| /* |
| * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved. |
| * |
| * SPDX-License-Identifier: BSD-3-Clause |
| */ |
| |
| #include <arch.h> |
| #include <arch_helpers.h> |
| #include <assert.h> |
| #include <bl_common.h> |
| #include <context.h> |
| #include <context_mgmt.h> |
| #include <errata_report.h> |
| #include <platform.h> |
| #include <stddef.h> |
| #include "psci_private.h" |
| |
| /******************************************************************************* |
| * Per cpu non-secure contexts used to program the architectural state prior |
| * return to the normal world. |
| * TODO: Use the memory allocator to set aside memory for the contexts instead |
| * of relying on platform defined constants. |
| ******************************************************************************/ |
| static cpu_context_t psci_ns_context[PLATFORM_CORE_COUNT]; |
| |
| /****************************************************************************** |
| * Define the psci capability variable. |
| *****************************************************************************/ |
| unsigned int psci_caps; |
| |
| /******************************************************************************* |
| * Function which initializes the 'psci_non_cpu_pd_nodes' or the |
| * 'psci_cpu_pd_nodes' corresponding to the power level. |
| ******************************************************************************/ |
| static void psci_init_pwr_domain_node(unsigned int node_idx, |
| unsigned int parent_idx, |
| unsigned int level) |
| { |
| if (level > PSCI_CPU_PWR_LVL) { |
| psci_non_cpu_pd_nodes[node_idx].level = level; |
| psci_lock_init(psci_non_cpu_pd_nodes, node_idx); |
| psci_non_cpu_pd_nodes[node_idx].parent_node = parent_idx; |
| psci_non_cpu_pd_nodes[node_idx].local_state = |
| PLAT_MAX_OFF_STATE; |
| } else { |
| psci_cpu_data_t *svc_cpu_data; |
| |
| psci_cpu_pd_nodes[node_idx].parent_node = parent_idx; |
| |
| /* Initialize with an invalid mpidr */ |
| psci_cpu_pd_nodes[node_idx].mpidr = PSCI_INVALID_MPIDR; |
| |
| svc_cpu_data = |
| &(_cpu_data_by_index(node_idx)->psci_svc_cpu_data); |
| |
| /* Set the Affinity Info for the cores as OFF */ |
| svc_cpu_data->aff_info_state = AFF_STATE_OFF; |
| |
| /* Invalidate the suspend level for the cpu */ |
| svc_cpu_data->target_pwrlvl = PSCI_INVALID_PWR_LVL; |
| |
| /* Set the power state to OFF state */ |
| svc_cpu_data->local_state = PLAT_MAX_OFF_STATE; |
| |
| psci_flush_dcache_range((uintptr_t)svc_cpu_data, |
| sizeof(*svc_cpu_data)); |
| |
| cm_set_context_by_index(node_idx, |
| (void *) &psci_ns_context[node_idx], |
| NON_SECURE); |
| } |
| } |
| |
| /******************************************************************************* |
| * This functions updates cpu_start_idx and ncpus field for each of the node in |
| * psci_non_cpu_pd_nodes[]. It does so by comparing the parent nodes of each of |
| * the CPUs and check whether they match with the parent of the previous |
| * CPU. The basic assumption for this work is that children of the same parent |
| * are allocated adjacent indices. The platform should ensure this though proper |
| * mapping of the CPUs to indices via plat_core_pos_by_mpidr() and |
| * plat_my_core_pos() APIs. |
| *******************************************************************************/ |
| static void psci_update_pwrlvl_limits(void) |
| { |
| int j; |
| unsigned int nodes_idx[PLAT_MAX_PWR_LVL] = {0}; |
| unsigned int temp_index[PLAT_MAX_PWR_LVL], cpu_idx; |
| |
| for (cpu_idx = 0; cpu_idx < PLATFORM_CORE_COUNT; cpu_idx++) { |
| psci_get_parent_pwr_domain_nodes(cpu_idx, |
| PLAT_MAX_PWR_LVL, |
| temp_index); |
| for (j = PLAT_MAX_PWR_LVL - 1; j >= 0; j--) { |
| if (temp_index[j] != nodes_idx[j]) { |
| nodes_idx[j] = temp_index[j]; |
| psci_non_cpu_pd_nodes[nodes_idx[j]].cpu_start_idx |
| = cpu_idx; |
| } |
| psci_non_cpu_pd_nodes[nodes_idx[j]].ncpus++; |
| } |
| } |
| } |
| |
| /******************************************************************************* |
| * Core routine to populate the power domain tree. The tree descriptor passed by |
| * the platform is populated breadth-first and the first entry in the map |
| * informs the number of root power domains. The parent nodes of the root nodes |
| * will point to an invalid entry(-1). |
| ******************************************************************************/ |
| static void populate_power_domain_tree(const unsigned char *topology) |
| { |
| unsigned int i, j = 0, num_nodes_at_lvl = 1, num_nodes_at_next_lvl; |
| unsigned int node_index = 0, parent_node_index = 0, num_children; |
| int level = PLAT_MAX_PWR_LVL; |
| |
| /* |
| * For each level the inputs are: |
| * - number of nodes at this level in plat_array i.e. num_nodes_at_level |
| * This is the sum of values of nodes at the parent level. |
| * - Index of first entry at this level in the plat_array i.e. |
| * parent_node_index. |
| * - Index of first free entry in psci_non_cpu_pd_nodes[] or |
| * psci_cpu_pd_nodes[] i.e. node_index depending upon the level. |
| */ |
| while (level >= PSCI_CPU_PWR_LVL) { |
| num_nodes_at_next_lvl = 0; |
| /* |
| * For each entry (parent node) at this level in the plat_array: |
| * - Find the number of children |
| * - Allocate a node in a power domain array for each child |
| * - Set the parent of the child to the parent_node_index - 1 |
| * - Increment parent_node_index to point to the next parent |
| * - Accumulate the number of children at next level. |
| */ |
| for (i = 0; i < num_nodes_at_lvl; i++) { |
| assert(parent_node_index <= |
| PSCI_NUM_NON_CPU_PWR_DOMAINS); |
| num_children = topology[parent_node_index]; |
| |
| for (j = node_index; |
| j < node_index + num_children; j++) |
| psci_init_pwr_domain_node(j, |
| parent_node_index - 1, |
| level); |
| |
| node_index = j; |
| num_nodes_at_next_lvl += num_children; |
| parent_node_index++; |
| } |
| |
| num_nodes_at_lvl = num_nodes_at_next_lvl; |
| level--; |
| |
| /* Reset the index for the cpu power domain array */ |
| if (level == PSCI_CPU_PWR_LVL) |
| node_index = 0; |
| } |
| |
| /* Validate the sanity of array exported by the platform */ |
| assert(j == PLATFORM_CORE_COUNT); |
| } |
| |
| /******************************************************************************* |
| * This function does the architectural setup and takes the warm boot |
| * entry-point `mailbox_ep` as an argument. The function also initializes the |
| * power domain topology tree by querying the platform. The power domain nodes |
| * higher than the CPU are populated in the array psci_non_cpu_pd_nodes[] and |
| * the CPU power domains are populated in psci_cpu_pd_nodes[]. The platform |
| * exports its static topology map through the |
| * populate_power_domain_topology_tree() API. The algorithm populates the |
| * psci_non_cpu_pd_nodes and psci_cpu_pd_nodes iteratively by using this |
| * topology map. On a platform that implements two clusters of 2 cpus each, |
| * and supporting 3 domain levels, the populated psci_non_cpu_pd_nodes would |
| * look like this: |
| * |
| * --------------------------------------------------- |
| * | system node | cluster 0 node | cluster 1 node | |
| * --------------------------------------------------- |
| * |
| * And populated psci_cpu_pd_nodes would look like this : |
| * <- cpus cluster0 -><- cpus cluster1 -> |
| * ------------------------------------------------ |
| * | CPU 0 | CPU 1 | CPU 2 | CPU 3 | |
| * ------------------------------------------------ |
| ******************************************************************************/ |
| int psci_setup(const psci_lib_args_t *lib_args) |
| { |
| const unsigned char *topology_tree; |
| |
| assert(VERIFY_PSCI_LIB_ARGS_V1(lib_args)); |
| |
| /* Do the Architectural initialization */ |
| psci_arch_setup(); |
| |
| /* Query the topology map from the platform */ |
| topology_tree = plat_get_power_domain_tree_desc(); |
| |
| /* Populate the power domain arrays using the platform topology map */ |
| populate_power_domain_tree(topology_tree); |
| |
| /* Update the CPU limits for each node in psci_non_cpu_pd_nodes */ |
| psci_update_pwrlvl_limits(); |
| |
| /* Populate the mpidr field of cpu node for this CPU */ |
| psci_cpu_pd_nodes[plat_my_core_pos()].mpidr = |
| read_mpidr() & MPIDR_AFFINITY_MASK; |
| |
| psci_init_req_local_pwr_states(); |
| |
| /* |
| * Set the requested and target state of this CPU and all the higher |
| * power domain levels for this CPU to run. |
| */ |
| psci_set_pwr_domains_to_run(PLAT_MAX_PWR_LVL); |
| |
| plat_setup_psci_ops((uintptr_t)lib_args->mailbox_ep, &psci_plat_pm_ops); |
| assert(psci_plat_pm_ops); |
| |
| /* |
| * Flush `psci_plat_pm_ops` as it will be accessed by secondary CPUs |
| * during warm boot, possibly before data cache is enabled. |
| */ |
| psci_flush_dcache_range((uintptr_t)&psci_plat_pm_ops, |
| sizeof(psci_plat_pm_ops)); |
| |
| /* Initialize the psci capability */ |
| psci_caps = PSCI_GENERIC_CAP; |
| |
| if (psci_plat_pm_ops->pwr_domain_off) |
| psci_caps |= define_psci_cap(PSCI_CPU_OFF); |
| if (psci_plat_pm_ops->pwr_domain_on && |
| psci_plat_pm_ops->pwr_domain_on_finish) |
| psci_caps |= define_psci_cap(PSCI_CPU_ON_AARCH64); |
| if (psci_plat_pm_ops->pwr_domain_suspend && |
| psci_plat_pm_ops->pwr_domain_suspend_finish) { |
| psci_caps |= define_psci_cap(PSCI_CPU_SUSPEND_AARCH64); |
| if (psci_plat_pm_ops->get_sys_suspend_power_state) |
| psci_caps |= define_psci_cap(PSCI_SYSTEM_SUSPEND_AARCH64); |
| } |
| if (psci_plat_pm_ops->system_off) |
| psci_caps |= define_psci_cap(PSCI_SYSTEM_OFF); |
| if (psci_plat_pm_ops->system_reset) |
| psci_caps |= define_psci_cap(PSCI_SYSTEM_RESET); |
| if (psci_plat_pm_ops->get_node_hw_state) |
| psci_caps |= define_psci_cap(PSCI_NODE_HW_STATE_AARCH64); |
| if (psci_plat_pm_ops->read_mem_protect && |
| psci_plat_pm_ops->write_mem_protect) |
| psci_caps |= define_psci_cap(PSCI_MEM_PROTECT); |
| if (psci_plat_pm_ops->mem_protect_chk) |
| psci_caps |= define_psci_cap(PSCI_MEM_CHK_RANGE_AARCH64); |
| |
| #if ENABLE_PSCI_STAT |
| psci_caps |= define_psci_cap(PSCI_STAT_RESIDENCY_AARCH64); |
| psci_caps |= define_psci_cap(PSCI_STAT_COUNT_AARCH64); |
| #endif |
| |
| return 0; |
| } |
| |
| /******************************************************************************* |
| * This duplicates what the primary cpu did after a cold boot in BL1. The same |
| * needs to be done when a cpu is hotplugged in. This function could also over- |
| * ride any EL3 setup done by BL1 as this code resides in rw memory. |
| ******************************************************************************/ |
| void psci_arch_setup(void) |
| { |
| /* Program the counter frequency */ |
| write_cntfrq_el0(plat_get_syscnt_freq2()); |
| |
| /* Initialize the cpu_ops pointer. */ |
| init_cpu_ops(); |
| |
| /* Having initialized cpu_ops, we can now print errata status */ |
| print_errata_status(); |
| } |
| |
| /****************************************************************************** |
| * PSCI Library interface to initialize the cpu context for the next non |
| * secure image during cold boot. The relevant registers in the cpu context |
| * need to be retrieved and programmed on return from this interface. |
| *****************************************************************************/ |
| void psci_prepare_next_non_secure_ctx(entry_point_info_t *next_image_info) |
| { |
| assert(GET_SECURITY_STATE(next_image_info->h.attr) == NON_SECURE); |
| cm_init_my_context(next_image_info); |
| cm_prepare_el3_exit(NON_SECURE); |
| } |