| /* |
| * Copyright 2018-2021 NXP |
| * |
| * SPDX-License-Identifier: BSD-3-Clause |
| */ |
| |
| #include <endian.h> |
| |
| #include <arch.h> |
| #include <caam.h> |
| #include <cassert.h> |
| #include <cci.h> |
| #include <common/debug.h> |
| #include <dcfg.h> |
| #include <i2c.h> |
| #include <lib/xlat_tables/xlat_tables_v2.h> |
| #include <ls_interconnect.h> |
| #include <mmio.h> |
| #ifdef POLICY_FUSE_PROVISION |
| #include <nxp_gpio.h> |
| #endif |
| #if TRUSTED_BOARD_BOOT |
| #include <nxp_smmu.h> |
| #endif |
| #include <nxp_timer.h> |
| #include <plat_console.h> |
| #include <plat_gic.h> |
| #include <plat_tzc400.h> |
| #include <pmu.h> |
| #include <scfg.h> |
| #if defined(NXP_SFP_ENABLED) |
| #include <sfp.h> |
| #endif |
| |
| #include <errata.h> |
| #ifdef CONFIG_OCRAM_ECC_EN |
| #include <ocram.h> |
| #endif |
| #include "plat_common.h" |
| #include "platform_def.h" |
| #include "soc.h" |
| |
| static dcfg_init_info_t dcfg_init_data = { |
| .g_nxp_dcfg_addr = NXP_DCFG_ADDR, |
| .nxp_sysclk_freq = NXP_SYSCLK_FREQ, |
| .nxp_ddrclk_freq = NXP_DDRCLK_FREQ, |
| .nxp_plat_clk_divider = NXP_PLATFORM_CLK_DIVIDER, |
| }; |
| |
| static struct soc_type soc_list[] = { |
| SOC_ENTRY(LS1017AN, LS1017AN, 1, 1), |
| SOC_ENTRY(LS1017AE, LS1017AE, 1, 1), |
| SOC_ENTRY(LS1018AN, LS1018AN, 1, 1), |
| SOC_ENTRY(LS1018AE, LS1018AE, 1, 1), |
| SOC_ENTRY(LS1027AN, LS1027AN, 1, 2), |
| SOC_ENTRY(LS1027AE, LS1027AE, 1, 2), |
| SOC_ENTRY(LS1028AN, LS1028AN, 1, 2), |
| SOC_ENTRY(LS1028AE, LS1028AE, 1, 2), |
| }; |
| |
| CASSERT(NUMBER_OF_CLUSTERS && NUMBER_OF_CLUSTERS <= 256, |
| assert_invalid_ls1028a_cluster_count); |
| |
| /* |
| * Function returns the base counter frequency |
| * after reading the first entry at CNTFID0 (0x20 offset). |
| * |
| * Function is used by: |
| * 1. ARM common code for PSCI management. |
| * 2. ARM Generic Timer init. |
| * |
| */ |
| unsigned int plat_get_syscnt_freq2(void) |
| { |
| unsigned int counter_base_frequency; |
| /* |
| * Below register specifies the base frequency of the system counter. |
| * As per NXP Board Manuals: |
| * The system counter always works with SYS_REF_CLK/4 frequency clock. |
| */ |
| counter_base_frequency = mmio_read_32(NXP_TIMER_ADDR + CNTFID_OFF); |
| |
| return counter_base_frequency; |
| } |
| |
| #ifdef IMAGE_BL2 |
| |
| #ifdef POLICY_FUSE_PROVISION |
| static gpio_init_info_t gpio_init_data = { |
| .gpio1_base_addr = NXP_GPIO1_ADDR, |
| .gpio2_base_addr = NXP_GPIO2_ADDR, |
| .gpio3_base_addr = NXP_GPIO3_ADDR, |
| }; |
| #endif |
| |
| void soc_preload_setup(void) |
| { |
| } |
| |
| void soc_early_init(void) |
| { |
| uint8_t num_clusters, cores_per_cluster; |
| |
| #ifdef CONFIG_OCRAM_ECC_EN |
| ocram_init(NXP_OCRAM_ADDR, NXP_OCRAM_SIZE); |
| #endif |
| dcfg_init(&dcfg_init_data); |
| enable_timer_base_to_cluster(NXP_PMU_ADDR); |
| enable_core_tb(NXP_PMU_ADDR); |
| dram_regions_info_t *dram_regions_info = get_dram_regions_info(); |
| |
| #ifdef POLICY_FUSE_PROVISION |
| gpio_init(&gpio_init_data); |
| sec_init(NXP_CAAM_ADDR); |
| #endif |
| |
| #if LOG_LEVEL > 0 |
| /* Initialize the console to provide early debug support */ |
| plat_console_init(NXP_CONSOLE_ADDR, |
| NXP_UART_CLK_DIVIDER, NXP_CONSOLE_BAUDRATE); |
| #endif |
| enum boot_device dev = get_boot_dev(); |
| /* |
| * Mark the buffer for SD in OCRAM as non secure. |
| * The buffer is assumed to be at end of OCRAM for |
| * the logic below to calculate TZPC programming |
| */ |
| if (dev == BOOT_DEVICE_EMMC || dev == BOOT_DEVICE_SDHC2_EMMC) { |
| /* |
| * Calculate the region in OCRAM which is secure |
| * The buffer for SD needs to be marked non-secure |
| * to allow SD to do DMA operations on it |
| */ |
| uint32_t secure_region = (NXP_OCRAM_SIZE - NXP_SD_BLOCK_BUF_SIZE); |
| uint32_t mask = secure_region/TZPC_BLOCK_SIZE; |
| |
| mmio_write_32(NXP_OCRAM_TZPC_ADDR, mask); |
| |
| /* Add the entry for buffer in MMU Table */ |
| mmap_add_region(NXP_SD_BLOCK_BUF_ADDR, NXP_SD_BLOCK_BUF_ADDR, |
| NXP_SD_BLOCK_BUF_SIZE, MT_DEVICE | MT_RW | MT_NS); |
| } |
| |
| #if TRUSTED_BOARD_BOOT |
| uint32_t mode; |
| |
| sfp_init(NXP_SFP_ADDR); |
| |
| /* |
| * For secure boot disable SMMU. |
| * Later when platform security policy comes in picture, |
| * this might get modified based on the policy |
| */ |
| if (check_boot_mode_secure(&mode) == true) { |
| bypass_smmu(NXP_SMMU_ADDR); |
| } |
| |
| /* |
| * For Mbedtls currently crypto is not supported via CAAM |
| * enable it when that support is there. In tbbr.mk |
| * the CAAM_INTEG is set as 0. |
| */ |
| #ifndef MBEDTLS_X509 |
| /* Initialize the crypto accelerator if enabled */ |
| if (is_sec_enabled()) { |
| sec_init(NXP_CAAM_ADDR); |
| } else { |
| INFO("SEC is disabled.\n"); |
| } |
| #endif |
| #endif |
| |
| /* Set eDDRTQ for DDR performance */ |
| scfg_setbits32((void *)(NXP_SCFG_ADDR + 0x210), 0x1f1f1f1f); |
| |
| soc_errata(); |
| |
| /* |
| * Initialize Interconnect for this cluster during cold boot. |
| * No need for locks as no other CPU is active. |
| */ |
| cci_init(NXP_CCI_ADDR, cci_map, ARRAY_SIZE(cci_map)); |
| |
| /* |
| * Enable Interconnect coherency for the primary CPU's cluster. |
| */ |
| get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster); |
| plat_ls_interconnect_enter_coherency(num_clusters); |
| |
| delay_timer_init(NXP_TIMER_ADDR); |
| i2c_init(NXP_I2C_ADDR); |
| dram_regions_info->total_dram_size = init_ddr(); |
| } |
| |
| void soc_bl2_prepare_exit(void) |
| { |
| #if defined(NXP_SFP_ENABLED) && defined(DISABLE_FUSE_WRITE) |
| set_sfp_wr_disable(); |
| #endif |
| } |
| |
| /* |
| * This function returns the boot device based on RCW_SRC |
| */ |
| enum boot_device get_boot_dev(void) |
| { |
| enum boot_device src = BOOT_DEVICE_NONE; |
| uint32_t porsr1; |
| uint32_t rcw_src; |
| |
| porsr1 = read_reg_porsr1(); |
| |
| rcw_src = (porsr1 & PORSR1_RCW_MASK) >> PORSR1_RCW_SHIFT; |
| switch (rcw_src) { |
| case FLEXSPI_NOR: |
| src = BOOT_DEVICE_FLEXSPI_NOR; |
| INFO("RCW BOOT SRC is FLEXSPI NOR\n"); |
| break; |
| case FLEXSPI_NAND2K_VAL: |
| case FLEXSPI_NAND4K_VAL: |
| INFO("RCW BOOT SRC is FLEXSPI NAND\n"); |
| src = BOOT_DEVICE_FLEXSPI_NAND; |
| break; |
| case SDHC1_VAL: |
| src = BOOT_DEVICE_EMMC; |
| INFO("RCW BOOT SRC is SD\n"); |
| break; |
| case SDHC2_VAL: |
| src = BOOT_DEVICE_SDHC2_EMMC; |
| INFO("RCW BOOT SRC is EMMC\n"); |
| break; |
| default: |
| break; |
| } |
| |
| return src; |
| } |
| |
| /* |
| * This function sets up access permissions on memory regions |
| ****************************************************************************/ |
| void soc_mem_access(void) |
| { |
| dram_regions_info_t *info_dram_regions = get_dram_regions_info(); |
| struct tzc400_reg tzc400_reg_list[MAX_NUM_TZC_REGION]; |
| int dram_idx = 0; |
| /* index 0 is reserved for region-0 */ |
| int index = 1; |
| |
| for (dram_idx = 0; dram_idx < info_dram_regions->num_dram_regions; |
| dram_idx++) { |
| if (info_dram_regions->region[dram_idx].size == 0) { |
| ERROR("DDR init failure, or"); |
| ERROR("DRAM regions not populated correctly.\n"); |
| break; |
| } |
| |
| index = populate_tzc400_reg_list(tzc400_reg_list, |
| dram_idx, index, |
| info_dram_regions->region[dram_idx].addr, |
| info_dram_regions->region[dram_idx].size, |
| NXP_SECURE_DRAM_SIZE, NXP_SP_SHRD_DRAM_SIZE); |
| } |
| |
| mem_access_setup(NXP_TZC_ADDR, index, tzc400_reg_list); |
| } |
| |
| #else |
| |
| static unsigned char _power_domain_tree_desc[NUMBER_OF_CLUSTERS + 2]; |
| /* |
| * This function dynamically constructs the topology according to |
| * SoC Flavor and returns it. |
| */ |
| const unsigned char *plat_get_power_domain_tree_desc(void) |
| { |
| uint8_t num_clusters, cores_per_cluster; |
| unsigned int i; |
| |
| get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster); |
| /* |
| * The highest level is the system level. The next level is constituted |
| * by clusters and then cores in clusters. |
| */ |
| _power_domain_tree_desc[0] = 1; |
| _power_domain_tree_desc[1] = num_clusters; |
| |
| for (i = 0; i < _power_domain_tree_desc[1]; i++) |
| _power_domain_tree_desc[i + 2] = cores_per_cluster; |
| |
| return _power_domain_tree_desc; |
| } |
| |
| /* |
| * This function returns the core count within the cluster corresponding to |
| * `mpidr`. |
| */ |
| unsigned int plat_ls_get_cluster_core_count(u_register_t mpidr) |
| { |
| uint8_t num_clusters, cores_per_cluster; |
| |
| get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster); |
| return num_clusters; |
| } |
| |
| void soc_early_platform_setup2(void) |
| { |
| dcfg_init(&dcfg_init_data); |
| /* Initialize system level generic timer for Socs */ |
| delay_timer_init(NXP_TIMER_ADDR); |
| |
| #if LOG_LEVEL > 0 |
| /* Initialize the console to provide early debug support */ |
| plat_console_init(NXP_CONSOLE_ADDR, |
| NXP_UART_CLK_DIVIDER, NXP_CONSOLE_BAUDRATE); |
| #endif |
| } |
| |
| void soc_platform_setup(void) |
| { |
| /* Initialize the GIC driver, cpu and distributor interfaces */ |
| static uintptr_t target_mask_array[PLATFORM_CORE_COUNT]; |
| static interrupt_prop_t ls_interrupt_props[] = { |
| PLAT_LS_G1S_IRQ_PROPS(INTR_GROUP1S), |
| PLAT_LS_G0_IRQ_PROPS(INTR_GROUP0) |
| }; |
| |
| plat_ls_gic_driver_init(NXP_GICD_ADDR, NXP_GICR_ADDR, |
| PLATFORM_CORE_COUNT, |
| ls_interrupt_props, |
| ARRAY_SIZE(ls_interrupt_props), |
| target_mask_array, |
| plat_core_pos); |
| |
| plat_ls_gic_init(); |
| enable_init_timer(); |
| } |
| |
| /* This function initializes the soc from the BL31 module */ |
| void soc_init(void) |
| { |
| uint8_t num_clusters, cores_per_cluster; |
| |
| get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster); |
| |
| /* Low-level init of the soc */ |
| soc_init_lowlevel(); |
| _init_global_data(); |
| soc_init_percpu(); |
| _initialize_psci(); |
| |
| /* |
| * Initialize Interconnect for this cluster during cold boot. |
| * No need for locks as no other CPU is active. |
| */ |
| cci_init(NXP_CCI_ADDR, cci_map, ARRAY_SIZE(cci_map)); |
| |
| /* Enable Interconnect coherency for the primary CPU's cluster. */ |
| plat_ls_interconnect_enter_coherency(num_clusters); |
| |
| /* Set platform security policies */ |
| _set_platform_security(); |
| |
| /* Init SEC Engine which will be used by SiP */ |
| if (is_sec_enabled()) { |
| sec_init(NXP_CAAM_ADDR); |
| } else { |
| INFO("SEC is disabled.\n"); |
| } |
| } |
| |
| #ifdef NXP_WDOG_RESTART |
| static uint64_t wdog_interrupt_handler(uint32_t id, uint32_t flags, |
| void *handle, void *cookie) |
| { |
| uint8_t data = WDOG_RESET_FLAG; |
| |
| wr_nv_app_data(WDT_RESET_FLAG_OFFSET, |
| (uint8_t *)&data, sizeof(data)); |
| |
| mmio_write_32(NXP_RST_ADDR + RSTCNTL_OFFSET, SW_RST_REQ_INIT); |
| |
| return 0; |
| } |
| #endif |
| |
| void soc_runtime_setup(void) |
| { |
| #ifdef NXP_WDOG_RESTART |
| request_intr_type_el3(BL31_NS_WDOG_WS1, wdog_interrupt_handler); |
| #endif |
| } |
| |
| /* This function returns the total number of cores in the SoC. */ |
| unsigned int get_tot_num_cores(void) |
| { |
| uint8_t num_clusters, cores_per_cluster; |
| |
| get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster); |
| return (num_clusters * cores_per_cluster); |
| } |
| |
| /* This function returns the PMU IDLE Cluster mask. */ |
| unsigned int get_pmu_idle_cluster_mask(void) |
| { |
| uint8_t num_clusters, cores_per_cluster; |
| |
| get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster); |
| return ((1 << num_clusters) - 2); |
| } |
| |
| /* This function returns the PMU Flush Cluster mask. */ |
| unsigned int get_pmu_flush_cluster_mask(void) |
| { |
| uint8_t num_clusters, cores_per_cluster; |
| |
| get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster); |
| return ((1 << num_clusters) - 2); |
| } |
| |
| /* This function returns the PMU idle core mask. */ |
| unsigned int get_pmu_idle_core_mask(void) |
| { |
| return ((1 << get_tot_num_cores()) - 2); |
| } |
| |
| /* Function to return the SoC SYS CLK */ |
| unsigned int get_sys_clk(void) |
| { |
| return NXP_SYSCLK_FREQ; |
| } |
| #endif |