State the parent clock ID straight related to a clock */
static const uint8_t parent_id_clock_id[_PARENT_NB] = {
[_HSE] = CK_HSE,
[_HSI] = CK_HSI,
[_CSI] = CK_CSI,
[_LSE] = CK_LSE,
[_LSI] = CK_LSI,
[_I2S_CKIN] = _UNKNOWN_ID,
[_USB_PHY_48] = _UNKNOWN_ID,
[_HSI_KER] = CK_HSI,
[_HSE_KER] = CK_HSE,
[_HSE_KER_DIV2] = CK_HSE_DIV2,
[_HSE_RTC] = _UNKNOWN_ID,
[_CSI_KER] = CK_CSI,
[_PLL1_P] = PLL1_P,
[_PLL1_Q] = PLL1_Q,
[_PLL1_R] = PLL1_R,
[_PLL2_P] = PLL2_P,
[_PLL2_Q] = PLL2_Q,
[_PLL2_R] = PLL2_R,
[_PLL3_P] = PLL3_P,
[_PLL3_Q] = PLL3_Q,
[_PLL3_R] = PLL3_R,
[_PLL4_P] = PLL4_P,
[_PLL4_Q] = PLL4_Q,
[_PLL4_R] = PLL4_R,
[_ACLK] = CK_AXI,
[_PCLK1] = CK_AXI,
[_PCLK2] = CK_AXI,
[_PCLK3] = CK_AXI,
[_PCLK4] = CK_AXI,
[_PCLK5] = CK_AXI,
[_CK_PER] = CK_PER,
[_CK_MPU] = CK_MPU,
[_CK_MCU] = CK_MCU,
};
static unsigned int clock_id2parent_id(unsigned long id)
{
unsigned int n;
for (n = 0U; n < ARRAY_SIZE(parent_id_clock_id); n++) {
if (parent_id_clock_id[n] == id) {
return n;
}
}
return _UNKNOWN_ID;
}
enum stm32mp1_pll_id {
_PLL1,
_PLL2,
_PLL3,
_PLL4,
_PLL_NB
};
enum stm32mp1_div_id {
_DIV_P,
_DIV_Q,
_DIV_R,
_DIV_NB,
};
enum stm32mp1_clksrc_id {
CLKSRC_MPU,
CLKSRC_AXI,
CLKSRC_MCU,
CLKSRC_PLL12,
CLKSRC_PLL3,
CLKSRC_PLL4,
CLKSRC_RTC,
CLKSRC_MCO1,
CLKSRC_MCO2,
CLKSRC_NB
};
enum stm32mp1_clkdiv_id {
CLKDIV_MPU,
CLKDIV_AXI,
CLKDIV_MCU,
CLKDIV_APB1,
CLKDIV_APB2,
CLKDIV_APB3,
CLKDIV_APB4,
CLKDIV_APB5,
CLKDIV_RTC,
CLKDIV_MCO1,
CLKDIV_MCO2,
CLKDIV_NB
};
enum stm32mp1_plltype {
PLL_800,
PLL_1600,
PLL_TYPE_NB
};
struct stm32mp1_pll {
uint8_t refclk_min;
uint8_t refclk_max;
};
struct stm32mp1_clk_gate {
uint16_t offset;
uint8_t bit;
uint8_t index;
uint8_t set_clr;
uint8_t secure;
uint8_t sel; /* Relates to enum stm32mp1_parent_sel */
uint8_t fixed; /* Relates to enum stm32mp1_parent_id */
};
struct stm32mp1_clk_sel {
uint16_t offset;
uint8_t src;
uint8_t msk;
uint8_t nb_parent;
const uint8_t *parent;
};
#define REFCLK_SIZE 4
struct stm32mp1_clk_pll {
enum stm32mp1_plltype plltype;
uint16_t rckxselr;
uint16_t pllxcfgr1;
uint16_t pllxcfgr2;
uint16_t pllxfracr;
uint16_t pllxcr;
uint16_t pllxcsgr;
enum stm32mp_osc_id refclk[REFCLK_SIZE];
};
/* Clocks with selectable source and non set/clr register access */
#define _CLK_SELEC(sec, off, b, idx, s) \
{ \
.offset = (off), \
.bit = (b), \
.index = (idx), \
.set_clr = 0, \
.secure = (sec), \
.sel = (s), \
.fixed = _UNKNOWN_ID, \
}
/* Clocks with fixed source and non set/clr register access */
#define _CLK_FIXED(sec, off, b, idx, f) \
{ \
.offset = (off), \
.bit = (b), \
.index = (idx), \
.set_clr = 0, \
.secure = (sec), \
.sel = _UNKNOWN_SEL, \
.fixed = (f), \
}
/* Clocks with selectable source and set/clr register access */
#define _CLK_SC_SELEC(sec, off, b, idx, s) \
{ \
.offset = (off), \
.bit = (b), \
.index = (idx), \
.set_clr = 1, \
.secure = (sec), \
.sel = (s), \
.fixed = _UNKNOWN_ID, \
}
/* Clocks with fixed source and set/clr register access */
#define _CLK_SC_FIXED(sec, off, b, idx, f) \
{ \
.offset = (off), \
.bit = (b), \
.index = (idx), \
.set_clr = 1, \
.secure = (sec), \
.sel = _UNKNOWN_SEL, \
.fixed = (f), \
}
#define _CLK_PARENT_SEL(_label, _rcc_selr, _parents) \
[_ ## _label ## _SEL] = { \
.offset = _rcc_selr, \
.src = _rcc_selr ## _ ## _label ## SRC_SHIFT, \
.msk = (_rcc_selr ## _ ## _label ## SRC_MASK) >> \
(_rcc_selr ## _ ## _label ## SRC_SHIFT), \
.parent = (_parents), \
.nb_parent = ARRAY_SIZE(_parents) \
}
#define _CLK_PLL(idx, type, off1, off2, off3, \
off4, off5, off6, \
p1, p2, p3, p4) \
[(idx)] = { \
.plltype = (type), \
.rckxselr = (off1), \
.pllxcfgr1 = (off2), \
.pllxcfgr2 = (off3), \
.pllxfracr = (off4), \
.pllxcr = (off5), \
.pllxcsgr = (off6), \
.refclk[0] = (p1), \
.refclk[1] = (p2), \
.refclk[2] = (p3), \
.refclk[3] = (p4), \
}
#define NB_GATES ARRAY_SIZE(stm32mp1_clk_gate)
#define SEC 1
#define N_S 0
static const struct stm32mp1_clk_gate stm32mp1_clk_gate[] = {
_CLK_FIXED(SEC, RCC_DDRITFCR, 0, DDRC1, _ACLK),
_CLK_FIXED(SEC, RCC_DDRITFCR, 1, DDRC1LP, _ACLK),
_CLK_FIXED(SEC, RCC_DDRITFCR, 2, DDRC2, _ACLK),
_CLK_FIXED(SEC, RCC_DDRITFCR, 3, DDRC2LP, _ACLK),
_CLK_FIXED(SEC, RCC_DDRITFCR, 4, DDRPHYC, _PLL2_R),
_CLK_FIXED(SEC, RCC_DDRITFCR, 5, DDRPHYCLP, _PLL2_R),
_CLK_FIXED(SEC, RCC_DDRITFCR, 6, DDRCAPB, _PCLK4),
_CLK_FIXED(SEC, RCC_DDRITFCR, 7, DDRCAPBLP, _PCLK4),
_CLK_FIXED(SEC, RCC_DDRITFCR, 8, AXIDCG, _ACLK),
_CLK_FIXED(SEC, RCC_DDRITFCR, 9, DDRPHYCAPB, _PCLK4),
_CLK_FIXED(SEC, RCC_DDRITFCR, 10, DDRPHYCAPBLP, _PCLK4),
#if defined(IMAGE_BL32)
_CLK_SC_FIXED(N_S, RCC_MP_APB1ENSETR, 6, TIM12_K, _PCLK1),
#endif
_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 14, USART2_K, _UART24_SEL),
_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 15, USART3_K, _UART35_SEL),
_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 16, UART4_K, _UART24_SEL),
_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 17, UART5_K, _UART35_SEL),
_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 18, UART7_K, _UART78_SEL),
_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 19, UART8_K, _UART78_SEL),
_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 21, I2C1_K, _I2C12_SEL),
_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 22, I2C2_K, _I2C12_SEL),
_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 23, I2C3_K, _I2C35_SEL),
_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 24, I2C5_K, _I2C35_SEL),
#if defined(IMAGE_BL32)
_CLK_SC_FIXED(N_S, RCC_MP_APB2ENSETR, 2, TIM15_K, _PCLK2),
#endif
_CLK_SC_SELEC(N_S, RCC_MP_APB2ENSETR, 13, USART6_K, _UART6_SEL),
_CLK_SC_FIXED(N_S, RCC_MP_APB3ENSETR, 11, SYSCFG, _UNKNOWN_ID),
_CLK_SC_SELEC(N_S, RCC_MP_APB4ENSETR, 8, DDRPERFM, _UNKNOWN_SEL),
_CLK_SC_SELEC(N_S, RCC_MP_APB4ENSETR, 15, IWDG2, _UNKNOWN_SEL),
_CLK_SC_SELEC(N_S, RCC_MP_APB4ENSETR, 16, USBPHY_K, _USBPHY_SEL),
_CLK_SC_SELEC(SEC, RCC_MP_APB5ENSETR, 0, SPI6_K, _SPI6_SEL),
_CLK_SC_SELEC(SEC, RCC_MP_APB5ENSETR, 2, I2C4_K, _I2C46_SEL),
_CLK_SC_SELEC(SEC, RCC_MP_APB5ENSETR, 3, I2C6_K, _I2C46_SEL),
_CLK_SC_SELEC(SEC, RCC_MP_APB5ENSETR, 4, USART1_K, _UART1_SEL),
_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 8, RTCAPB, _PCLK5),
_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 11, TZC1, _PCLK5),
_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 12, TZC2, _PCLK5),
_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 13, TZPC, _PCLK5),
_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 15, IWDG1, _PCLK5),
_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 16, BSEC, _PCLK5),
_CLK_SC_SELEC(SEC, RCC_MP_APB5ENSETR, 20, STGEN_K, _STGEN_SEL),
#if defined(IMAGE_BL32)
_CLK_SC_SELEC(N_S, RCC_MP_AHB2ENSETR, 8, USBO_K, _USBO_SEL),
_CLK_SC_SELEC(N_S, RCC_MP_AHB2ENSETR, 16, SDMMC3_K, _SDMMC3_SEL),
#endif
_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 0, GPIOA, _UNKNOWN_SEL),
_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 1, GPIOB, _UNKNOWN_SEL),
_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 2, GPIOC, _UNKNOWN_SEL),
_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 3, GPIOD, _UNKNOWN_SEL),
_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 4, GPIOE, _UNKNOWN_SEL),
_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 5, GPIOF, _UNKNOWN_SEL),
_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 6, GPIOG, _UNKNOWN_SEL),
_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 7, GPIOH, _UNKNOWN_SEL),
_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 8, GPIOI, _UNKNOWN_SEL),
_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 9, GPIOJ, _UNKNOWN_SEL),
_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 10, GPIOK, _UNKNOWN_SEL),
_CLK_SC_FIXED(SEC, RCC_MP_AHB5ENSETR, 0, GPIOZ, _PCLK5),
_CLK_SC_FIXED(SEC, RCC_MP_AHB5ENSETR, 4, CRYP1, _PCLK5),
_CLK_SC_FIXED(SEC, RCC_MP_AHB5ENSETR, 5, HASH1, _PCLK5),
_CLK_SC_SELEC(SEC, RCC_MP_AHB5ENSETR, 6, RNG1_K, _RNG1_SEL),
_CLK_SC_FIXED(SEC, RCC_MP_AHB5ENSETR, 8, BKPSRAM, _PCLK5),
#if defined(IMAGE_BL2)
_CLK_SC_SELEC(N_S, RCC_MP_AHB6ENSETR, 12, FMC_K, _FMC_SEL),
_CLK_SC_SELEC(N_S, RCC_MP_AHB6ENSETR, 14, QSPI_K, _QSPI_SEL),
#endif
_CLK_SC_SELEC(N_S, RCC_MP_AHB6ENSETR, 16, SDMMC1_K, _SDMMC12_SEL),
_CLK_SC_SELEC(N_S, RCC_MP_AHB6ENSETR, 17, SDMMC2_K, _SDMMC12_SEL),
#if defined(IMAGE_BL32)
_CLK_SC_SELEC(N_S, RCC_MP_AHB6ENSETR, 24, USBH, _UNKNOWN_SEL),
#endif
_CLK_SELEC(SEC, RCC_BDCR, 20, RTC, _RTC_SEL),
_CLK_SELEC(N_S, RCC_DBGCFGR, 8, CK_DBG, _UNKNOWN_SEL),
};
static const uint8_t i2c12_parents[] = {
_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER
};
static const uint8_t i2c35_parents[] = {
_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER
};
static const uint8_t stgen_parents[] = {
_HSI_KER, _HSE_KER
};
static const uint8_t i2c46_parents[] = {
_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER
};
static const uint8_t spi6_parents[] = {
_PCLK5, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER, _PLL3_Q
};
static const uint8_t usart1_parents[] = {
_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER, _PLL4_Q, _HSE_KER
};
static const uint8_t rng1_parents[] = {
_CSI, _PLL4_R, _LSE, _LSI
};
static const uint8_t uart6_parents[] = {
_PCLK2, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER
};
static const uint8_t uart234578_parents[] = {
_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER
};
static const uint8_t sdmmc12_parents[] = {
_HCLK6, _PLL3_R, _PLL4_P, _HSI_KER
};
static const uint8_t sdmmc3_parents[] = {
_HCLK2, _PLL3_R, _PLL4_P, _HSI_KER
};
static const uint8_t qspi_parents[] = {
_ACLK, _PLL3_R, _PLL4_P, _CK_PER
};
static const uint8_t fmc_parents[] = {
_ACLK, _PLL3_R, _PLL4_P, _CK_PER
};
static const uint8_t axiss_parents[] = {
_HSI, _HSE, _PLL2_P
};
static const uint8_t mcuss_parents[] = {
_HSI, _HSE, _CSI, _PLL3_P
};
static const uint8_t usbphy_parents[] = {
_HSE_KER, _PLL4_R, _HSE_KER_DIV2
};
static const uint8_t usbo_parents[] = {
_PLL4_R, _USB_PHY_48
};
static const uint8_t mpu_parents[] = {
_HSI, _HSE, _PLL1_P, _PLL1_P /* specific div */
};
static const uint8_t per_parents[] = {
_HSI, _HSE, _CSI,
};
static const uint8_t rtc_parents[] = {
_UNKNOWN_ID, _LSE, _LSI, _HSE_RTC
};
static const struct stm32mp1_clk_sel stm32mp1_clk_sel[_PARENT_SEL_NB] = {
_CLK_PARENT_SEL(I2C12, RCC_I2C12CKSELR, i2c12_parents),
_CLK_PARENT_SEL(I2C35, RCC_I2C35CKSELR, i2c35_parents),
_CLK_PARENT_SEL(STGEN, RCC_STGENCKSELR, stgen_parents),
_CLK_PARENT_SEL(I2C46, RCC_I2C46CKSELR, i2c46_parents),
_CLK_PARENT_SEL(SPI6, RCC_SPI6CKSELR, spi6_parents),
_CLK_PARENT_SEL(UART1, RCC_UART1CKSELR, usart1_parents),
_CLK_PARENT_SEL(RNG1, RCC_RNG1CKSELR, rng1_parents),
_CLK_PARENT_SEL(MPU, RCC_MPCKSELR, mpu_parents),
_CLK_PARENT_SEL(CKPER, RCC_CPERCKSELR, per_parents),
_CLK_PARENT_SEL(RTC, RCC_BDCR, rtc_parents),
_CLK_PARENT_SEL(UART6, RCC_UART6CKSELR, uart6_parents),
_CLK_PARENT_SEL(UART24, RCC_UART24CKSELR, uart234578_parents),
_CLK_PARENT_SEL(UART35, RCC_UART35CKSELR, uart234578_parents),
_CLK_PARENT_SEL(UART78, RCC_UART78CKSELR, uart234578_parents),
_CLK_PARENT_SEL(SDMMC12, RCC_SDMMC12CKSELR, sdmmc12_parents),
_CLK_PARENT_SEL(SDMMC3, RCC_SDMMC3CKSELR, sdmmc3_parents),
_CLK_PARENT_SEL(QSPI, RCC_QSPICKSELR, qspi_parents),
_CLK_PARENT_SEL(FMC, RCC_FMCCKSELR, fmc_parents),
_CLK_PARENT_SEL(AXIS, RCC_ASSCKSELR, axiss_parents),
_CLK_PARENT_SEL(MCUS, RCC_MSSCKSELR, mcuss_parents),
_CLK_PARENT_SEL(USBPHY, RCC_USBCKSELR, usbphy_parents),
_CLK_PARENT_SEL(USBO, RCC_USBCKSELR, usbo_parents),
};
/* Define characteristic of PLL according type */
#define POST_DIVM_MIN 8000000U
#define POST_DIVM_MAX 16000000U
#define DIVM_MIN 0U
#define DIVM_MAX 63U
#define DIVN_MIN 24U
#define DIVN_MAX 99U
#define DIVP_MIN 0U
#define DIVP_MAX 127U
#define FRAC_MAX 8192U
#define VCO_MIN 800000000U
#define VCO_MAX 1600000000U
static const struct stm32mp1_pll stm32mp1_pll[PLL_TYPE_NB] = {
[PLL_800] = {
.refclk_min = 4,
.refclk_max = 16,
},
[PLL_1600] = {
.refclk_min = 8,
.refclk_max = 16,
},
};
/* PLLNCFGR2 register divider by output */
static const uint8_t pllncfgr2[_DIV_NB] = {
[_DIV_P] = RCC_PLLNCFGR2_DIVP_SHIFT,
[_DIV_Q] = RCC_PLLNCFGR2_DIVQ_SHIFT,
[_DIV_R] = RCC_PLLNCFGR2_DIVR_SHIFT,
};
static const struct stm32mp1_clk_pll stm32mp1_clk_pll[_PLL_NB] = {
_CLK_PLL(_PLL1, PLL_1600,
RCC_RCK12SELR, RCC_PLL1CFGR1, RCC_PLL1CFGR2,
RCC_PLL1FRACR, RCC_PLL1CR, RCC_PLL1CSGR,
_HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID),
_CLK_PLL(_PLL2, PLL_1600,
RCC_RCK12SELR, RCC_PLL2CFGR1, RCC_PLL2CFGR2,
RCC_PLL2FRACR, RCC_PLL2CR, RCC_PLL2CSGR,
_HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID),
_CLK_PLL(_PLL3, PLL_800,
RCC_RCK3SELR, RCC_PLL3CFGR1, RCC_PLL3CFGR2,
RCC_PLL3FRACR, RCC_PLL3CR, RCC_PLL3CSGR,
_HSI, _HSE, _CSI, _UNKNOWN_OSC_ID),
_CLK_PLL(_PLL4, PLL_800,
RCC_RCK4SELR, RCC_PLL4CFGR1, RCC_PLL4CFGR2,
RCC_PLL4FRACR, RCC_PLL4CR, RCC_PLL4CSGR,
_HSI, _HSE, _CSI, _I2S_CKIN),
};
/* Prescaler table lookups for clock computation */
/* div = /1 /2 /4 /8 / 16 /64 /128 /512 */
static const uint8_t stm32mp1_mcu_div[16] = {
0, 1, 2, 3, 4, 6, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9
};
/* div = /1 /2 /4 /8 /16 : same divider for PMU and APBX */
#define stm32mp1_mpu_div stm32mp1_mpu_apbx_div
#define stm32mp1_apbx_div stm32mp1_mpu_apbx_div
static const uint8_t stm32mp1_mpu_apbx_div[8] = {
0, 1, 2, 3, 4, 4, 4, 4
};
/* div = /1 /2 /3 /4 */
static const uint8_t stm32mp1_axi_div[8] = {
1, 2, 3, 4, 4, 4, 4, 4
};
static const char * const stm32mp1_clk_parent_name[_PARENT_NB] __unused = {
[_HSI] = "HSI",
[_HSE] = "HSE",
[_CSI] = "CSI",
[_LSI] = "LSI",
[_LSE] = "LSE",
[_I2S_CKIN] = "I2S_CKIN",
[_HSI_KER] = "HSI_KER",
[_HSE_KER] = "HSE_KER",
[_HSE_KER_DIV2] = "HSE_KER_DIV2",
[_HSE_RTC] = "HSE_RTC",
[_CSI_KER] = "CSI_KER",
[_PLL1_P] = "PLL1_P",
[_PLL1_Q] = "PLL1_Q",
[_PLL1_R] = "PLL1_R",
[_PLL2_P] = "PLL2_P",
[_PLL2_Q] = "PLL2_Q",
[_PLL2_R] = "PLL2_R",
[_PLL3_P] = "PLL3_P",
[_PLL3_Q] = "PLL3_Q",
[_PLL3_R] = "PLL3_R",
[_PLL4_P] = "PLL4_P",
[_PLL4_Q] = "PLL4_Q",
[_PLL4_R] = "PLL4_R",
[_ACLK] = "ACLK",
[_PCLK1] = "PCLK1",
[_PCLK2] = "PCLK2",
[_PCLK3] = "PCLK3",
[_PCLK4] = "PCLK4",
[_PCLK5] = "PCLK5",
[_HCLK6] = "KCLK6",
[_HCLK2] = "HCLK2",
[_CK_PER] = "CK_PER",
[_CK_MPU] = "CK_MPU",
[_CK_MCU] = "CK_MCU",
[_USB_PHY_48] = "USB_PHY_48",
};
/* RCC clock device driver private */
static unsigned long stm32mp1_osc[NB_OSC];
static struct spinlock reg_lock;
static unsigned int gate_refcounts[NB_GATES];
static struct spinlock refcount_lock;
static const struct stm32mp1_clk_gate *gate_ref(unsigned int idx)
{
return &stm32mp1_clk_gate[idx];
}
#if defined(IMAGE_BL32)
static bool gate_is_non_secure(const struct stm32mp1_clk_gate *gate)
{
return gate->secure == N_S;
}
#endif
static const struct stm32mp1_clk_sel *clk_sel_ref(unsigned int idx)
{
return &stm32mp1_clk_sel[idx];
}
static const struct stm32mp1_clk_pll *pll_ref(unsigned int idx)
{
return &stm32mp1_clk_pll[idx];
}
static void stm32mp1_clk_lock(struct spinlock *lock)
{
if (stm32mp_lock_available()) {
/* Assume interrupts are masked */
spin_lock(lock);
}
}
static void stm32mp1_clk_unlock(struct spinlock *lock)
{
if (stm32mp_lock_available()) {
spin_unlock(lock);
}
}
bool stm32mp1_rcc_is_secure(void)
{
uintptr_t rcc_base = stm32mp_rcc_base();
uint32_t mask = RCC_TZCR_TZEN;
return (mmio_read_32(rcc_base + RCC_TZCR) & mask) == mask;
}
bool stm32mp1_rcc_is_mckprot(void)
{
uintptr_t rcc_base = stm32mp_rcc_base();
uint32_t mask = RCC_TZCR_TZEN | RCC_TZCR_MCKPROT;
return (mmio_read_32(rcc_base + RCC_TZCR) & mask) == mask;
}
void stm32mp1_clk_rcc_regs_lock(void)
{
stm32mp1_clk_lock(&reg_lock);
}
void stm32mp1_clk_rcc_regs_unlock(void)
{
stm32mp1_clk_unlock(&reg_lock);
}
static unsigned long stm32mp1_clk_get_fixed(enum stm32mp_osc_id idx)
{
if (idx >= NB_OSC) {
return 0;
}
return stm32mp1_osc[idx];
}
static int stm32mp1_clk_get_gated_id(unsigned long id)
{
unsigned int i;
for (i = 0U; i < NB_GATES; i++) {
if (gate_ref(i)->index == id) {
return i;
}
}
ERROR("%s: clk id %lu not found\n", __func__, id);
return -EINVAL;
}
static enum stm32mp1_parent_sel stm32mp1_clk_get_sel(int i)
{
return (enum stm32mp1_parent_sel)(gate_ref(i)->sel);
}
static enum stm32mp1_parent_id stm32mp1_clk_get_fixed_parent(int i)
{
return (enum stm32mp1_parent_id)(gate_ref(i)->fixed);
}
static int stm32mp1_clk_get_parent(unsigned long id)
{
const struct stm32mp1_clk_sel *sel;
uint32_t p_sel;
int i;
enum stm32mp1_parent_id p;
enum stm32mp1_parent_sel s;
uintptr_t rcc_base = stm32mp_rcc_base();
/* Few non gateable clock have a static parent ID, find them */
i = (int)clock_id2parent_id(id);
if (i != _UNKNOWN_ID) {
return i;
}
i = stm32mp1_clk_get_gated_id(id);
if (i < 0) {
panic();
}
p = stm32mp1_clk_get_fixed_parent(i);
if (p < _PARENT_NB) {
return (int)p;
}
s = stm32mp1_clk_get_sel(i);
if (s == _UNKNOWN_SEL) {
return -EINVAL;
}
if (s >= _PARENT_SEL_NB) {
panic();
}
sel = clk_sel_ref(s);
p_sel = (mmio_read_32(rcc_base + sel->offset) &
(sel->msk << sel->src)) >> sel->src;
if (p_sel < sel->nb_parent) {
return (int)sel->parent[p_sel];
}
return -EINVAL;
}
static unsigned long stm32mp1_pll_get_fref(const struct stm32mp1_clk_pll *pll)
{
uint32_t selr = mmio_read_32(stm32mp_rcc_base() + pll->rckxselr);
uint32_t src = selr & RCC_SELR_REFCLK_SRC_MASK;
return stm32mp1_clk_get_fixed(pll->refclk[src]);
}
/*
* pll_get_fvco() : return the VCO or (VCO / 2) frequency for the requested PLL
* - PLL1 & PLL2 => return VCO / 2 with Fpll_y_ck = FVCO / 2 * (DIVy + 1)
* - PLL3 & PLL4 => return VCO with Fpll_y_ck = FVCO / (DIVy + 1)
* => in all cases Fpll_y_ck = pll_get_fvco() / (DIVy + 1)
*/
static unsigned long stm32mp1_pll_get_fvco(const struct stm32mp1_clk_pll *pll)
{
unsigned long refclk, fvco;
uint32_t cfgr1, fracr, divm, divn;
uintptr_t rcc_base = stm32mp_rcc_base();
cfgr1 = mmio_read_32(rcc_base + pll->pllxcfgr1);
fracr = mmio_read_32(rcc_base + pll->pllxfracr);
divm = (cfgr1 & (RCC_PLLNCFGR1_DIVM_MASK)) >> RCC_PLLNCFGR1_DIVM_SHIFT;
divn = cfgr1 & RCC_PLLNCFGR1_DIVN_MASK;
refclk = stm32mp1_pll_get_fref(pll);
/*
* With FRACV :
* Fvco = Fck_ref * ((DIVN + 1) + FRACV / 2^13) / (DIVM + 1)
* Without FRACV
* Fvco = Fck_ref * ((DIVN + 1) / (DIVM + 1)
*/
if ((fracr & RCC_PLLNFRACR_FRACLE) != 0U) {
uint32_t fracv = (fracr & RCC_PLLNFRACR_FRACV_MASK) >>
RCC_PLLNFRACR_FRACV_SHIFT;
unsigned long long numerator, denominator;
numerator = (((unsigned long long)divn + 1U) << 13) + fracv;
numerator = refclk * numerator;
denominator = ((unsigned long long)divm + 1U) << 13;
fvco = (unsigned long)(numerator / denominator);
} else {
fvco = (unsigned long)(refclk * (divn + 1U) / (divm + 1U));
}
return fvco;
}
static unsigned long stm32mp1_read_pll_freq(enum stm32mp1_pll_id pll_id,
enum stm32mp1_div_id div_id)
{
const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
unsigned long dfout;
uint32_t cfgr2, divy;
if (div_id >= _DIV_NB) {
return 0;
}
cfgr2 = mmio_read_32(stm32mp_rcc_base() + pll->pllxcfgr2);
divy = (cfgr2 >> pllncfgr2[div_id]) & RCC_PLLNCFGR2_DIVX_MASK;
dfout = stm32mp1_pll_get_fvco(pll) / (divy + 1U);
return dfout;
}
static unsigned long get_clock_rate(int p)
{
uint32_t reg, clkdiv;
unsigned long clock = 0;
uintptr_t rcc_base = stm32mp_rcc_base();
switch (p) {
case _CK_MPU:
/* MPU sub system */
reg = mmio_read_32(rcc_base + RCC_MPCKSELR);
switch (reg & RCC_SELR_SRC_MASK) {
case RCC_MPCKSELR_HSI:
clock = stm32mp1_clk_get_fixed(_HSI);
break;
case RCC_MPCKSELR_HSE:
clock = stm32mp1_clk_get_fixed(_HSE);
break;
case RCC_MPCKSELR_PLL:
clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
break;
case RCC_MPCKSELR_PLL_MPUDIV:
clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
reg = mmio_read_32(rcc_base + RCC_MPCKDIVR);
clkdiv = reg & RCC_MPUDIV_MASK;
clock >>= stm32mp1_mpu_div[clkdiv];
break;
default:
break;
}
break;
/* AXI sub system */
case _ACLK:
case _HCLK2:
case _HCLK6:
case _PCLK4:
case _PCLK5:
reg = mmio_read_32(rcc_base + RCC_ASSCKSELR);
switch (reg & RCC_SELR_SRC_MASK) {
case RCC_ASSCKSELR_HSI:
clock = stm32mp1_clk_get_fixed(_HSI);
break;
case RCC_ASSCKSELR_HSE:
clock = stm32mp1_clk_get_fixed(_HSE);
break;
case RCC_ASSCKSELR_PLL:
clock = stm32mp1_read_pll_freq(_PLL2, _DIV_P);
break;
default:
break;
}
/* System clock divider */
reg = mmio_read_32(rcc_base + RCC_AXIDIVR);
clock /= stm32mp1_axi_div[reg & RCC_AXIDIV_MASK];
switch (p) {
case _PCLK4:
reg = mmio_read_32(rcc_base + RCC_APB4DIVR);
clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
break;
case _PCLK5:
reg = mmio_read_32(rcc_base + RCC_APB5DIVR);
clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
break;
default:
break;
}
break;
/* MCU sub system */
case _CK_MCU:
case _PCLK1:
case _PCLK2:
case _PCLK3:
reg = mmio_read_32(rcc_base + RCC_MSSCKSELR);
switch (reg & RCC_SELR_SRC_MASK) {
case RCC_MSSCKSELR_HSI:
clock = stm32mp1_clk_get_fixed(_HSI);
break;
case RCC_MSSCKSELR_HSE:
clock = stm32mp1_clk_get_fixed(_HSE);
break;
case RCC_MSSCKSELR_CSI:
clock = stm32mp1_clk_get_fixed(_CSI);
break;
case RCC_MSSCKSELR_PLL:
clock = stm32mp1_read_pll_freq(_PLL3, _DIV_P);
break;
default:
break;
}
/* MCU clock divider */
reg = mmio_read_32(rcc_base + RCC_MCUDIVR);
clock >>= stm32mp1_mcu_div[reg & RCC_MCUDIV_MASK];
switch (p) {
case _PCLK1:
reg = mmio_read_32(rcc_base + RCC_APB1DIVR);
clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
break;
case _PCLK2:
reg = mmio_read_32(rcc_base + RCC_APB2DIVR);
clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
break;
case _PCLK3:
reg = mmio_read_32(rcc_base + RCC_APB3DIVR);
clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
break;
case _CK_MCU:
default:
break;
}
break;
case _CK_PER:
reg = mmio_read_32(rcc_base + RCC_CPERCKSELR);
switch (reg & RCC_SELR_SRC_MASK) {
case RCC_CPERCKSELR_HSI:
clock = stm32mp1_clk_get_fixed(_HSI);
break;
case RCC_CPERCKSELR_HSE:
clock = stm32mp1_clk_get_fixed(_HSE);
break;
case RCC_CPERCKSELR_CSI:
clock = stm32mp1_clk_get_fixed(_CSI);
break;
default:
break;
}
break;
case _HSI:
case _HSI_KER:
clock = stm32mp1_clk_get_fixed(_HSI);
break;
case _CSI:
case _CSI_KER:
clock = stm32mp1_clk_get_fixed(_CSI);
break;
case _HSE:
case _HSE_KER:
clock = stm32mp1_clk_get_fixed(_HSE);
break;
case _HSE_KER_DIV2:
clock = stm32mp1_clk_get_fixed(_HSE) >> 1;
break;
case _HSE_RTC:
clock = stm32mp1_clk_get_fixed(_HSE);
clock /= (mmio_read_32(rcc_base + RCC_RTCDIVR) & RCC_DIVR_DIV_MASK) + 1U;
break;
case _LSI:
clock = stm32mp1_clk_get_fixed(_LSI);
break;
case _LSE:
clock = stm32mp1_clk_get_fixed(_LSE);
break;
/* PLL */
case _PLL1_P:
clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
break;
case _PLL1_Q:
clock = stm32mp1_read_pll_freq(_PLL1, _DIV_Q);
break;
case _PLL1_R:
clock = stm32mp1_read_pll_freq(_PLL1, _DIV_R);
break;
case _PLL2_P:
clock = stm32mp1_read_pll_freq(_PLL2, _DIV_P);
break;
case _PLL2_Q:
clock = stm32mp1_read_pll_freq(_PLL2, _DIV_Q);
break;
case _PLL2_R:
clock = stm32mp1_read_pll_freq(_PLL2, _DIV_R);
break;
case _PLL3_P:
clock = stm32mp1_read_pll_freq(_PLL3, _DIV_P);
break;
case _PLL3_Q:
clock = stm32mp1_read_pll_freq(_PLL3, _DIV_Q);
break;
case _PLL3_R:
clock = stm32mp1_read_pll_freq(_PLL3, _DIV_R);
break;
case _PLL4_P:
clock = stm32mp1_read_pll_freq(_PLL4, _DIV_P);
break;
case _PLL4_Q:
clock = stm32mp1_read_pll_freq(_PLL4, _DIV_Q);
break;
case _PLL4_R:
clock = stm32mp1_read_pll_freq(_PLL4, _DIV_R);
break;
/* Other */
case _USB_PHY_48:
clock = USB_PHY_48_MHZ;
break;
default:
break;
}
return clock;
}
static void __clk_enable(struct stm32mp1_clk_gate const *gate)
{
uintptr_t rcc_base = stm32mp_rcc_base();
VERBOSE("Enable clock %u\n", gate->index);
if (gate->set_clr != 0U) {
mmio_write_32(rcc_base + gate->offset, BIT(gate->bit));
} else {
mmio_setbits_32(rcc_base + gate->offset, BIT(gate->bit));
}
}
static void __clk_disable(struct stm32mp1_clk_gate const *gate)
{
uintptr_t rcc_base = stm32mp_rcc_base();
VERBOSE("Disable clock %u\n", gate->index);
if (gate->set_clr != 0U) {
mmio_write_32(rcc_base + gate->offset + RCC_MP_ENCLRR_OFFSET,
BIT(gate->bit));
} else {
mmio_clrbits_32(rcc_base + gate->offset, BIT(gate->bit));
}
}
static bool __clk_is_enabled(struct stm32mp1_clk_gate const *gate)
{
uintptr_t rcc_base = stm32mp_rcc_base();
return mmio_read_32(rcc_base + gate->offset) & BIT(gate->bit);
}
/* Oscillators and PLLs are not gated at runtime */
static bool clock_is_always_on(unsigned long id)
{
switch (id) {
case CK_HSE:
case CK_CSI:
case CK_LSI:
case CK_LSE:
case CK_HSI:
case CK_HSE_DIV2:
case PLL1_Q:
case PLL1_R:
case PLL2_P:
case PLL2_Q:
case PLL2_R:
case PLL3_P:
case PLL3_Q:
case PLL3_R:
case CK_AXI:
case CK_MPU:
case CK_MCU:
case RTC:
return true;
default:
return false;
}
}
static void __stm32mp1_clk_enable(unsigned long id, bool with_refcnt)
{
const struct stm32mp1_clk_gate *gate;
int i;
if (clock_is_always_on(id)) {
return;
}
i = stm32mp1_clk_get_gated_id(id);
if (i < 0) {
ERROR("Clock %lu can't be enabled\n", id);
panic();
}
gate = gate_ref(i);
if (!with_refcnt) {
__clk_enable(gate);
return;
}
#if defined(IMAGE_BL32)
if (gate_is_non_secure(gate)) {
/* Enable non-secure clock w/o any refcounting */
__clk_enable(gate);
return;
}
#endif
stm32mp1_clk_lock(&refcount_lock);
if (gate_refcounts[i] == 0U) {
__clk_enable(gate);
}
gate_refcounts[i]++;
if (gate_refcounts[i] == UINT_MAX) {
ERROR("Clock %lu refcount reached max value\n", id);
panic();
}
stm32mp1_clk_unlock(&refcount_lock);
}
static void __stm32mp1_clk_disable(unsigned long id, bool with_refcnt)
{
const struct stm32mp1_clk_gate *gate;
int i;
if (clock_is_always_on(id)) {
return;
}
i = stm32mp1_clk_get_gated_id(id);
if (i < 0) {
ERROR("Clock %lu can't be disabled\n", id);
panic();
}
gate = gate_ref(i);
if (!with_refcnt) {
__clk_disable(gate);
return;
}
#if defined(IMAGE_BL32)
if (gate_is_non_secure(gate)) {
/* Don't disable non-secure clocks */
return;
}
#endif
stm32mp1_clk_lock(&refcount_lock);
if (gate_refcounts[i] == 0U) {
ERROR("Clock %lu refcount reached 0\n", id);
panic();
}
gate_refcounts[i]--;
if (gate_refcounts[i] == 0U) {
__clk_disable(gate);
}
stm32mp1_clk_unlock(&refcount_lock);
}
static int stm32mp_clk_enable(unsigned long id)
{
__stm32mp1_clk_enable(id, true);
return 0;
}
static void stm32mp_clk_disable(unsigned long id)
{
__stm32mp1_clk_disable(id, true);
}
static bool stm32mp_clk_is_enabled(unsigned long id)
{
int i;
if (clock_is_always_on(id)) {
return true;
}
i = stm32mp1_clk_get_gated_id(id);
if (i < 0) {
panic();
}
return __clk_is_enabled(gate_ref(i));
}
static unsigned long stm32mp_clk_get_rate(unsigned long id)
{
uintptr_t rcc_base = stm32mp_rcc_base();
int p = stm32mp1_clk_get_parent(id);
uint32_t prescaler, timpre;
unsigned long parent_rate;
if (p < 0) {
return 0;
}
parent_rate = get_clock_rate(p);
switch (id) {
case TIM2_K:
case TIM3_K:
case TIM4_K:
case TIM5_K:
case TIM6_K:
case TIM7_K:
case TIM12_K:
case TIM13_K:
case TIM14_K:
prescaler = mmio_read_32(rcc_base + RCC_APB1DIVR) &
RCC_APBXDIV_MASK;
timpre = mmio_read_32(rcc_base + RCC_TIMG1PRER) &
RCC_TIMGXPRER_TIMGXPRE;
break;
case TIM1_K:
case TIM8_K:
case TIM15_K:
case TIM16_K:
case TIM17_K:
prescaler = mmio_read_32(rcc_base + RCC_APB2DIVR) &
RCC_APBXDIV_MASK;
timpre = mmio_read_32(rcc_base + RCC_TIMG2PRER) &
RCC_TIMGXPRER_TIMGXPRE;
break;
default:
return parent_rate;
}
if (prescaler == 0U) {
return parent_rate;
}
return parent_rate * (timpre + 1U) * 2U;
}
static void stm32mp1_ls_osc_set(bool enable, uint32_t offset, uint32_t mask_on)
{
uintptr_t address = stm32mp_rcc_base() + offset;
if (enable) {
mmio_setbits_32(address, mask_on);
} else {
mmio_clrbits_32(address, mask_on);
}
}
static void stm32mp1_hs_ocs_set(bool enable, uint32_t mask_on)
{
uint32_t offset = enable ? RCC_OCENSETR : RCC_OCENCLRR;
uintptr_t address = stm32mp_rcc_base() + offset;
mmio_write_32(address, mask_on);
}
static int stm32mp1_osc_wait(bool enable, uint32_t offset, uint32_t mask_rdy)
{
uint64_t timeout;
uint32_t mask_test;
uintptr_t address = stm32mp_rcc_base() + offset;
if (enable) {
mask_test = mask_rdy;
} else {
mask_test = 0;
}
timeout = timeout_init_us(OSCRDY_TIMEOUT);
while ((mmio_read_32(address) & mask_rdy) != mask_test) {
if (timeout_elapsed(timeout)) {
ERROR("OSC %x @ %lx timeout for enable=%d : 0x%x\n",
mask_rdy, address, enable, mmio_read_32(address));
return -ETIMEDOUT;
}
}
return 0;
}
static void stm32mp1_lse_enable(bool bypass, bool digbyp, uint32_t lsedrv)
{
uint32_t value;
uintptr_t rcc_base = stm32mp_rcc_base();
/* Do not reconfigure LSE if it is already ON */
if ((mmio_read_32(rcc_base + RCC_BDCR) & RCC_BDCR_LSEON) == RCC_BDCR_LSEON) {
return;
}
if (digbyp) {
mmio_setbits_32(rcc_base + RCC_BDCR, RCC_BDCR_DIGBYP);
}
if (bypass || digbyp) {
mmio_setbits_32(rcc_base + RCC_BDCR, RCC_BDCR_LSEBYP);
}
/*
* Warning: not recommended to switch directly from "high drive"
* to "medium low drive", and vice-versa.
*/
value = (mmio_read_32(rcc_base + RCC_BDCR) & RCC_BDCR_LSEDRV_MASK) >>
RCC_BDCR_LSEDRV_SHIFT;
while (value != lsedrv) {
if (value > lsedrv) {
value--;
} else {
value++;
}
mmio_clrsetbits_32(rcc_base + RCC_BDCR,
RCC_BDCR_LSEDRV_MASK,
value << RCC_BDCR_LSEDRV_SHIFT);
}
stm32mp1_ls_osc_set(true, RCC_BDCR, RCC_BDCR_LSEON);
}
static void stm32mp1_lse_wait(void)
{
if (stm32mp1_osc_wait(true, RCC_BDCR, RCC_BDCR_LSERDY) != 0) {
EARLY_ERROR("%s: failed\n", __func__);
}
}
static void stm32mp1_lsi_set(bool enable)
{
stm32mp1_ls_osc_set(enable, RCC_RDLSICR, RCC_RDLSICR_LSION);
if (stm32mp1_osc_wait(enable, RCC_RDLSICR, RCC_RDLSICR_LSIRDY) != 0) {
EARLY_ERROR("%s: failed\n", __func__);
}
}
static void stm32mp1_hse_enable(bool bypass, bool digbyp, bool css)
{
uintptr_t rcc_base = stm32mp_rcc_base();
if (digbyp) {
mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_DIGBYP);
}
if (bypass || digbyp) {
mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_HSEBYP);
}
stm32mp1_hs_ocs_set(true, RCC_OCENR_HSEON);
if (stm32mp1_osc_wait(true, RCC_OCRDYR, RCC_OCRDYR_HSERDY) != 0) {
EARLY_ERROR("%s: failed\n", __func__);
}
if (css) {
mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_HSECSSON);
}
#if STM32MP_UART_PROGRAMMER || STM32MP_USB_PROGRAMMER
if ((mmio_read_32(rcc_base + RCC_OCENSETR) & RCC_OCENR_HSEBYP) &&
(!(digbyp || bypass))) {
panic();
}
#endif
}
static void stm32mp1_csi_set(bool enable)
{
stm32mp1_hs_ocs_set(enable, RCC_OCENR_CSION);
if (stm32mp1_osc_wait(enable, RCC_OCRDYR, RCC_OCRDYR_CSIRDY) != 0) {
EARLY_ERROR("%s: failed\n", __func__);
}
}
static void stm32mp1_hsi_set(bool enable)
{
stm32mp1_hs_ocs_set(enable, RCC_OCENR_HSION);
if (stm32mp1_osc_wait(enable, RCC_OCRDYR, RCC_OCRDYR_HSIRDY) != 0) {
EARLY_ERROR("%s: failed\n", __func__);
}
}
static int stm32mp1_set_hsidiv(uint8_t hsidiv)
{
uint64_t timeout;
uintptr_t rcc_base = stm32mp_rcc_base();
uintptr_t address = rcc_base + RCC_OCRDYR;
mmio_clrsetbits_32(rcc_base + RCC_HSICFGR,
RCC_HSICFGR_HSIDIV_MASK,
RCC_HSICFGR_HSIDIV_MASK & (uint32_t)hsidiv);
timeout = timeout_init_us(HSIDIV_TIMEOUT);
while ((mmio_read_32(address) & RCC_OCRDYR_HSIDIVRDY) == 0U) {
if (timeout_elapsed(timeout)) {
ERROR("HSIDIV failed @ 0x%lx: 0x%x\n",
address, mmio_read_32(address));
return -ETIMEDOUT;
}
}
return 0;
}
static int stm32mp1_hsidiv(unsigned long hsifreq)
{
uint8_t hsidiv;
uint32_t hsidivfreq = MAX_HSI_HZ;
for (hsidiv = 0; hsidiv < 4U; hsidiv++) {
if (hsidivfreq == hsifreq) {
break;
}
hsidivfreq /= 2U;
}
if (hsidiv == 4U) {
EARLY_ERROR("Invalid clk-hsi frequency\n");
return -1;
}
if (hsidiv != 0U) {
return stm32mp1_set_hsidiv(hsidiv);
}
return 0;
}
static bool stm32mp1_check_pll_conf(enum stm32mp1_pll_id pll_id,
unsigned int clksrc,
uint32_t *pllcfg, uint32_t fracv)
{
const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
uintptr_t rcc_base = stm32mp_rcc_base();
uintptr_t pllxcr = rcc_base + pll->pllxcr;
enum stm32mp1_plltype type = pll->plltype;
uintptr_t clksrc_address = rcc_base + (clksrc >> 4);
unsigned long refclk;
uint32_t ifrge = 0U;
uint32_t src, value;
/* Check PLL output */
if (mmio_read_32(pllxcr) != RCC_PLLNCR_PLLON) {
return false;
}
/* Check current clksrc */
src = mmio_read_32(clksrc_address) & RCC_SELR_SRC_MASK;
if (src != (clksrc & RCC_SELR_SRC_MASK)) {
return false;
}
/* Check Div */
src = mmio_read_32(rcc_base + pll->rckxselr) & RCC_SELR_REFCLK_SRC_MASK;
refclk = stm32mp1_clk_get_fixed(pll->refclk[src]) /
(pllcfg[PLLCFG_M] + 1U);
if ((refclk < (stm32mp1_pll[type].refclk_min * 1000000U)) ||
(refclk > (stm32mp1_pll[type].refclk_max * 1000000U))) {
return false;
}
if ((type == PLL_800) && (refclk >= 8000000U)) {
ifrge = 1U;
}
value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT) &
RCC_PLLNCFGR1_DIVN_MASK;
value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT) &
RCC_PLLNCFGR1_DIVM_MASK;
value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT) &
RCC_PLLNCFGR1_IFRGE_MASK;
if (mmio_read_32(rcc_base + pll->pllxcfgr1) != value) {
return false;
}
/* Fractional configuration */
value = fracv << RCC_PLLNFRACR_FRACV_SHIFT;
value |= RCC_PLLNFRACR_FRACLE;
if (mmio_read_32(rcc_base + pll->pllxfracr) != value) {
return false;
}
/* Output config */
value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) &
RCC_PLLNCFGR2_DIVP_MASK;
value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT) &
RCC_PLLNCFGR2_DIVQ_MASK;
value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) &
RCC_PLLNCFGR2_DIVR_MASK;
if (mmio_read_32(rcc_base + pll->pllxcfgr2) != value) {
return false;
}
return true;
}
static void stm32mp1_pll_start(enum stm32mp1_pll_id pll_id)
{
const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
/* Preserve RCC_PLLNCR_SSCG_CTRL value */
mmio_clrsetbits_32(pllxcr,
RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN |
RCC_PLLNCR_DIVREN,
RCC_PLLNCR_PLLON);
}
static int stm32mp1_pll_output(enum stm32mp1_pll_id pll_id, uint32_t output)
{
const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
uint64_t timeout = timeout_init_us(PLLRDY_TIMEOUT);
/* Wait PLL lock */
while ((mmio_read_32(pllxcr) & RCC_PLLNCR_PLLRDY) == 0U) {
if (timeout_elapsed(timeout)) {
EARLY_ERROR("PLL%u start failed @ 0x%lx: 0x%x\n",
pll_id, pllxcr, mmio_read_32(pllxcr));
return -ETIMEDOUT;
}
}
/* Start the requested output */
mmio_setbits_32(pllxcr, output << RCC_PLLNCR_DIVEN_SHIFT);
return 0;
}
static int stm32mp1_pll_stop(enum stm32mp1_pll_id pll_id)
{
const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
uint64_t timeout;
/* Stop all output */
mmio_clrbits_32(pllxcr, RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN |
RCC_PLLNCR_DIVREN);
/* Stop PLL */
mmio_clrbits_32(pllxcr, RCC_PLLNCR_PLLON);
timeout = timeout_init_us(PLLRDY_TIMEOUT);
/* Wait PLL stopped */
while ((mmio_read_32(pllxcr) & RCC_PLLNCR_PLLRDY) != 0U) {
if (timeout_elapsed(timeout)) {
EARLY_ERROR("PLL%u stop failed @ 0x%lx: 0x%x\n",
pll_id, pllxcr, mmio_read_32(pllxcr));
return -ETIMEDOUT;
}
}
return 0;
}
static void stm32mp1_pll_config_output(enum stm32mp1_pll_id pll_id,
uint32_t *pllcfg)
{
const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
uintptr_t rcc_base = stm32mp_rcc_base();
uint32_t value;
value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) &
RCC_PLLNCFGR2_DIVP_MASK;
value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT) &
RCC_PLLNCFGR2_DIVQ_MASK;
value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) &
RCC_PLLNCFGR2_DIVR_MASK;
mmio_write_32(rcc_base + pll->pllxcfgr2, value);
}
static int stm32mp1_pll_config(enum stm32mp1_pll_id pll_id,
uint32_t *pllcfg, uint32_t fracv)
{
const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
uintptr_t rcc_base = stm32mp_rcc_base();
enum stm32mp1_plltype type = pll->plltype;
unsigned long refclk;
uint32_t ifrge = 0;
uint32_t src, value;
src = mmio_read_32(rcc_base + pll->rckxselr) &
RCC_SELR_REFCLK_SRC_MASK;
refclk = stm32mp1_clk_get_fixed(pll->refclk[src]) /
(pllcfg[PLLCFG_M] + 1U);
if ((refclk < (stm32mp1_pll[type].refclk_min * 1000000U)) ||
(refclk > (stm32mp1_pll[type].refclk_max * 1000000U))) {
return -EINVAL;
}
if ((type == PLL_800) && (refclk >= 8000000U)) {
ifrge = 1U;
}
value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT) &
RCC_PLLNCFGR1_DIVN_MASK;
value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT) &
RCC_PLLNCFGR1_DIVM_MASK;
value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT) &
RCC_PLLNCFGR1_IFRGE_MASK;
mmio_write_32(rcc_base + pll->pllxcfgr1, value);
/* Fractional configuration */
value = 0;
mmio_write_32(rcc_base + pll->pllxfracr, value);
value = fracv << RCC_PLLNFRACR_FRACV_SHIFT;
mmio_write_32(rcc_base + pll->pllxfracr, value);
value |= RCC_PLLNFRACR_FRACLE;
mmio_write_32(rcc_base + pll->pllxfracr, value);
stm32mp1_pll_config_output(pll_id, pllcfg);
return 0;
}
static void stm32mp1_pll_csg(enum stm32mp1_pll_id pll_id, uint32_t *csg)
{
const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
uint32_t pllxcsg = 0;
pllxcsg |= (csg[PLLCSG_MOD_PER] << RCC_PLLNCSGR_MOD_PER_SHIFT) &
RCC_PLLNCSGR_MOD_PER_MASK;
pllxcsg |= (csg[PLLCSG_INC_STEP] << RCC_PLLNCSGR_INC_STEP_SHIFT) &
RCC_PLLNCSGR_INC_STEP_MASK;
pllxcsg |= (csg[PLLCSG_SSCG_MODE] << RCC_PLLNCSGR_SSCG_MODE_SHIFT) &
RCC_PLLNCSGR_SSCG_MODE_MASK;
mmio_write_32(stm32mp_rcc_base() + pll->pllxcsgr, pllxcsg);
mmio_setbits_32(stm32mp_rcc_base() + pll->pllxcr,
RCC_PLLNCR_SSCG_CTRL);
}
static int clk_compute_pll1_settings(unsigned long input_freq,
uint32_t freq_khz,
uint32_t *pllcfg, uint32_t *fracv)
{
unsigned long long best_diff = ULLONG_MAX;
unsigned int divm;
/* Following parameters have always the same value */
pllcfg[PLLCFG_Q] = 0U;
pllcfg[PLLCFG_R] = 0U;
pllcfg[PLLCFG_O] = PQR(1, 0, 0);
for (divm = (DIVM_MAX + 1U); divm != DIVM_MIN; divm--) {
unsigned long post_divm = input_freq / divm;
unsigned int divp;
if ((post_divm < POST_DIVM_MIN) || (post_divm > POST_DIVM_MAX)) {
continue;
}
for (divp = DIVP_MIN; divp <= DIVP_MAX; divp++) {
unsigned long long output_freq = freq_khz * 1000ULL;
unsigned long long freq;
unsigned long long divn;
unsigned long long frac;
unsigned int i;
freq = output_freq * divm * (divp + 1U);
divn = (freq / input_freq) - 1U;
if ((divn < DIVN_MIN) || (divn > DIVN_MAX)) {
continue;
}
frac = ((freq * FRAC_MAX) / input_freq) - ((divn + 1U) * FRAC_MAX);
/* 2 loops to refine the fractional part */
for (i = 2U; i != 0U; i--) {
unsigned long long diff;
unsigned long long vco;
if (frac > FRAC_MAX) {
break;
}
vco = (post_divm * (divn + 1U)) + ((post_divm * frac) / FRAC_MAX);
if ((vco < (VCO_MIN / 2U)) || (vco > (VCO_MAX / 2U))) {
frac++;
continue;
}
freq = vco / (divp + 1U);
if (output_freq < freq) {
diff = freq - output_freq;
} else {
diff = output_freq - freq;
}
if (diff < best_diff) {
pllcfg[PLLCFG_M] = divm - 1U;
pllcfg[PLLCFG_N] = (uint32_t)divn;
pllcfg[PLLCFG_P] = divp;
*fracv = (uint32_t)frac;
if (diff == 0U) {
return 0;
}
best_diff = diff;
}
frac++;
}
}
}
if (best_diff == ULLONG_MAX) {
return -EINVAL;
}
return 0;
}
static int clk_get_pll1_settings(uint32_t clksrc, uint32_t freq_khz,
uint32_t *pllcfg, uint32_t *fracv)
{
unsigned long input_freq = 0UL;
assert(pllcfg != NULL);
assert(fracv != NULL);
switch (clksrc) {
case CLK_PLL12_HSI:
input_freq = stm32mp_clk_get_rate(CK_HSI);
break;
case CLK_PLL12_HSE:
input_freq = stm32mp_clk_get_rate(CK_HSE);
break;
default:
break;
}
if (input_freq == 0UL) {
panic();
}
return clk_compute_pll1_settings(input_freq, freq_khz, pllcfg, fracv);
}
static int stm32_clk_dividers_configure(struct stm32_clk_priv *priv)
{
struct stm32_clk_platdata *pdata = priv->pdata;
uint32_t i;
for (i = 0U; i < pdata->nclkdiv; i++) {
uint32_t div_id, div_n;
uint32_t val;
int ret;
val = pdata->clkdiv[i] & CMD_DATA_MASK;
div_id = (val & DIV_ID_MASK) >> DIV_ID_SHIFT;
div_n = (val & DIV_DIVN_MASK) >> DIV_DIVN_SHIFT;
ret = clk_stm32_set_div(priv, div_id, div_n);
if (ret != 0) {
return ret;
}
}
return 0;
}
static int stm32_clk_configure_clk(struct stm32_clk_priv *priv, uint32_t data)
{
uint32_t sel = (data & CLK_SEL_MASK) >> CLK_SEL_SHIFT;
uint32_t enable = (data & CLK_ON_MASK) >> CLK_ON_SHIFT;
unsigned long binding_id = ((unsigned long)data & CLK_ID_MASK) >> CLK_ID_SHIFT;
struct stm32_clk_platdata *pdata = priv->pdata;
if (binding_id == RTC) {
uintptr_t address = stm32mp_rcc_base() + RCC_BDCR;
if (((mmio_read_32(address) & RCC_BDCR_RTCCKEN) == 0U) || (enable != 0U)) {
mmio_clrsetbits_32(address, RCC_BDCR_RTCSRC_MASK,
(sel & RCC_SELR_SRC_MASK) << RCC_BDCR_RTCSRC_SHIFT);
mmio_setbits_32(address, RCC_BDCR_RTCCKEN);
/* Configure LSE CSS */
if (pdata->lse_css) {
mmio_setbits_32(priv->base + RCC_BDCR, RCC_BDCR_LSECSSON);
}
}
}
return 0;
}
static int stm32_clk_configure_by_addr_val(struct stm32_clk_priv *priv,
uint32_t data)
{
uint32_t addr = data >> CLK_ADDR_SHIFT;
uint32_t val = data & CLK_ADDR_VAL_MASK;
mmio_setbits_32(priv->base + addr, val);
return 0;
}
static int stm32_clk_source_configure(struct stm32_clk_priv *priv)
{
struct stm32_clk_platdata *pdata = priv->pdata;
bool ckper_disabled = false;
uint32_t i;
for (i = 0U; i < pdata->nclksrc; i++) {
uint32_t val = pdata->clksrc[i];
uint32_t cmd, cmd_data;
int ret;
if (val & CMD_ADDR_BIT) {
ret = stm32_clk_configure_by_addr_val(priv, val & ~CMD_ADDR_BIT);
if (ret != 0) {
return ret;
}
continue;
}
if (val == (uint32_t)CLK_CKPER_DISABLED) {
ckper_disabled = true;
continue;
}
cmd = (val & CMD_MASK) >> CMD_SHIFT;
cmd_data = val & ~CMD_MASK;
switch (cmd) {
case CMD_MUX:
ret = stm32_clk_configure_mux(priv, cmd_data);
break;
case CMD_CLK:
ret = stm32_clk_configure_clk(priv, cmd_data);
break;
default:
ret = -EINVAL;
break;
}
if (ret != 0) {
return ret;
}
}
/*
* CKPER is source for some peripheral clocks
* (FMC-NAND / QPSI-NOR) and switching source is allowed
* only if previous clock is still ON
* => deactivate CKPER only after switching clock
*/
if (!ckper_disabled) {
return 0;
}
return stm32_clk_configure_mux(priv, CLK_CKPER_DISABLED);
}
static int stm32mp1_pll_configure_src(struct stm32_clk_priv *priv, int pll_idx)
{
struct stm32_clk_platdata *pdata = priv->pdata;
struct stm32_pll_dt_cfg *pll_conf = &pdata->pll[pll_idx];
if (!pll_conf->status) {
return 0;
}
return stm32_clk_configure_mux(priv, pll_conf->src);
}
int stm32mp1_clk_init(void)
{
struct stm32_clk_priv *priv = clk_stm32_get_priv();
struct stm32_clk_platdata *pdata = priv->pdata;
struct stm32_pll_dt_cfg *pll_conf = pdata->pll;
int ret;
enum stm32mp1_pll_id i;
bool pll3_preserve = false;
bool pll4_preserve = false;
bool pll4_bootrom = false;
int stgen_p = stm32mp1_clk_get_parent(STGEN_K);
int usbphy_p = stm32mp1_clk_get_parent(USBPHY_K);
uint32_t usbreg_bootrom = 0U;
if (!pll_conf[_PLL1].status) {
ret = clk_get_pll1_settings(pll_conf[_PLL2].src, PLL1_NOMINAL_FREQ_IN_KHZ,
pll_conf[_PLL1].cfg, &pll_conf[_PLL1].frac);
if (ret != 0) {
return ret;
}
pll_conf[_PLL1].status = true;
pll_conf[_PLL1].src = pll_conf[_PLL2].src;
}
/*
* Switch ON oscillator found in device-tree.
* Note: HSI already ON after BootROM stage.
*/
if (stm32mp1_osc[_LSI] != 0U) {
stm32mp1_lsi_set(true);
}
if (stm32mp1_osc[_LSE] != 0U) {
const char *name = stm32mp_osc_node_label[_LSE];
bool bypass, digbyp;
uint32_t lsedrv;
bypass = fdt_clk_read_bool(name, "st,bypass");
digbyp = fdt_clk_read_bool(name, "st,digbypass");
pdata->lse_css = fdt_clk_read_bool(name, "st,css");
lsedrv = fdt_clk_read_uint32_default(name, "st,drive",
LSEDRV_MEDIUM_HIGH);
stm32mp1_lse_enable(bypass, digbyp, lsedrv);
}
if (stm32mp1_osc[_HSE] != 0U) {
const char *name = stm32mp_osc_node_label[_HSE];
bool bypass, digbyp, css;
bypass = fdt_clk_read_bool(name, "st,bypass");
digbyp = fdt_clk_read_bool(name, "st,digbypass");
css = fdt_clk_read_bool(name, "st,css");
stm32mp1_hse_enable(bypass, digbyp, css);
}
/*
* CSI is mandatory for automatic I/O compensation (SYSCFG_CMPCR)
* => switch on CSI even if node is not present in device tree
*/
stm32mp1_csi_set(true);
/* Come back to HSI */
ret = stm32_clk_configure_mux(priv, CLK_MPU_HSI);
if (ret != 0) {
return ret;
}
ret = stm32_clk_configure_mux(priv, CLK_AXI_HSI);
if (ret != 0) {
return ret;
}
ret = stm32_clk_configure_mux(priv, CLK_MCU_HSI);
if (ret != 0) {
return ret;
}
if ((mmio_read_32(priv->base + RCC_MP_RSTSCLRR) &
RCC_MP_RSTSCLRR_MPUP0RSTF) != 0) {
pll3_preserve = stm32mp1_check_pll_conf(_PLL3,
pll_conf[_PLL3].src,
pll_conf[_PLL3].cfg,
pll_conf[_PLL3].frac);
pll4_preserve = stm32mp1_check_pll_conf(_PLL4,
pll_conf[_PLL4].src,
pll_conf[_PLL4].cfg,
pll_conf[_PLL4].frac);
}
/* Don't initialize PLL4, when used by BOOTROM */
if ((stm32mp_get_boot_itf_selected() ==
BOOT_API_CTX_BOOT_INTERFACE_SEL_SERIAL_USB) &&
((stgen_p == (int)_PLL4_R) || (usbphy_p == (int)_PLL4_R))) {
pll4_bootrom = true;
pll4_preserve = true;
}
for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
if (((i == _PLL3) && pll3_preserve) ||
((i == _PLL4) && pll4_preserve)) {
continue;
}
ret = stm32mp1_pll_stop(i);
if (ret != 0) {
return ret;
}
}
/* Configure HSIDIV */
if (stm32mp1_osc[_HSI] != 0U) {
ret = stm32mp1_hsidiv(stm32mp1_osc[_HSI]);
if (ret != 0) {
return ret;
}
stm32mp_stgen_config(stm32mp_clk_get_rate(STGEN_K));
}
/* Configure dividers */
ret = stm32_clk_dividers_configure(priv);
if (ret != 0) {
return ret;
}
/* Configure PLLs source */
ret = stm32mp1_pll_configure_src(priv, _PLL1);
if (ret != 0) {
return ret;
}
if (!pll3_preserve) {
ret = stm32mp1_pll_configure_src(priv, _PLL3);
if (ret != 0) {
return ret;
}
}
if (!pll4_preserve) {
ret = stm32mp1_pll_configure_src(priv, _PLL4);
if (ret != 0) {
return ret;
}
}
/* Configure and start PLLs */
for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
if (((i == _PLL3) && pll3_preserve) ||
((i == _PLL4) && pll4_preserve && !pll4_bootrom)) {
continue;
}
if (!pll_conf[i].status) {
continue;
}
if ((i == _PLL4) && pll4_bootrom) {
/* Set output divider if not done by the Bootrom */
stm32mp1_pll_config_output(i, pll_conf[i].cfg);
continue;
}
ret = stm32mp1_pll_config(i, pll_conf[i].cfg, pll_conf[i].frac);
if (ret != 0) {
return ret;
}
if (pll_conf[i].csg_enabled) {
stm32mp1_pll_csg(i, pll_conf[i].csg);
}
stm32mp1_pll_start(i);
}
/* Wait and start PLLs output when ready */
for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
if (!pll_conf[i].status) {
continue;
}
ret = stm32mp1_pll_output(i, pll_conf[i].cfg[PLLCFG_O]);
if (ret != 0) {
return ret;
}
}
/* Wait LSE ready before to use it */
if (stm32mp1_osc[_LSE] != 0U) {
stm32mp1_lse_wait();
}
if (pll4_bootrom) {
usbreg_bootrom = mmio_read_32(priv->base + RCC_USBCKSELR);
}
/* Configure with expected clock source */
ret = stm32_clk_source_configure(priv);
if (ret != 0) {
panic();
}
if (pll4_bootrom) {
uint32_t usbreg_value, usbreg_mask;
const struct stm32mp1_clk_sel *sel;
sel = clk_sel_ref(_USBPHY_SEL);
usbreg_mask = (uint32_t)sel->msk << sel->src;
sel = clk_sel_ref(_USBO_SEL);
usbreg_mask |= (uint32_t)sel->msk << sel->src;
usbreg_value = mmio_read_32(priv->base + RCC_USBCKSELR) &
usbreg_mask;
usbreg_bootrom &= usbreg_mask;
if (usbreg_bootrom != usbreg_value) {
EARLY_ERROR("forbidden new USB clk path\n");
EARLY_ERROR("vs bootrom on USB boot\n");
return -FDT_ERR_BADVALUE;
}
}
/* Switch OFF HSI if not found in device-tree */
if (stm32mp1_osc[_HSI] == 0U) {
stm32mp1_hsi_set(false);
}
stm32mp_stgen_config(stm32mp_clk_get_rate(STGEN_K));
/* Software Self-Refresh mode (SSR) during DDR initilialization */
mmio_clrsetbits_32(priv->base + RCC_DDRITFCR,
RCC_DDRITFCR_DDRCKMOD_MASK,
RCC_DDRITFCR_DDRCKMOD_SSR <<
RCC_DDRITFCR_DDRCKMOD_SHIFT);
return 0;
}
static void stm32mp1_osc_clk_init(const char *name,
enum stm32mp_osc_id index)
{
uint32_t frequency;
if (fdt_osc_read_freq(name, &frequency) == 0) {
stm32mp1_osc[index] = frequency;
}
}
static void stm32mp1_osc_init(void)
{
enum stm32mp_osc_id i;
for (i = (enum stm32mp_osc_id)0 ; i < NB_OSC; i++) {
stm32mp1_osc_clk_init(stm32mp_osc_node_label[i], i);
}
}
#ifdef STM32MP_SHARED_RESOURCES
/*
* Get the parent ID of the target parent clock, for tagging as secure
* shared clock dependencies.
*/
static int get_parent_id_parent(unsigned int parent_id)
{
enum stm32mp1_parent_sel s = _UNKNOWN_SEL;
enum stm32mp1_pll_id pll_id;
uint32_t p_sel;
uintptr_t rcc_base = stm32mp_rcc_base();
switch (parent_id) {
case _ACLK:
case _PCLK4:
case _PCLK5:
s = _AXIS_SEL;
break;
case _PLL1_P:
case _PLL1_Q:
case _PLL1_R:
pll_id = _PLL1;
break;
case _PLL2_P:
case _PLL2_Q:
case _PLL2_R:
pll_id = _PLL2;
break;
case _PLL3_P:
case _PLL3_Q:
case _PLL3_R:
pll_id = _PLL3;
break;
case _PLL4_P:
case _PLL4_Q:
case _PLL4_R:
pll_id = _PLL4;
break;
case _PCLK1:
case _PCLK2:
case _HCLK2:
case _HCLK6:
case _CK_PER:
case _CK_MPU:
case _CK_MCU:
case _USB_PHY_48:
/* We do not expect to access these */
panic();
break;
default:
/* Other parents have no parent */
return -1;
}
if (s != _UNKNOWN_SEL) {
const struct stm32mp1_clk_sel *sel = clk_sel_ref(s);
p_sel = (mmio_read_32(rcc_base + sel->offset) >> sel->src) &
sel->msk;
if (p_sel < sel->nb_parent) {
return (int)sel->parent[p_sel];
}
} else {
const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
p_sel = mmio_read_32(rcc_base + pll->rckxselr) &
RCC_SELR_REFCLK_SRC_MASK;
if (pll->refclk[p_sel] != _UNKNOWN_OSC_ID) {
return (int)pll->refclk[p_sel];
}
}
VERBOSE("No parent selected for %s\n",
stm32mp1_clk_parent_name[parent_id]);
return -1;
}
static void secure_parent_clocks(unsigned long parent_id)
{
int grandparent_id;
switch (parent_id) {
case _PLL3_P:
case _PLL3_Q:
case _PLL3_R:
stm32mp_register_secure_periph(STM32MP1_SHRES_PLL3);
break;
/* These clocks are always secure when RCC is secure */
case _ACLK:
case _HCLK2:
case _HCLK6:
case _PCLK4:
case _PCLK5:
case _PLL1_P:
case _PLL1_Q:
case _PLL1_R:
case _PLL2_P:
case _PLL2_Q:
case _PLL2_R:
case _HSI:
case _HSI_KER:
case _LSI:
case _CSI:
case _CSI_KER:
case _HSE:
case _HSE_KER:
case _HSE_KER_DIV2:
case _HSE_RTC:
case _LSE:
break;
default:
VERBOSE("Cannot secure parent clock %s\n",
stm32mp1_clk_parent_name[parent_id]);
panic();
}
grandparent_id = get_parent_id_parent(parent_id);
if (grandparent_id >= 0) {
secure_parent_clocks(grandparent_id);
}
}
void stm32mp1_register_clock_parents_secure(unsigned long clock_id)
{
int parent_id;
if (!stm32mp1_rcc_is_secure()) {
return;
}
switch (clock_id) {
case PLL1:
case PLL2:
/* PLL1/PLL2 are always secure: nothing to do */
break;
case PLL3:
stm32mp_register_secure_periph(STM32MP1_SHRES_PLL3);
break;
case PLL4:
ERROR("PLL4 cannot be secured\n");
panic();
break;
default:
/* Others are expected gateable clock */
parent_id = stm32mp1_clk_get_parent(clock_id);
if (parent_id < 0) {
INFO("No parent found for clock %lu\n", clock_id);
} else {
secure_parent_clocks(parent_id);
}
break;
}
}
#endif /* STM32MP_SHARED_RESOURCES */
void stm32mp1_clk_mcuss_protect(bool enable)
{
uintptr_t rcc_base = stm32mp_rcc_base();
if (enable) {
mmio_setbits_32(rcc_base + RCC_TZCR, RCC_TZCR_MCKPROT);
} else {
mmio_clrbits_32(rcc_base + RCC_TZCR, RCC_TZCR_MCKPROT);
}
}
static void sync_earlyboot_clocks_state(void)
{
unsigned int idx;
const unsigned long secure_enable[] = {
AXIDCG,
BSEC,
DDRC1, DDRC1LP,
DDRC2, DDRC2LP,
DDRCAPB, DDRPHYCAPB, DDRPHYCAPBLP,
DDRPHYC, DDRPHYCLP,
RTCAPB,
TZC1, TZC2,
TZPC,
STGEN_K,
};
for (idx = 0U; idx < ARRAY_SIZE(secure_enable); idx++) {
stm32mp_clk_enable(secure_enable[idx]);
}
}
static const struct clk_ops stm32mp_clk_ops = {
.enable = stm32mp_clk_enable,
.disable = stm32mp_clk_disable,
.is_enabled = stm32mp_clk_is_enabled,
.get_rate = stm32mp_clk_get_rate,
.get_parent = stm32mp1_clk_get_parent,
};
struct stm32_pll_dt_cfg mp15_pll[_PLL_NB];
uint32_t mp15_clksrc[MUX_NB];
uint32_t mp15_clkdiv[DIV_NB];
struct stm32_clk_platdata stm32mp15_clock_pdata = {
.pll = mp15_pll,
.npll = _PLL_NB,
.clksrc = mp15_clksrc,
.nclksrc = MUX_NB,
.clkdiv = mp15_clkdiv,
.nclkdiv = DIV_NB,
};
static struct stm32_clk_priv stm32mp15_clock_data = {
.base = RCC_BASE,
.parents = parent_mp15,
.nb_parents = ARRAY_SIZE(parent_mp15),
.div = dividers_mp15,
.nb_div = ARRAY_SIZE(dividers_mp15),
.pdata = &stm32mp15_clock_pdata,
};
static int stm32_clk_parse_fdt_by_name(void *fdt, int node, const char *name,
uint32_t *tab, uint32_t *nb)
{
const fdt32_t *cell;
int len = 0;
uint32_t i;
cell = fdt_getprop(fdt, node, name, &len);
if (cell == NULL) {
*nb = 0U;
return 0;
}
for (i = 0U; i < ((uint32_t)len / sizeof(uint32_t)); i++) {
tab[i] = fdt32_to_cpu(cell[i]);
}
*nb = (uint32_t)len / sizeof(uint32_t);
return 0;
}
#define RCC_PLL_NAME_SIZE 12
static int clk_stm32_load_vco_config(void *fdt, int subnode, struct stm32_pll_dt_cfg *pll)
{
int err;
err = fdt_read_uint32_array(fdt, subnode, "divmn", (int)PLL_DIV_MN_NB, &pll->cfg[PLLCFG_M]);
if (err != 0) {
return err;
}
err = fdt_read_uint32_array(fdt, subnode, "csg", (int)PLLCSG_NB, pll->csg);
if (err == 0) {
pll->csg_enabled = true;
} else if (err == -FDT_ERR_NOTFOUND) {
pll->csg_enabled = false;
} else {
return err;
}
pll->status = true;
pll->frac = fdt_read_uint32_default(fdt, subnode, "frac", 0);
pll->src = fdt_read_uint32_default(fdt, subnode, "src", UINT32_MAX);
return 0;
}
static int clk_stm32_load_output_config(void *fdt, int subnode, struct stm32_pll_dt_cfg *pll)
{
int err;
err = fdt_read_uint32_array(fdt, subnode, "st,pll_div_pqr", (int)PLL_DIV_PQR_NB,
&pll->cfg[PLLCFG_P]);
if (err != 0) {
return err;
}
pll->cfg[PLLCFG_O] = PQR(1, 1, 1);
return 0;
}
static int clk_stm32_parse_pll_fdt(void *fdt, int subnode, struct stm32_pll_dt_cfg *pll)
{
const fdt32_t *cuint;
int subnode_pll;
int subnode_vco;
int err;
cuint = fdt_getprop(fdt, subnode, "st,pll", NULL);
if (cuint == NULL) {
/* Case of no pll is defined */
return 0;
}
subnode_pll = fdt_node_offset_by_phandle(fdt, fdt32_to_cpu(*cuint));
if (subnode_pll < 0) {
return -FDT_ERR_NOTFOUND;
}
cuint = fdt_getprop(fdt, subnode_pll, "st,pll_vco", NULL);
if (cuint == NULL) {
return -FDT_ERR_NOTFOUND;
}
subnode_vco = fdt_node_offset_by_phandle(fdt, fdt32_to_cpu(*cuint));
if (subnode_vco < 0) {
return -FDT_ERR_NOTFOUND;
}
err = clk_stm32_load_vco_config(fdt, subnode_vco, pll);
if (err != 0) {
return err;
}
err = clk_stm32_load_output_config(fdt, subnode_pll, pll);
if (err != 0) {
return err;
}
return 0;
}
static int stm32_clk_parse_fdt_all_pll(void *fdt, int node, struct stm32_clk_platdata *pdata)
{
size_t i = 0U;
for (i = _PLL1; i < pdata->npll; i++) {
struct stm32_pll_dt_cfg *pll = pdata->pll + i;
char name[RCC_PLL_NAME_SIZE];
int subnode;
int err;
snprintf(name, sizeof(name), "st,pll@%u", i);
subnode = fdt_subnode_offset(fdt, node, name);
if (!fdt_check_node(subnode)) {
continue;
}
err = clk_stm32_parse_pll_fdt(fdt, subnode, pll);
if (err != 0) {
panic();
}
}
return 0;
}
static int stm32_clk_parse_fdt(struct stm32_clk_platdata *pdata)
{
void *fdt = NULL;
int node;
uint32_t err;
if (fdt_get_address(&fdt) == 0) {
return -ENOENT;
}
node = fdt_node_offset_by_compatible(fdt, -1, DT_RCC_CLK_COMPAT);
if (node < 0) {
panic();
}
err = stm32_clk_parse_fdt_all_pll(fdt, node, pdata);
if (err != 0) {
return err;
}
err = stm32_clk_parse_fdt_by_name(fdt, node, "st,clkdiv", pdata->clkdiv, &pdata->nclkdiv);
if (err != 0) {
return err;
}
err = stm32_clk_parse_fdt_by_name(fdt, node, "st,clksrc", pdata->clksrc, &pdata->nclksrc);
if (err != 0) {
return err;
}
return 0;
}
int stm32mp1_clk_probe(void)
{
uintptr_t base = RCC_BASE;
int ret;
#if defined(IMAGE_BL32)
if (!fdt_get_rcc_secure_state()) {
mmio_write_32(stm32mp_rcc_base() + RCC_TZCR, 0U);
}
#endif
stm32mp1_osc_init();
ret = stm32_clk_parse_fdt(&stm32mp15_clock_pdata);
if (ret != 0) {
return ret;
}
ret = clk_stm32_init(&stm32mp15_clock_data, base);
if (ret != 0) {
return ret;
}
sync_earlyboot_clocks_state();
clk_register(&stm32mp_clk_ops);
return 0;
}