| // SPDX-License-Identifier: BSD-3-Clause |
| /* |
| * NXP FlexSpi Controller Driver. |
| * Copyright 2021 NXP |
| * |
| */ |
| #include <endian.h> |
| #include <stdint.h> |
| #include <stdio.h> |
| #include <string.h> |
| |
| #include <common/debug.h> |
| #include <flash_info.h> |
| #include "fspi.h" |
| #include <fspi_api.h> |
| #include <xspi_error_codes.h> |
| |
| #ifdef DEBUG_FLEXSPI |
| #define PR printf("In [%s][%d]\n", __func__, __LINE__) |
| #define PRA(a, b) printf("In [%s][%d] %s="a"\n", __func__, __LINE__, #b, b) |
| #else |
| #define PR |
| #define PRA(a, b) |
| #endif |
| |
| /* |
| * This errata is valid for all NXP SoC. |
| */ |
| #define ERRATA_FLASH_A050272 1 |
| |
| static uintptr_t fspi_base_reg_addr; |
| static uintptr_t fspi_flash_base_addr; |
| |
| static void fspi_RDSR(uint32_t *, const void *, uint32_t); |
| |
| static void fspi_writel(uint32_t x_addr, uint32_t x_val) |
| { |
| fspi_out32((uint32_t *)(fspi_base_reg_addr + x_addr), |
| (uint32_t) x_val); |
| } |
| |
| static uint32_t fspi_readl(uint32_t x_addr) |
| { |
| return fspi_in32((uint32_t *)(fspi_base_reg_addr + x_addr)); |
| } |
| |
| static void fspi_MDIS(uint8_t x_disable) |
| { |
| uint32_t ui_reg; |
| |
| ui_reg = fspi_readl(FSPI_MCR0); |
| if (x_disable != 0U) { |
| ui_reg |= FSPI_MCR0_MDIS; |
| } else { |
| ui_reg &= (uint32_t) (~FSPI_MCR0_MDIS); |
| } |
| |
| fspi_writel(FSPI_MCR0, ui_reg); |
| } |
| |
| static void fspi_lock_LUT(void) |
| { |
| fspi_writel(FSPI_LUTKEY, FSPI_LUTKEY_VALUE); |
| VERBOSE("%s 0x%x\n", __func__, fspi_readl(FSPI_LCKCR)); |
| fspi_writel(FSPI_LCKCR, FSPI_LCKER_LOCK); |
| VERBOSE("%s 0x%x\n", __func__, fspi_readl(FSPI_LCKCR)); |
| } |
| |
| static void fspi_unlock_LUT(void) |
| { |
| fspi_writel(FSPI_LUTKEY, FSPI_LUTKEY_VALUE); |
| VERBOSE("%s 0x%x\n", __func__, fspi_readl(FSPI_LCKCR)); |
| fspi_writel(FSPI_LCKCR, FSPI_LCKER_UNLOCK); |
| VERBOSE("%s 0x%x\n", __func__, fspi_readl(FSPI_LCKCR)); |
| } |
| |
| static void fspi_op_setup(uint32_t fspi_op_seq_id, bool ignore_flash_sz) |
| { |
| uint32_t x_addr, x_instr0 = 0, x_instr1 = 0, x_instr2 = 0; |
| uint32_t cmd_id1, cmd_id2; |
| |
| VERBOSE("In func %s\n", __func__); |
| |
| switch (fspi_op_seq_id) { |
| case FSPI_READ_SEQ_ID: |
| cmd_id1 = FSPI_NOR_CMD_READ; |
| cmd_id2 = FSPI_NOR_CMD_READ_4B; |
| x_instr2 = FSPI_INSTR_OPRND0(0) | FSPI_INSTR_PAD0(FSPI_LUT_PAD1) |
| | FSPI_INSTR_OPCODE0(FSPI_LUT_READ); |
| break; |
| case FSPI_FASTREAD_SEQ_ID: |
| cmd_id1 = FSPI_NOR_CMD_FASTREAD; |
| cmd_id2 = FSPI_NOR_CMD_FASTREAD_4B; |
| x_instr2 = FSPI_INSTR_OPRND0(8) | FSPI_INSTR_PAD0(FSPI_LUT_PAD1) |
| | FSPI_INSTR_OPCODE0(FSPI_DUMMY_SDR) |
| | FSPI_INSTR_OPRND1(0) |
| | FSPI_INSTR_PAD1(FSPI_LUT_PAD1) |
| | FSPI_INSTR_OPCODE1(FSPI_LUT_READ); |
| break; |
| case FSPI_WRITE_SEQ_ID: |
| cmd_id1 = FSPI_NOR_CMD_PP; |
| cmd_id2 = FSPI_NOR_CMD_PP_4B; |
| x_instr2 = FSPI_INSTR_OPRND0(0) | FSPI_INSTR_PAD0(FSPI_LUT_PAD1) |
| | FSPI_INSTR_OPCODE0(FSPI_LUT_WRITE); |
| break; |
| case FSPI_WREN_SEQ_ID: |
| cmd_id1 = FSPI_NOR_CMD_WREN; |
| cmd_id2 = FSPI_NOR_CMD_WREN; |
| break; |
| case FSPI_SE_SEQ_ID: |
| cmd_id1 = FSPI_NOR_CMD_SE_64K; |
| cmd_id2 = FSPI_NOR_CMD_SE_64K_4B; |
| break; |
| case FSPI_4K_SEQ_ID: |
| cmd_id1 = FSPI_NOR_CMD_SE_4K; |
| cmd_id2 = FSPI_NOR_CMD_SE_4K_4B; |
| break; |
| case FSPI_BE_SEQ_ID: |
| cmd_id1 = FSPI_NOR_CMD_BE; |
| cmd_id2 = FSPI_NOR_CMD_BE; |
| break; |
| case FSPI_RDSR_SEQ_ID: |
| cmd_id1 = FSPI_NOR_CMD_RDSR; |
| cmd_id2 = FSPI_NOR_CMD_RDSR; |
| break; |
| } |
| |
| x_addr = FSPI_LUTREG_OFFSET + (uint32_t)(0x10 * fspi_op_seq_id); |
| if ((F_FLASH_SIZE_BYTES <= SZ_16M_BYTES) || (ignore_flash_sz)) { |
| x_instr0 = FSPI_INSTR_OPRND0(cmd_id1); |
| x_instr1 = FSPI_INSTR_OPRND1(FSPI_LUT_ADDR24BIT); |
| VERBOSE("CMD_ID = %x offset = 0x%x\n", cmd_id1, x_addr); |
| } else { |
| x_instr0 = FSPI_INSTR_OPRND0(cmd_id2); |
| x_instr1 = FSPI_INSTR_OPRND1(FSPI_LUT_ADDR32BIT); |
| VERBOSE("CMD_ID = %x offset = 0x%x\n", cmd_id2, x_addr); |
| } |
| x_instr0 |= FSPI_INSTR_PAD0(FSPI_LUT_PAD1) |
| | FSPI_INSTR_OPCODE0(FSPI_LUT_CMD); |
| |
| x_instr1 |= FSPI_INSTR_PAD1(FSPI_LUT_PAD1) |
| | FSPI_INSTR_OPCODE1(FSPI_LUT_ADDR); |
| |
| if (fspi_op_seq_id == FSPI_RDSR_SEQ_ID) { |
| x_instr0 |= FSPI_INSTR_OPRND1(1) | FSPI_INSTR_PAD1(FSPI_LUT_PAD1) |
| | FSPI_INSTR_OPCODE1(FSPI_LUT_READ); |
| } else if ((fspi_op_seq_id != FSPI_BE_SEQ_ID) |
| && (fspi_op_seq_id != FSPI_WREN_SEQ_ID)) { |
| x_instr0 |= x_instr1; |
| } |
| |
| fspi_writel((x_addr), x_instr0); |
| fspi_writel((x_addr + U(0x4)), x_instr2); |
| fspi_writel((x_addr + U(0x8)), (uint32_t) 0x0); /* STOP command */ |
| fspi_writel((x_addr + U(0xc)), (uint32_t) 0x0); /* STOP command */ |
| } |
| |
| static void fspi_setup_LUT(void) |
| { |
| VERBOSE("In func %s\n", __func__); |
| fspi_unlock_LUT(); |
| |
| /* LUT Setup for READ Command 3-Byte low Frequency */ |
| fspi_op_setup(FSPI_READ_SEQ_ID, false); |
| |
| /* LUT Setup for FAST READ Command 3-Byte/4-Byte high Frequency */ |
| fspi_op_setup(FSPI_FASTREAD_SEQ_ID, false); |
| |
| /* LUT Setup for Page Program */ |
| fspi_op_setup(FSPI_WRITE_SEQ_ID, false); |
| |
| /* LUT Setup for WREN */ |
| fspi_op_setup(FSPI_WREN_SEQ_ID, true); |
| |
| /* LUT Setup for Sector_Erase */ |
| fspi_op_setup(FSPI_SE_SEQ_ID, false); |
| |
| /* LUT Setup for Sub Sector 4K Erase */ |
| fspi_op_setup(FSPI_4K_SEQ_ID, false); |
| |
| /* LUT Setup for Bulk_Erase */ |
| fspi_op_setup(FSPI_BE_SEQ_ID, true); |
| |
| /* Read Status */ |
| fspi_op_setup(FSPI_RDSR_SEQ_ID, true); |
| |
| fspi_lock_LUT(); |
| } |
| |
| static inline void fspi_ahb_invalidate(void) |
| { |
| uint32_t reg; |
| |
| VERBOSE("In func %s %d\n", __func__, __LINE__); |
| reg = fspi_readl(FSPI_MCR0); |
| reg |= FSPI_MCR0_SWRST; |
| fspi_writel(FSPI_MCR0, reg); |
| while ((fspi_readl(FSPI_MCR0) & FSPI_MCR0_SWRST) != 0) |
| ; /* FSPI_MCR0_SWRESET_MASK */ |
| VERBOSE("In func %s %d\n", __func__, __LINE__); |
| } |
| |
| #if defined(CONFIG_FSPI_AHB) |
| static void fspi_init_ahb(void) |
| { |
| uint32_t i, x_flash_cr2, seq_id; |
| |
| x_flash_cr2 = 0; |
| /* Reset AHB RX buffer CR configuration */ |
| for (i = 0; i < 8; i++) { |
| fspi_writel((FSPI_AHBRX_BUF0CR0 + 4 * i), 0U); |
| } |
| |
| /* Set ADATSZ with the maximum AHB buffer size */ |
| fspi_writel(FSPI_AHBRX_BUF7CR0, |
| ((uint32_t) ((FSPI_RX_MAX_AHBBUF_SIZE / 8U) | |
| FSPI_AHBRXBUF0CR7_PREF))); |
| |
| /* Known limitation handling: prefetch and |
| * no start address alignment.*/ |
| fspi_writel(FSPI_AHBCR, FSPI_AHBCR_PREF_EN); |
| INFO("xAhbcr=0x%x\n", fspi_readl(FSPI_AHBCR)); |
| |
| // Setup AHB READ sequenceID for all flashes. |
| x_flash_cr2 = fspi_readl(FSPI_FLSHA1CR2); |
| INFO("x_flash_cr2=0x%x\n", x_flash_cr2); |
| |
| seq_id = CONFIG_FSPI_FASTREAD ? |
| FSPI_FASTREAD_SEQ_ID : FSPI_READ_SEQ_ID; |
| x_flash_cr2 |= ((seq_id << FSPI_FLSHXCR2_ARDSEQI_SHIFT) & 0x1f); |
| |
| INFO("x_flash_cr2=0x%x\n", x_flash_cr2); |
| |
| fspi_writel(FSPI_FLSHA1CR2, x_flash_cr2); |
| x_flash_cr2 = fspi_readl(FSPI_FLSHA1CR2); |
| INFO("x_flash_cr2=0x%x\n", x_flash_cr2); |
| } |
| #endif |
| |
| int xspi_read(uint32_t pc_rx_addr, uint32_t *pc_rx_buf, uint32_t x_size_bytes) |
| { |
| if (x_size_bytes == 0) { |
| ERROR("Zero length reads are not allowed\n"); |
| return XSPI_READ_FAIL; |
| } |
| |
| #if defined(CONFIG_FSPI_AHB) |
| return xspi_ahb_read(pc_rx_addr, pc_rx_buf, x_size_bytes); |
| #else |
| return xspi_ip_read(pc_rx_addr, pc_rx_buf, x_size_bytes); |
| #endif |
| } |
| #if defined(CONFIG_FSPI_AHB) |
| int xspi_ahb_read(uint32_t pc_rx_addr, uint32_t *pc_rx_buf, uint32_t x_size_bytes) |
| { |
| VERBOSE("In func %s 0x%x\n", __func__, (pc_rx_addr)); |
| |
| if (F_FLASH_SIZE_BYTES <= SZ_16M_BYTES) { |
| pc_rx_addr = ((uint32_t)(pcRxAddr & MASK_24BIT_ADDRESS)); |
| } else { |
| pc_rx_addr = ((uint32_t)(pcRxAddr & MASK_32BIT_ADDRESS)); |
| } |
| |
| pc_rx_addr = ((uint32_t)(pcRxAddr + fspi_flash_base_addr)); |
| |
| if (((pc_rx_addr % 4) != 0) || (((uintptr_t)pc_rx_buf % 4) != 0)) { |
| WARN("%s: unaligned Start Address src=%ld dst=0x%p\n", |
| __func__, (pc_rx_addr - fspi_flash_base_addr), pc_rx_buf); |
| } |
| |
| /* Directly copy from AHB Buffer */ |
| memcpy(pc_rx_buf, (void *)(uintptr_t)pc_rx_addr, x_size_bytes); |
| |
| fspi_ahb_invalidate(); |
| return XSPI_SUCCESS; |
| } |
| #endif |
| |
| int xspi_ip_read(uint32_t pc_rx_addr, uint32_t *pv_rx_buf, uint32_t ui_len) |
| { |
| |
| uint32_t i = 0U, j = 0U, x_rem = 0U; |
| uint32_t x_iteration = 0U, x_size_rx = 0U, x_size_wm, temp_size; |
| uint32_t data = 0U; |
| uint32_t x_len_bytes; |
| uint32_t x_addr, sts0, intr, seq_id; |
| |
| x_addr = (uint32_t) pc_rx_addr; |
| x_len_bytes = ui_len; |
| |
| /* Watermark level : 8 bytes. (BY DEFAULT) */ |
| x_size_wm = 8U; |
| |
| /* Clear RX Watermark interrupt in INT register, if any existing. */ |
| fspi_writel(FSPI_INTR, FSPI_INTR_IPRXWA); |
| PRA("0x%x", fspi_readl(FSPI_INTR)); |
| /* Invalid the RXFIFO, to run next IP Command */ |
| /* Clears data entries in IP Rx FIFOs, Also reset R/W pointers */ |
| fspi_writel(FSPI_IPRXFCR, FSPI_IPRXFCR_CLR); |
| fspi_writel(FSPI_INTR, FSPI_INTEN_IPCMDDONE); |
| |
| while (x_len_bytes) { |
| |
| /* FlexSPI can store no more than FSPI_RX_IPBUF_SIZE */ |
| x_size_rx = (x_len_bytes > FSPI_RX_IPBUF_SIZE) ? |
| FSPI_RX_IPBUF_SIZE : x_len_bytes; |
| |
| /* IP Control Register0 - SF Address to be read */ |
| fspi_writel(FSPI_IPCR0, x_addr); |
| PRA("0x%x", fspi_readl(FSPI_IPCR0)); |
| /* IP Control Register1 - SEQID_READ operation, Size */ |
| |
| seq_id = CONFIG_FSPI_FASTREAD ? |
| FSPI_FASTREAD_SEQ_ID : FSPI_READ_SEQ_ID; |
| |
| fspi_writel(FSPI_IPCR1, |
| (uint32_t)(seq_id << FSPI_IPCR1_ISEQID_SHIFT) | |
| (uint16_t) x_size_rx); |
| |
| PRA("0x%x", fspi_readl(FSPI_IPCR1)); |
| |
| do { |
| sts0 = fspi_readl(FSPI_STS0); |
| } while (((sts0 & FSPI_STS0_ARB_IDLE) == 0) && |
| ((sts0 & FSPI_STS0_SEQ_IDLE) == 0)); |
| |
| /* Trigger IP Read Command */ |
| fspi_writel(FSPI_IPCMD, FSPI_IPCMD_TRG_MASK); |
| PRA("0x%x", fspi_readl(FSPI_IPCMD)); |
| |
| intr = fspi_readl(FSPI_INTR); |
| if (((intr & FSPI_INTR_IPCMDGE) != 0) || |
| ((intr & FSPI_INTR_IPCMDERR) != 0)) { |
| ERROR("Error in IP READ INTR=0x%x\n", intr); |
| return -XSPI_IP_READ_FAIL; |
| } |
| /* Will read in n iterations of each 8 FIFO's(WM level) */ |
| x_iteration = x_size_rx / x_size_wm; |
| for (i = 0U; i < x_iteration; i++) { |
| if ((fspi_readl(FSPI_INTR) & FSPI_INTR_IPRXWA_MASK) == 0) { |
| PRA("0x%x", fspi_readl(FSPI_INTR)); |
| } |
| /* Wait for IP Rx Watermark Fill event */ |
| while (!(fspi_readl(FSPI_INTR) & FSPI_INTR_IPRXWA_MASK)) { |
| PRA("0x%x", fspi_readl(FSPI_INTR)); |
| } |
| |
| /* Read RX FIFO's(upto WM level) & copy to rxbuffer */ |
| for (j = 0U; j < x_size_wm; j += 4U) { |
| /* Read FIFO Data Register */ |
| data = fspi_readl(FSPI_RFDR + j); |
| #if FSPI_IPDATA_SWAP /* Just In case you want swap */ |
| data = bswap32(data); |
| #endif |
| memcpy(pv_rx_buf++, &data, 4); |
| } |
| |
| /* Clear IP_RX_WATERMARK Event in INTR register */ |
| /* Reset FIFO Read pointer for next iteration.*/ |
| fspi_writel(FSPI_INTR, FSPI_INTR_IPRXWA); |
| } |
| |
| x_rem = x_size_rx % x_size_wm; |
| |
| if (x_rem != 0U) { |
| /* Wait for data filled */ |
| while (!(fspi_readl(FSPI_IPRXFSTS) & FSPI_IPRXFSTS_FILL_MASK)) { |
| PRA("0x%x", fspi_readl(FSPI_IPRXFSTS)); |
| } |
| |
| temp_size = 0; |
| j = 0U; |
| while (x_rem > 0U) { |
| data = 0U; |
| data = fspi_readl(FSPI_RFDR + j); |
| #if FSPI_IPDATA_SWAP /* Just In case you want swap */ |
| data = bswap32(data); |
| #endif |
| temp_size = (x_rem < 4) ? x_rem : 4; |
| memcpy(pv_rx_buf++, &data, temp_size); |
| x_rem -= temp_size; |
| } |
| } |
| |
| |
| while (!(fspi_readl(FSPI_INTR) & FSPI_INTR_IPCMDDONE_MASK)) { |
| PRA("0x%x", fspi_readl(FSPI_INTR)); |
| } |
| |
| /* Invalid the RX FIFO, to run next IP Command */ |
| fspi_writel(FSPI_IPRXFCR, FSPI_IPRXFCR_CLR); |
| /* Clear IP Command Done flag in interrupt register*/ |
| fspi_writel(FSPI_INTR, FSPI_INTR_IPCMDDONE_MASK); |
| |
| /* Update remaining len, Increment x_addr read pointer. */ |
| x_len_bytes -= x_size_rx; |
| x_addr += x_size_rx; |
| } |
| PR; |
| return XSPI_SUCCESS; |
| } |
| |
| void xspi_ip_write(uint32_t pc_wr_addr, uint32_t *pv_wr_buf, uint32_t ui_len) |
| { |
| |
| uint32_t x_iteration = 0U, x_rem = 0U; |
| uint32_t x_size_tx = 0U, x_size_wm, temp_size; |
| uint32_t i = 0U, j = 0U; |
| uint32_t ui_data = 0U; |
| uint32_t x_addr, x_len_bytes; |
| |
| |
| x_size_wm = 8U; /* Default TX WaterMark level: 8 Bytes. */ |
| x_addr = (uint32_t)pc_wr_addr; |
| x_len_bytes = ui_len; |
| VERBOSE("In func %s[%d] x_addr =0x%x xLen_bytes=%d\n", |
| __func__, __LINE__, x_addr, x_len_bytes); |
| |
| while (x_len_bytes != 0U) { |
| |
| x_size_tx = (x_len_bytes > FSPI_TX_IPBUF_SIZE) ? |
| FSPI_TX_IPBUF_SIZE : x_len_bytes; |
| |
| /* IP Control Register0 - SF Address to be read */ |
| fspi_writel(FSPI_IPCR0, x_addr); |
| INFO("In func %s[%d] x_addr =0x%x xLen_bytes=%d\n", |
| __func__, __LINE__, x_addr, x_len_bytes); |
| |
| /* |
| * Fill TX FIFO's.. |
| * |
| */ |
| |
| x_iteration = x_size_tx / x_size_wm; |
| for (i = 0U; i < x_iteration; i++) { |
| |
| /* Ensure TX FIFO Watermark Available */ |
| while ((fspi_readl(FSPI_INTR) & FSPI_INTR_IPTXWE_MASK) == 0) |
| ; |
| |
| |
| /* Fill TxFIFO's ( upto watermark level) */ |
| for (j = 0U; j < x_size_wm; j += 4U) { |
| memcpy(&ui_data, pv_wr_buf++, 4); |
| /* Write TX FIFO Data Register */ |
| fspi_writel((FSPI_TFDR + j), ui_data); |
| |
| } |
| |
| /* Clear IP_TX_WATERMARK Event in INTR register */ |
| /* Reset the FIFO Write pointer for next iteration */ |
| fspi_writel(FSPI_INTR, FSPI_INTR_IPTXWE); |
| } |
| |
| x_rem = x_size_tx % x_size_wm; |
| |
| if (x_rem != 0U) { |
| /* Wait for TXFIFO empty */ |
| while (!(fspi_readl(FSPI_INTR) & FSPI_INTR_IPTXWE)) |
| ; |
| |
| temp_size = 0U; |
| j = 0U; |
| while (x_rem > 0U) { |
| ui_data = 0U; |
| temp_size = (x_rem < 4U) ? x_rem : 4U; |
| memcpy(&ui_data, pv_wr_buf++, temp_size); |
| INFO("%d ---> pv_wr_buf=0x%p\n", __LINE__, pv_wr_buf); |
| fspi_writel((FSPI_TFDR + j), ui_data); |
| x_rem -= temp_size; |
| j += 4U ; /* TODO: May not be needed*/ |
| } |
| /* Clear IP_TX_WATERMARK Event in INTR register */ |
| /* Reset FIFO's Write pointer for next iteration.*/ |
| fspi_writel(FSPI_INTR, FSPI_INTR_IPTXWE); |
| } |
| |
| /* IP Control Register1 - SEQID_WRITE operation, Size */ |
| fspi_writel(FSPI_IPCR1, (uint32_t)(FSPI_WRITE_SEQ_ID << FSPI_IPCR1_ISEQID_SHIFT) | (uint16_t) x_size_tx); |
| /* Trigger IP Write Command */ |
| fspi_writel(FSPI_IPCMD, FSPI_IPCMD_TRG_MASK); |
| |
| /* Wait for IP Write command done */ |
| while (!(fspi_readl(FSPI_INTR) & FSPI_INTR_IPCMDDONE_MASK)) |
| ; |
| |
| /* Invalidate TX FIFOs & acknowledge IP_CMD_DONE event */ |
| fspi_writel(FSPI_IPTXFCR, FSPI_IPTXFCR_CLR); |
| fspi_writel(FSPI_INTR, FSPI_INTR_IPCMDDONE_MASK); |
| |
| /* for next iteration */ |
| x_len_bytes -= x_size_tx; |
| x_addr += x_size_tx; |
| } |
| |
| } |
| |
| int xspi_write(uint32_t pc_wr_addr, void *pv_wr_buf, uint32_t ui_len) |
| { |
| |
| uint32_t x_addr; |
| uint32_t x_page1_len = 0U, x_page_l_len = 0U; |
| uint32_t i, j = 0U; |
| void *buf = pv_wr_buf; |
| |
| VERBOSE("\nIn func %s\n", __func__); |
| |
| x_addr = (uint32_t)(pc_wr_addr); |
| if ((ui_len <= F_PAGE_256) && ((x_addr % F_PAGE_256) == 0)) { |
| x_page1_len = ui_len; |
| INFO("%d ---> x_page1_len=0x%x x_page_l_len =0x%x j=0x%x\n", __LINE__, x_page1_len, x_page_l_len, j); |
| } else if ((ui_len <= F_PAGE_256) && ((x_addr % F_PAGE_256) != 0)) { |
| x_page1_len = (F_PAGE_256 - (x_addr % F_PAGE_256)); |
| if (ui_len > x_page1_len) { |
| x_page_l_len = (ui_len - x_page1_len) % F_PAGE_256; |
| } else { |
| x_page1_len = ui_len; |
| x_page_l_len = 0; |
| } |
| j = 0U; |
| INFO("%d 0x%x 0x%x\n", x_addr % F_PAGE_256, x_addr % F_PAGE_256, F_PAGE_256); |
| INFO("%d ---> x_page1_len=0x%x x_page_l_len =0x%x j=0x%x\n", __LINE__, x_page1_len, x_page_l_len, j); |
| } else if ((ui_len > F_PAGE_256) && ((x_addr % F_PAGE_256) == 0)) { |
| j = ui_len / F_PAGE_256; |
| x_page_l_len = ui_len % F_PAGE_256; |
| INFO("%d ---> x_page1_len=0x%x x_page_l_len =0x%x j=0x%x\n", __LINE__, x_page1_len, x_page_l_len, j); |
| } else if ((ui_len > F_PAGE_256) && ((x_addr % F_PAGE_256) != 0)) { |
| x_page1_len = (F_PAGE_256 - (x_addr % F_PAGE_256)); |
| j = (ui_len - x_page1_len) / F_PAGE_256; |
| x_page_l_len = (ui_len - x_page1_len) % F_PAGE_256; |
| INFO("%d ---> x_page1_len=0x%x x_page_l_len =0x%x j=0x%x\n", __LINE__, x_page1_len, x_page_l_len, j); |
| } |
| |
| if (x_page1_len != 0U) { |
| xspi_wren(x_addr); |
| xspi_ip_write(x_addr, (uint32_t *)buf, x_page1_len); |
| while (is_flash_busy()) |
| ; |
| INFO("%d Initial pc_wr_addr=0x%x, Final x_addr=0x%x, Initial ui_len=0x%x Final ui_len=0x%x\n", |
| __LINE__, pc_wr_addr, x_addr, ui_len, (x_addr-pc_wr_addr)); |
| INFO("Initial Buf pv_wr_buf=%p, final Buf=%p\n", pv_wr_buf, buf); |
| x_addr += x_page1_len; |
| /* TODO What is buf start is not 4 aligned */ |
| buf = buf + x_page1_len; |
| } |
| |
| for (i = 0U; i < j; i++) { |
| INFO("In for loop Buf pv_wr_buf=%p, final Buf=%p x_addr=0x%x offset_buf %d.\n", |
| pv_wr_buf, buf, x_addr, x_page1_len/4); |
| xspi_wren(x_addr); |
| xspi_ip_write(x_addr, (uint32_t *)buf, F_PAGE_256); |
| while (is_flash_busy()) |
| ; |
| INFO("%d Initial pc_wr_addr=0x%x, Final x_addr=0x%x, Initial ui_len=0x%x Final ui_len=0x%x\n", |
| __LINE__, pc_wr_addr, x_addr, ui_len, (x_addr-pc_wr_addr)); |
| x_addr += F_PAGE_256; |
| /* TODO What is buf start is not 4 aligned */ |
| buf = buf + F_PAGE_256; |
| INFO("Initial Buf pv_wr_buf=%p, final Buf=%p\n", pv_wr_buf, buf); |
| } |
| |
| if (x_page_l_len != 0U) { |
| INFO("%d Initial Buf pv_wr_buf=%p, final Buf=%p x_page_l_len=0x%x\n", __LINE__, pv_wr_buf, buf, x_page_l_len); |
| xspi_wren(x_addr); |
| xspi_ip_write(x_addr, (uint32_t *)buf, x_page_l_len); |
| while (is_flash_busy()) |
| ; |
| INFO("%d Initial pc_wr_addr=0x%x, Final x_addr=0x%x, Initial ui_len=0x%x Final ui_len=0x%x\n", |
| __LINE__, pc_wr_addr, x_addr, ui_len, (x_addr-pc_wr_addr)); |
| } |
| |
| VERBOSE("Now calling func call Invalidate%s\n", __func__); |
| fspi_ahb_invalidate(); |
| return XSPI_SUCCESS; |
| } |
| |
| int xspi_wren(uint32_t pc_wr_addr) |
| { |
| VERBOSE("In func %s Addr=0x%x\n", __func__, pc_wr_addr); |
| |
| fspi_writel(FSPI_IPTXFCR, FSPI_IPTXFCR_CLR); |
| |
| fspi_writel(FSPI_IPCR0, (uint32_t)pc_wr_addr); |
| fspi_writel(FSPI_IPCR1, ((FSPI_WREN_SEQ_ID << FSPI_IPCR1_ISEQID_SHIFT) | 0)); |
| fspi_writel(FSPI_IPCMD, FSPI_IPCMD_TRG_MASK); |
| |
| while ((fspi_readl(FSPI_INTR) & FSPI_INTR_IPCMDDONE_MASK) == 0) |
| ; |
| |
| fspi_writel(FSPI_INTR, FSPI_INTR_IPCMDDONE_MASK); |
| return XSPI_SUCCESS; |
| } |
| |
| static void fspi_bbluk_er(void) |
| { |
| VERBOSE("In func %s\n", __func__); |
| fspi_writel(FSPI_IPCR0, 0x0); |
| fspi_writel(FSPI_IPCR1, ((FSPI_BE_SEQ_ID << FSPI_IPCR1_ISEQID_SHIFT) | 20)); |
| fspi_writel(FSPI_IPCMD, FSPI_IPCMD_TRG_MASK); |
| |
| while ((fspi_readl(FSPI_INTR) & FSPI_INTR_IPCMDDONE_MASK) == 0) |
| ; |
| fspi_writel(FSPI_INTR, FSPI_INTR_IPCMDDONE_MASK); |
| |
| } |
| |
| static void fspi_RDSR(uint32_t *rxbuf, const void *p_addr, uint32_t size) |
| { |
| uint32_t iprxfcr = 0U; |
| uint32_t data = 0U; |
| |
| iprxfcr = fspi_readl(FSPI_IPRXFCR); |
| /* IP RX FIFO would be read by processor */ |
| iprxfcr = iprxfcr & (uint32_t)~FSPI_IPRXFCR_CLR; |
| /* Invalid data entries in IP RX FIFO */ |
| iprxfcr = iprxfcr | FSPI_IPRXFCR_CLR; |
| fspi_writel(FSPI_IPRXFCR, iprxfcr); |
| |
| fspi_writel(FSPI_IPCR0, (uintptr_t) p_addr); |
| fspi_writel(FSPI_IPCR1, |
| (uint32_t) ((FSPI_RDSR_SEQ_ID << FSPI_IPCR1_ISEQID_SHIFT) |
| | (uint16_t) size)); |
| /* Trigger the command */ |
| fspi_writel(FSPI_IPCMD, FSPI_IPCMD_TRG_MASK); |
| /* Wait for command done */ |
| while ((fspi_readl(FSPI_INTR) & FSPI_INTR_IPCMDDONE_MASK) == 0) |
| ; |
| fspi_writel(FSPI_INTR, FSPI_INTR_IPCMDDONE_MASK); |
| |
| data = fspi_readl(FSPI_RFDR); |
| memcpy(rxbuf, &data, size); |
| |
| /* Rx FIFO invalidation needs to be done prior w1c of INTR.IPRXWA bit */ |
| fspi_writel(FSPI_IPRXFCR, FSPI_IPRXFCR_CLR); |
| fspi_writel(FSPI_INTR, FSPI_INTR_IPRXWA_MASK); |
| fspi_writel(FSPI_INTR, FSPI_INTR_IPCMDDONE_MASK); |
| |
| } |
| |
| bool is_flash_busy(void) |
| { |
| #define FSPI_ONE_BYTE 1 |
| uint8_t data[4]; |
| |
| VERBOSE("In func %s\n\n", __func__); |
| fspi_RDSR((uint32_t *) data, 0, FSPI_ONE_BYTE); |
| |
| return !!((uint32_t) data[0] & FSPI_NOR_SR_WIP_MASK); |
| } |
| |
| int xspi_bulk_erase(void) |
| { |
| VERBOSE("In func %s\n", __func__); |
| xspi_wren((uint32_t) 0x0); |
| fspi_bbluk_er(); |
| while (is_flash_busy()) |
| ; |
| fspi_ahb_invalidate(); |
| return XSPI_SUCCESS; |
| } |
| |
| static void fspi_sec_er(uint32_t pc_wr_addr) |
| { |
| uint32_t x_addr; |
| |
| VERBOSE("In func %s\n", __func__); |
| x_addr = (uint32_t)(pc_wr_addr); |
| |
| fspi_writel(FSPI_IPCR0, x_addr); |
| INFO("In [%s][%d] Erase address 0x%x\n", __func__, __LINE__, (x_addr)); |
| #if CONFIG_FSPI_ERASE_4K |
| fspi_writel(FSPI_IPCR1, ((FSPI_4K_SEQ_ID << FSPI_IPCR1_ISEQID_SHIFT) | 0)); |
| #else |
| fspi_writel(FSPI_IPCR1, ((FSPI_SE_SEQ_ID << FSPI_IPCR1_ISEQID_SHIFT) | 0)); |
| #endif |
| fspi_writel(FSPI_IPCMD, FSPI_IPCMD_TRG_MASK); |
| |
| while ((fspi_readl(FSPI_INTR) & FSPI_INTR_IPCMDDONE_MASK) == 0) { |
| PRA("0x%x", fspi_readl(FSPI_INTR)); |
| } |
| fspi_writel(FSPI_INTR, FSPI_INTR_IPCMDDONE_MASK); |
| } |
| |
| int xspi_sector_erase(uint32_t pc_wr_addr, uint32_t ui_len) |
| { |
| uint32_t x_addr, x_len_bytes, i, num_sector = 0U; |
| |
| VERBOSE("In func %s\n", __func__); |
| x_addr = (uint32_t)(pc_wr_addr); |
| if ((x_addr % F_SECTOR_ERASE_SZ) != 0) { |
| ERROR("!!! In func %s, unalinged start address can only be in multiples of 0x%x\n", |
| __func__, F_SECTOR_ERASE_SZ); |
| return -XSPI_ERASE_FAIL; |
| } |
| |
| x_len_bytes = ui_len * 1; |
| if (x_len_bytes < F_SECTOR_ERASE_SZ) { |
| ERROR("!!! In func %s, Less than 1 sector can only be in multiples of 0x%x\n", |
| __func__, F_SECTOR_ERASE_SZ); |
| return -XSPI_ERASE_FAIL; |
| } |
| |
| num_sector = x_len_bytes/F_SECTOR_ERASE_SZ; |
| num_sector += x_len_bytes % F_SECTOR_ERASE_SZ ? 1U : 0U; |
| INFO("F_SECTOR_ERASE_SZ: 0x%08x, num_sector: %d\n", F_SECTOR_ERASE_SZ, num_sector); |
| |
| for (i = 0U; i < num_sector ; i++) { |
| xspi_wren(x_addr + (F_SECTOR_ERASE_SZ * i)); |
| fspi_sec_er(x_addr + (F_SECTOR_ERASE_SZ * i)); |
| while (is_flash_busy()) |
| ; |
| } |
| fspi_ahb_invalidate(); |
| return XSPI_SUCCESS; |
| } |
| |
| |
| __attribute__((unused)) static void fspi_delay_ms(uint32_t x) |
| { |
| volatile unsigned long ul_count; |
| |
| for (ul_count = 0U; ul_count < (30U * x); ul_count++) |
| ; |
| |
| } |
| |
| |
| #if defined(DEBUG_FLEXSPI) |
| static void fspi_dump_regs(void) |
| { |
| uint32_t i; |
| |
| VERBOSE("\nRegisters Dump:\n"); |
| VERBOSE("Flexspi: Register FSPI_MCR0(0x%x) = 0x%08x\n", FSPI_MCR0, fspi_readl(FSPI_MCR0)); |
| VERBOSE("Flexspi: Register FSPI_MCR2(0x%x) = 0x%08x\n", FSPI_MCR2, fspi_readl(FSPI_MCR2)); |
| VERBOSE("Flexspi: Register FSPI_DLL_A_CR(0x%x) = 0x%08x\n", FSPI_DLLACR, fspi_readl(FSPI_DLLACR)); |
| VERBOSE("\n"); |
| |
| for (i = 0U; i < 8U; i++) { |
| VERBOSE("Flexspi: Register FSPI_AHBRX_BUF0CR0(0x%x) = 0x%08x\n", FSPI_AHBRX_BUF0CR0 + i * 4, fspi_readl((FSPI_AHBRX_BUF0CR0 + i * 4))); |
| } |
| VERBOSE("\n"); |
| |
| VERBOSE("Flexspi: Register FSPI_AHBRX_BUF7CR0(0x%x) = 0x%08x\n", FSPI_AHBRX_BUF7CR0, fspi_readl(FSPI_AHBRX_BUF7CR0)); |
| VERBOSE("Flexspi: Register FSPI_AHB_CR(0x%x) \t = 0x%08x\n", FSPI_AHBCR, fspi_readl(FSPI_AHBCR)); |
| VERBOSE("\n"); |
| |
| for (i = 0U; i < 4U; i++) { |
| VERBOSE("Flexspi: Register FSPI_FLSH_A1_CR2,(0x%x) = 0x%08x\n", FSPI_FLSHA1CR2 + i * 4, fspi_readl(FSPI_FLSHA1CR2 + i * 4)); |
| } |
| } |
| #endif |
| |
| int fspi_init(uint32_t base_reg_addr, uint32_t flash_start_addr) |
| { |
| uint32_t mcrx; |
| uint32_t flash_size; |
| |
| if (fspi_base_reg_addr != 0U) { |
| INFO("FSPI is already initialized.\n"); |
| return XSPI_SUCCESS; |
| } |
| |
| fspi_base_reg_addr = base_reg_addr; |
| fspi_flash_base_addr = flash_start_addr; |
| |
| INFO("Flexspi driver: Version v1.0\n"); |
| INFO("Flexspi: Default MCR0 = 0x%08x, before reset\n", fspi_readl(FSPI_MCR0)); |
| VERBOSE("Flexspi: Resetting controller...\n"); |
| |
| /* Reset FlexSpi Controller */ |
| fspi_writel(FSPI_MCR0, FSPI_MCR0_SWRST); |
| while ((fspi_readl(FSPI_MCR0) & FSPI_MCR0_SWRST)) |
| ; /* FSPI_MCR0_SWRESET_MASK */ |
| |
| |
| /* Disable Controller Module before programming its registersi, especially MCR0 (Master Control Register0) */ |
| fspi_MDIS(1); |
| /* |
| * Program MCR0 with default values, AHB Timeout(0xff), IP Timeout(0xff). {FSPI_MCR0- 0xFFFF0000} |
| */ |
| |
| /* Timeout wait cycle for AHB command grant */ |
| mcrx = fspi_readl(FSPI_MCR0); |
| mcrx |= (uint32_t)((FSPI_MAX_TIMEOUT_AHBCMD << FSPI_MCR0_AHBGRANTWAIT_SHIFT) & (FSPI_MCR0_AHBGRANTWAIT_MASK)); |
| |
| /* Time out wait cycle for IP command grant*/ |
| mcrx |= (uint32_t) (FSPI_MAX_TIMEOUT_IPCMD << FSPI_MCR0_IPGRANTWAIT_SHIFT) & (FSPI_MCR0_IPGRANTWAIT_MASK); |
| |
| /* TODO why BE64 set BE32*/ |
| mcrx |= (uint32_t) (FSPI_ENDCFG_LE64 << FSPI_MCR0_ENDCFG_SHIFT) & FSPI_MCR0_ENDCFG_MASK; |
| |
| fspi_writel(FSPI_MCR0, mcrx); |
| |
| /* Reset the DLL register to default value */ |
| fspi_writel(FSPI_DLLACR, FSPI_DLLACR_OVRDEN); |
| fspi_writel(FSPI_DLLBCR, FSPI_DLLBCR_OVRDEN); |
| |
| #if ERRATA_FLASH_A050272 /* ERRATA DLL */ |
| for (uint8_t delay = 100U; delay > 0U; delay--) { |
| __asm__ volatile ("nop"); |
| } |
| #endif |
| |
| /* Configure flash control registers for different chip select */ |
| flash_size = (F_FLASH_SIZE_BYTES * FLASH_NUM) / FSPI_BYTES_PER_KBYTES; |
| fspi_writel(FSPI_FLSHA1CR0, flash_size); |
| fspi_writel(FSPI_FLSHA2CR0, 0U); |
| fspi_writel(FSPI_FLSHB1CR0, 0U); |
| fspi_writel(FSPI_FLSHB2CR0, 0U); |
| |
| #if defined(CONFIG_FSPI_AHB) |
| fspi_init_ahb(); |
| #endif |
| /* RE-Enable Controller Module */ |
| fspi_MDIS(0); |
| INFO("Flexspi: After MCR0 = 0x%08x,\n", fspi_readl(FSPI_MCR0)); |
| fspi_setup_LUT(); |
| |
| /* Dump of all registers, ensure controller not disabled anymore*/ |
| #if defined(DEBUG_FLEXSPI) |
| fspi_dump_regs(); |
| #endif |
| |
| INFO("Flexspi: Init done!!\n"); |
| |
| #if DEBUG_FLEXSPI |
| |
| uint32_t xspi_addr = SZ_57M; |
| |
| /* |
| * Second argument of fspi_test is the size of buffer(s) passed |
| * to the function. |
| * SIZE_BUFFER defined in test_fspi.c is kept large enough to |
| * accommodate variety of sizes for regressive tests. |
| */ |
| fspi_test(xspi_addr, 0x40, 0); |
| fspi_test(xspi_addr, 0x15, 2); |
| fspi_test(xspi_addr, 0x80, 0); |
| fspi_test(xspi_addr, 0x81, 0); |
| fspi_test(xspi_addr, 0x79, 3); |
| |
| fspi_test(xspi_addr + 0x11, 0x15, 0); |
| fspi_test(xspi_addr + 0x11, 0x40, 0); |
| fspi_test(xspi_addr + 0xff, 0x40, 1); |
| fspi_test(xspi_addr + 0x25, 0x81, 2); |
| fspi_test(xspi_addr + 0xef, 0x6f, 3); |
| |
| fspi_test((xspi_addr - F_SECTOR_ERASE_SZ), 0x229, 0); |
| #endif |
| |
| return XSPI_SUCCESS; |
| } |