blob: e411360250c6b8efbe11c13d9eec4ed1ffb19add [file] [log] [blame]
/*
* Copyright (c) 2013-2016, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch.h>
#include <asm_macros.S>
#include <bl_common.h>
#include <cortex_a53.h>
#include <cortex_a57.h>
#include <cortex_a72.h>
#include <cpu_macros.S>
#include <css_def.h>
#include <v2m_def.h>
#include "../juno_def.h"
.globl plat_reset_handler
.globl plat_arm_calc_core_pos
#if JUNO_AARCH32_EL3_RUNTIME
.globl plat_get_my_entrypoint
.globl juno_reset_to_aarch32_state
#endif
#define JUNO_REVISION(rev) REV_JUNO_R##rev
#define JUNO_HANDLER(rev) plat_reset_handler_juno_r##rev
#define JUMP_TO_HANDLER_IF_JUNO_R(revision) \
jump_to_handler JUNO_REVISION(revision), JUNO_HANDLER(revision)
/* --------------------------------------------------------------------
* Helper macro to jump to the given handler if the board revision
* matches.
* Expects the Juno board revision in x0.
* --------------------------------------------------------------------
*/
.macro jump_to_handler _revision, _handler
cmp x0, #\_revision
b.eq \_handler
.endm
/* --------------------------------------------------------------------
* Helper macro that reads the part number of the current CPU and jumps
* to the given label if it matches the CPU MIDR provided.
*
* Clobbers x0.
* --------------------------------------------------------------------
*/
.macro jump_if_cpu_midr _cpu_midr, _label
mrs x0, midr_el1
ubfx x0, x0, MIDR_PN_SHIFT, #12
cmp w0, #((\_cpu_midr >> MIDR_PN_SHIFT) & MIDR_PN_MASK)
b.eq \_label
.endm
/* --------------------------------------------------------------------
* Platform reset handler for Juno R0.
*
* Juno R0 has the following topology:
* - Quad core Cortex-A53 processor cluster;
* - Dual core Cortex-A57 processor cluster.
*
* This handler does the following:
* - Implement workaround for defect id 831273 by enabling an event
* stream every 65536 cycles.
* - Set the L2 Data RAM latency to 2 (i.e. 3 cycles) for Cortex-A57
* - Set the L2 Tag RAM latency to 2 (i.e. 3 cycles) for Cortex-A57
* --------------------------------------------------------------------
*/
func JUNO_HANDLER(0)
/* --------------------------------------------------------------------
* Enable the event stream every 65536 cycles
* --------------------------------------------------------------------
*/
mov x0, #(0xf << EVNTI_SHIFT)
orr x0, x0, #EVNTEN_BIT
msr CNTKCTL_EL1, x0
/* --------------------------------------------------------------------
* Nothing else to do on Cortex-A53.
* --------------------------------------------------------------------
*/
jump_if_cpu_midr CORTEX_A53_MIDR, 1f
/* --------------------------------------------------------------------
* Cortex-A57 specific settings
* --------------------------------------------------------------------
*/
mov x0, #((L2_DATA_RAM_LATENCY_3_CYCLES << L2CTLR_DATA_RAM_LATENCY_SHIFT) | \
(L2_TAG_RAM_LATENCY_3_CYCLES << L2CTLR_TAG_RAM_LATENCY_SHIFT))
msr L2CTLR_EL1, x0
1:
isb
ret
endfunc JUNO_HANDLER(0)
/* --------------------------------------------------------------------
* Platform reset handler for Juno R1.
*
* Juno R1 has the following topology:
* - Quad core Cortex-A53 processor cluster;
* - Dual core Cortex-A57 processor cluster.
*
* This handler does the following:
* - Set the L2 Data RAM latency to 2 (i.e. 3 cycles) for Cortex-A57
*
* Note that:
* - The default value for the L2 Tag RAM latency for Cortex-A57 is
* suitable.
* - Defect #831273 doesn't affect Juno R1.
* --------------------------------------------------------------------
*/
func JUNO_HANDLER(1)
/* --------------------------------------------------------------------
* Nothing to do on Cortex-A53.
* --------------------------------------------------------------------
*/
jump_if_cpu_midr CORTEX_A57_MIDR, A57
ret
A57:
/* --------------------------------------------------------------------
* Cortex-A57 specific settings
* --------------------------------------------------------------------
*/
mov x0, #(L2_DATA_RAM_LATENCY_3_CYCLES << L2CTLR_DATA_RAM_LATENCY_SHIFT)
msr L2CTLR_EL1, x0
isb
ret
endfunc JUNO_HANDLER(1)
/* --------------------------------------------------------------------
* Platform reset handler for Juno R2.
*
* Juno R2 has the following topology:
* - Quad core Cortex-A53 processor cluster;
* - Dual core Cortex-A72 processor cluster.
*
* This handler does the following:
* - Set the L2 Data RAM latency to 2 (i.e. 3 cycles) for Cortex-A72
* - Set the L2 Tag RAM latency to 1 (i.e. 2 cycles) for Cortex-A72
*
* Note that:
* - Defect #831273 doesn't affect Juno R2.
* --------------------------------------------------------------------
*/
func JUNO_HANDLER(2)
/* --------------------------------------------------------------------
* Nothing to do on Cortex-A53.
* --------------------------------------------------------------------
*/
jump_if_cpu_midr CORTEX_A72_MIDR, A72
ret
A72:
/* --------------------------------------------------------------------
* Cortex-A72 specific settings
* --------------------------------------------------------------------
*/
mov x0, #((L2_DATA_RAM_LATENCY_3_CYCLES << L2CTLR_DATA_RAM_LATENCY_SHIFT) | \
(L2_TAG_RAM_LATENCY_2_CYCLES << L2CTLR_TAG_RAM_LATENCY_SHIFT))
msr L2CTLR_EL1, x0
isb
ret
endfunc JUNO_HANDLER(2)
/* --------------------------------------------------------------------
* void plat_reset_handler(void);
*
* Determine the Juno board revision and call the appropriate reset
* handler.
* --------------------------------------------------------------------
*/
func plat_reset_handler
/* Read the V2M SYS_ID register */
mov_imm x0, (V2M_SYSREGS_BASE + V2M_SYS_ID)
ldr w1, [x0]
/* Extract board revision from the SYS_ID */
ubfx x0, x1, #V2M_SYS_ID_REV_SHIFT, #4
JUMP_TO_HANDLER_IF_JUNO_R(0)
JUMP_TO_HANDLER_IF_JUNO_R(1)
JUMP_TO_HANDLER_IF_JUNO_R(2)
/* Board revision is not supported */
no_ret plat_panic_handler
endfunc plat_reset_handler
/* -----------------------------------------------------
* void juno_do_reset_to_aarch32_state(void);
*
* Request warm reset to AArch32 mode.
* -----------------------------------------------------
*/
func juno_do_reset_to_aarch32_state
mov x0, #RMR_EL3_RR_BIT
dsb sy
msr rmr_el3, x0
isb
wfi
endfunc juno_do_reset_to_aarch32_state
/* -----------------------------------------------------
* unsigned int plat_arm_calc_core_pos(u_register_t mpidr)
* Helper function to calculate the core position.
* -----------------------------------------------------
*/
func plat_arm_calc_core_pos
b css_calc_core_pos_swap_cluster
endfunc plat_arm_calc_core_pos
#if JUNO_AARCH32_EL3_RUNTIME
/* ---------------------------------------------------------------------
* uintptr_t plat_get_my_entrypoint (void);
*
* Main job of this routine is to distinguish between a cold and a warm
* boot. On JUNO platform, this distinction is based on the contents of
* the Trusted Mailbox. It is initialised to zero by the SCP before the
* AP cores are released from reset. Therefore, a zero mailbox means
* it's a cold reset. If it is a warm boot then a request to reset to
* AArch32 state is issued. This is the only way to reset to AArch32
* in EL3 on Juno. A trampoline located at the high vector address
* has already been prepared by BL1.
*
* This functions returns the contents of the mailbox, i.e.:
* - 0 for a cold boot;
* - request warm reset in AArch32 state for warm boot case;
* ---------------------------------------------------------------------
*/
func plat_get_my_entrypoint
mov_imm x0, PLAT_ARM_TRUSTED_MAILBOX_BASE
ldr x0, [x0]
cbz x0, return
b juno_do_reset_to_aarch32_state
1:
b 1b
return:
ret
endfunc plat_get_my_entrypoint
/*
* Emit a "movw r0, #imm16" which moves the lower
* 16 bits of `_val` into r0.
*/
.macro emit_movw _reg_d, _val
mov_imm \_reg_d, (0xe3000000 | \
((\_val & 0xfff) | \
((\_val & 0xf000) << 4)))
.endm
/*
* Emit a "movt r0, #imm16" which moves the upper
* 16 bits of `_val` into r0.
*/
.macro emit_movt _reg_d, _val
mov_imm \_reg_d, (0xe3400000 | \
(((\_val & 0x0fff0000) >> 16) | \
((\_val & 0xf0000000) >> 12)))
.endm
/*
* This function writes the trampoline code at HI-VEC (0xFFFF0000)
* address which loads r0 with the entrypoint address for
* BL32 (a.k.a SP_MIN) when EL3 is in AArch32 mode. A warm reset
* to AArch32 mode is then requested by writing into RMR_EL3.
*/
func juno_reset_to_aarch32_state
emit_movw w0, BL32_BASE
emit_movt w1, BL32_BASE
/* opcode "bx r0" to branch using r0 in AArch32 mode */
mov_imm w2, 0xe12fff10
/* Write the above opcodes at HI-VECTOR location */
mov_imm x3, HI_VECTOR_BASE
str w0, [x3], #4
str w1, [x3], #4
str w2, [x3]
bl juno_do_reset_to_aarch32_state
1:
b 1b
endfunc juno_reset_to_aarch32_state
#endif /* JUNO_AARCH32_EL3_RUNTIME */