blob: 99242e3351e7bea4e6dac66c4255d9f5bbb48163 [file] [log] [blame]
/*
* Copyright (c) 2023-2024, Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <stddef.h>
#include <string.h>
/* mbed TLS headers */
#include <mbedtls/gcm.h>
#include <mbedtls/md.h>
#include <mbedtls/memory_buffer_alloc.h>
#include <mbedtls/oid.h>
#include <mbedtls/platform.h>
#include <mbedtls/psa_util.h>
#include <mbedtls/version.h>
#include <mbedtls/x509.h>
#include <psa/crypto.h>
#include <psa/crypto_platform.h>
#include <psa/crypto_types.h>
#include <psa/crypto_values.h>
#include <common/debug.h>
#include <drivers/auth/crypto_mod.h>
#include <drivers/auth/mbedtls/mbedtls_common.h>
#include <plat/common/platform.h>
#define LIB_NAME "mbed TLS PSA"
/* Maximum length of R_S pair in the ECDSA signature in bytes */
#define MAX_ECDSA_R_S_PAIR_LEN 64U
/* Size of ASN.1 length and tag in bytes*/
#define SIZE_OF_ASN1_LEN 1U
#define SIZE_OF_ASN1_TAG 1U
#if CRYPTO_SUPPORT == CRYPTO_HASH_CALC_ONLY || \
CRYPTO_SUPPORT == CRYPTO_AUTH_VERIFY_AND_HASH_CALC
/*
* CRYPTO_MD_MAX_SIZE value is as per current stronger algorithm available
* so make sure that mbed TLS MD maximum size must be lesser than this.
*/
CASSERT(CRYPTO_MD_MAX_SIZE >= MBEDTLS_MD_MAX_SIZE,
assert_mbedtls_md_size_overflow);
#endif /*
* CRYPTO_SUPPORT == CRYPTO_HASH_CALC_ONLY || \
* CRYPTO_SUPPORT == CRYPTO_AUTH_VERIFY_AND_HASH_CALC
*/
/*
* AlgorithmIdentifier ::= SEQUENCE {
* algorithm OBJECT IDENTIFIER,
* parameters ANY DEFINED BY algorithm OPTIONAL
* }
*
* SubjectPublicKeyInfo ::= SEQUENCE {
* algorithm AlgorithmIdentifier,
* subjectPublicKey BIT STRING
* }
*
* DigestInfo ::= SEQUENCE {
* digestAlgorithm AlgorithmIdentifier,
* digest OCTET STRING
* }
*/
/*
* We pretend using an external RNG (through MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG
* mbedTLS config option) so we need to provide an implementation of
* mbedtls_psa_external_get_random(). Provide a fake one, since we do not
* actually have any external RNG and TF-A itself doesn't engage in
* cryptographic operations that demands randomness.
*/
psa_status_t mbedtls_psa_external_get_random(
mbedtls_psa_external_random_context_t *context,
uint8_t *output, size_t output_size,
size_t *output_length)
{
return PSA_ERROR_INSUFFICIENT_ENTROPY;
}
/*
* Initialize the library and export the descriptor
*/
static void init(void)
{
/* Initialize mbed TLS */
mbedtls_init();
/* Initialise PSA mbedTLS */
psa_status_t status = psa_crypto_init();
if (status != PSA_SUCCESS) {
ERROR("Failed to initialize %s crypto (%d).\n", LIB_NAME, status);
panic();
}
INFO("PSA crypto initialized successfully!\n");
}
#if CRYPTO_SUPPORT == CRYPTO_AUTH_VERIFY_ONLY || \
CRYPTO_SUPPORT == CRYPTO_AUTH_VERIFY_AND_HASH_CALC
static void construct_psa_key_alg_and_type(mbedtls_pk_type_t pk_alg,
mbedtls_md_type_t md_alg,
psa_ecc_family_t psa_ecc_family,
psa_algorithm_t *psa_alg,
psa_key_type_t *psa_key_type)
{
psa_algorithm_t psa_md_alg = mbedtls_md_psa_alg_from_type(md_alg);
switch (pk_alg) {
case MBEDTLS_PK_RSASSA_PSS:
*psa_alg = PSA_ALG_RSA_PSS(psa_md_alg);
*psa_key_type = PSA_KEY_TYPE_RSA_PUBLIC_KEY;
break;
case MBEDTLS_PK_ECDSA:
*psa_alg = PSA_ALG_ECDSA(psa_md_alg);
*psa_key_type = PSA_KEY_TYPE_ECC_PUBLIC_KEY(psa_ecc_family);
break;
default:
*psa_alg = PSA_ALG_NONE;
*psa_key_type = PSA_KEY_TYPE_NONE;
break;
}
}
#if TF_MBEDTLS_KEY_ALG_ID == TF_MBEDTLS_ECDSA || \
TF_MBEDTLS_KEY_ALG_ID == TF_MBEDTLS_RSA_AND_ECDSA
/*
* This is a helper function to detect padding byte (if the MSB bit of the
* first data byte is set to 1, for example 0x80) and on detection, ignore the
* padded byte(0x00) and increase the buffer pointer beyond padded byte and
* decrease the length of the buffer by 1.
*
* On Success returns 0, error otherwise.
**/
static inline int ignore_asn1_int_padding_byte(unsigned char **buf_start,
size_t *buf_len)
{
unsigned char *local_buf = *buf_start;
/* Check for negative number */
if ((local_buf[0] & 0x80U) != 0U) {
return -1;
}
if ((local_buf[0] == 0U) && (local_buf[1] > 0x7FU) &&
(*buf_len > 1U)) {
*buf_start = &local_buf[1];
(*buf_len)--;
}
return 0;
}
/*
* This is a helper function that gets a pointer to the encoded ECDSA publicKey
* and its length (as per RFC5280) and returns corresponding decoded publicKey
* and its length. As well, it retrieves the family of ECC key in the PSA
* format.
*
* This function returns error(CRYPTO_ERR_SIGNATURE) on ASN.1 parsing failure,
* otherwise success(0).
**/
static int get_ecdsa_pkinfo_from_asn1(unsigned char **pk_start,
unsigned int *pk_len,
psa_ecc_family_t *psa_ecc_family)
{
mbedtls_asn1_buf alg_oid, alg_params;
mbedtls_ecp_group_id grp_id;
int rc;
unsigned char *pk_end;
size_t len;
size_t curve_bits;
unsigned char *pk_ptr = *pk_start;
pk_end = pk_ptr + *pk_len;
rc = mbedtls_asn1_get_tag(&pk_ptr, pk_end, &len,
MBEDTLS_ASN1_CONSTRUCTED |
MBEDTLS_ASN1_SEQUENCE);
if (rc != 0) {
return CRYPTO_ERR_SIGNATURE;
}
pk_end = pk_ptr + len;
rc = mbedtls_asn1_get_alg(&pk_ptr, pk_end, &alg_oid, &alg_params);
if (rc != 0) {
return CRYPTO_ERR_SIGNATURE;
}
if (alg_params.tag == MBEDTLS_ASN1_OID) {
if (mbedtls_oid_get_ec_grp(&alg_params, &grp_id) != 0) {
return CRYPTO_ERR_SIGNATURE;
}
*psa_ecc_family = mbedtls_ecc_group_to_psa(grp_id,
&curve_bits);
} else {
return CRYPTO_ERR_SIGNATURE;
}
pk_end = pk_ptr + len - (alg_oid.len + alg_params.len +
2 * (SIZE_OF_ASN1_LEN + SIZE_OF_ASN1_TAG));
rc = mbedtls_asn1_get_bitstring_null(&pk_ptr, pk_end, &len);
if (rc != 0) {
return CRYPTO_ERR_SIGNATURE;
}
*pk_start = pk_ptr;
*pk_len = len;
return rc;
}
/*
* Ecdsa-Sig-Value ::= SEQUENCE {
* r INTEGER,
* s INTEGER
* }
*
* This helper function that gets a pointer to the encoded ECDSA signature and
* its length (as per RFC5280) and returns corresponding decoded signature
* (R_S pair) and its size.
*
* This function returns error(CRYPTO_ERR_SIGNATURE) on ASN.1 parsing failure,
* otherwise success(0).
**/
static int get_ecdsa_signature_from_asn1(unsigned char *sig_ptr,
size_t *sig_len,
unsigned char *r_s_pair)
{
int rc;
unsigned char *sig_end;
size_t len, r_len, s_len;
sig_end = sig_ptr + *sig_len;
rc = mbedtls_asn1_get_tag(&sig_ptr, sig_end, &len,
MBEDTLS_ASN1_CONSTRUCTED |
MBEDTLS_ASN1_SEQUENCE);
if (rc != 0) {
return CRYPTO_ERR_SIGNATURE;
}
sig_end = sig_ptr + len;
rc = mbedtls_asn1_get_tag(&sig_ptr, sig_end, &r_len,
MBEDTLS_ASN1_INTEGER);
if (rc != 0) {
return CRYPTO_ERR_SIGNATURE;
}
if (ignore_asn1_int_padding_byte(&sig_ptr, &r_len) != 0) {
return CRYPTO_ERR_SIGNATURE;
}
(void)memcpy((void *)&r_s_pair[0], (const void *)sig_ptr, r_len);
sig_ptr = sig_ptr + r_len;
sig_end = sig_ptr + len - (r_len + (SIZE_OF_ASN1_LEN +
SIZE_OF_ASN1_TAG));
rc = mbedtls_asn1_get_tag(&sig_ptr, sig_end, &s_len,
MBEDTLS_ASN1_INTEGER);
if (rc != 0) {
return CRYPTO_ERR_SIGNATURE;
}
if (ignore_asn1_int_padding_byte(&sig_ptr, &s_len) != 0) {
return CRYPTO_ERR_SIGNATURE;
}
(void)memcpy((void *)&r_s_pair[r_len], (const void *)sig_ptr, s_len);
*sig_len = s_len + r_len;
return 0;
}
#endif /*
* TF_MBEDTLS_KEY_ALG_ID == TF_MBEDTLS_ECDSA || \
* TF_MBEDTLS_KEY_ALG_ID == TF_MBEDTLS_RSA_AND_ECDSA
**/
/*
* This is a helper function that adjusts the start of the pk_start to point to
* the subjectPublicKey bytes within the SubjectPublicKeyInfo block.
*
* SubjectPublicKeyInfo ::= SEQUENCE {
* algorithm AlgorithmIdentifier,
* subjectPublicKey BIT STRING }
*
* This function returns error(CRYPTO_ERR_SIGNATURE) on ASN.1 parsing failure,
* otherwise success(0).
**/
static int pk_bytes_from_subpubkey(unsigned char **pk_start,
unsigned int *pk_len)
{
mbedtls_asn1_buf alg_oid, alg_params;
int rc;
unsigned char *pk_end;
size_t len;
unsigned char *pk_ptr = *pk_start;
pk_end = pk_ptr + *pk_len;
rc = mbedtls_asn1_get_tag(&pk_ptr, pk_end, &len,
MBEDTLS_ASN1_CONSTRUCTED |
MBEDTLS_ASN1_SEQUENCE);
if (rc != 0) {
return CRYPTO_ERR_SIGNATURE;
}
pk_end = pk_ptr + len;
rc = mbedtls_asn1_get_alg(&pk_ptr, pk_end, &alg_oid, &alg_params);
if (rc != 0) {
return CRYPTO_ERR_SIGNATURE;
}
pk_end = pk_ptr + len - (alg_oid.len + alg_params.len +
2 * (SIZE_OF_ASN1_LEN + SIZE_OF_ASN1_TAG));
rc = mbedtls_asn1_get_bitstring_null(&pk_ptr, pk_end, &len);
if (rc != 0) {
return CRYPTO_ERR_SIGNATURE;
}
*pk_start = pk_ptr;
*pk_len = len;
return rc;
}
/*
* NOTE: This has been made internal in mbedtls 3.6.0 and the mbedtls team has
* advised that it's better to copy out the declaration than it would be to
* update to 3.5.2, where this function is exposed.
*/
int mbedtls_x509_get_sig_alg(const mbedtls_x509_buf *sig_oid,
const mbedtls_x509_buf *sig_params,
mbedtls_md_type_t *md_alg,
mbedtls_pk_type_t *pk_alg,
void **sig_opts);
/*
* Verify a signature.
*
* Parameters are passed using the DER encoding format following the ASN.1
* structures detailed above.
*/
static int verify_signature(void *data_ptr, unsigned int data_len,
void *sig_ptr, unsigned int sig_len,
void *sig_alg, unsigned int sig_alg_len,
void *pk_ptr, unsigned int pk_len)
{
mbedtls_asn1_buf sig_oid, sig_params;
mbedtls_asn1_buf signature;
mbedtls_md_type_t md_alg;
mbedtls_pk_type_t pk_alg;
int rc;
void *sig_opts = NULL;
unsigned char *p, *end;
unsigned char *local_sig_ptr;
size_t local_sig_len;
psa_ecc_family_t psa_ecc_family = 0U;
__unused unsigned char reformatted_sig[MAX_ECDSA_R_S_PAIR_LEN] = {0};
/* construct PSA key algo and type */
psa_status_t status = PSA_SUCCESS;
psa_key_attributes_t psa_key_attr = PSA_KEY_ATTRIBUTES_INIT;
psa_key_id_t psa_key_id = PSA_KEY_ID_NULL;
psa_key_type_t psa_key_type;
psa_algorithm_t psa_alg;
/* Get pointers to signature OID and parameters */
p = (unsigned char *)sig_alg;
end = (unsigned char *)(p + sig_alg_len);
rc = mbedtls_asn1_get_alg(&p, end, &sig_oid, &sig_params);
if (rc != 0) {
return CRYPTO_ERR_SIGNATURE;
}
/* Get the actual signature algorithm (MD + PK) */
rc = mbedtls_x509_get_sig_alg(&sig_oid, &sig_params, &md_alg, &pk_alg, &sig_opts);
if (rc != 0) {
return CRYPTO_ERR_SIGNATURE;
}
/* Get the signature (bitstring) */
p = (unsigned char *)sig_ptr;
end = (unsigned char *)(p + sig_len);
signature.tag = *p;
rc = mbedtls_asn1_get_bitstring_null(&p, end, &signature.len);
if ((rc != 0) || ((size_t)(end - p) != signature.len)) {
rc = CRYPTO_ERR_SIGNATURE;
goto end2;
}
local_sig_ptr = p;
local_sig_len = signature.len;
#if TF_MBEDTLS_KEY_ALG_ID == TF_MBEDTLS_ECDSA || \
TF_MBEDTLS_KEY_ALG_ID == TF_MBEDTLS_RSA_AND_ECDSA
if (pk_alg == MBEDTLS_PK_ECDSA) {
rc = get_ecdsa_signature_from_asn1(local_sig_ptr,
&local_sig_len,
reformatted_sig);
if (rc != 0) {
goto end2;
}
local_sig_ptr = reformatted_sig;
rc = get_ecdsa_pkinfo_from_asn1((unsigned char **)&pk_ptr,
&pk_len,
&psa_ecc_family);
if (rc != 0) {
goto end2;
}
}
#endif /*
* TF_MBEDTLS_KEY_ALG_ID == TF_MBEDTLS_ECDSA || \
* TF_MBEDTLS_KEY_ALG_ID == TF_MBEDTLS_RSA_AND_ECDSA
**/
/* Convert this pk_alg and md_alg to PSA key type and key algorithm */
construct_psa_key_alg_and_type(pk_alg, md_alg, psa_ecc_family,
&psa_alg, &psa_key_type);
if ((psa_alg == PSA_ALG_NONE) || (psa_key_type == PSA_KEY_TYPE_NONE)) {
rc = CRYPTO_ERR_SIGNATURE;
goto end2;
}
/* filled-in key_attributes */
psa_set_key_algorithm(&psa_key_attr, psa_alg);
psa_set_key_type(&psa_key_attr, psa_key_type);
psa_set_key_usage_flags(&psa_key_attr, PSA_KEY_USAGE_VERIFY_MESSAGE);
/*
* Note: In the implementation of the psa_import_key function in
* version 3.6.0, the function expects the starting pointer of the
* subject public key instead of the starting point of
* SubjectPublicKeyInfo.
* This is only needed while dealing with RSASSA_PSS (RSA Signature
* scheme with Appendix based on Probabilistic Signature Scheme)
* algorithm.
*/
if (pk_alg == MBEDTLS_PK_RSASSA_PSS) {
rc = pk_bytes_from_subpubkey((unsigned char **) &pk_ptr, &pk_len);
goto end2;
}
/* Get the key_id using import API */
status = psa_import_key(&psa_key_attr,
pk_ptr,
(size_t)pk_len,
&psa_key_id);
if (status != PSA_SUCCESS) {
rc = CRYPTO_ERR_SIGNATURE;
goto end2;
}
/*
* Hash calculation and Signature verification of the given data payload
* is wrapped under the psa_verify_message function.
*/
status = psa_verify_message(psa_key_id, psa_alg,
data_ptr, data_len,
local_sig_ptr, local_sig_len);
if (status != PSA_SUCCESS) {
rc = CRYPTO_ERR_SIGNATURE;
goto end1;
}
/* Signature verification success */
rc = CRYPTO_SUCCESS;
end1:
/*
* Destroy the key if it is created successfully
*/
psa_destroy_key(psa_key_id);
end2:
mbedtls_free(sig_opts);
return rc;
}
/*
* Match a hash
*
* Digest info is passed in DER format following the ASN.1 structure detailed
* above.
*/
static int verify_hash(void *data_ptr, unsigned int data_len,
void *digest_info_ptr, unsigned int digest_info_len)
{
mbedtls_asn1_buf hash_oid, params;
mbedtls_md_type_t md_alg;
unsigned char *p, *end, *hash;
size_t len;
int rc;
psa_status_t status;
psa_algorithm_t psa_md_alg;
/*
* Digest info should be an MBEDTLS_ASN1_SEQUENCE, but padding after
* it is allowed. This is necessary to support multiple hash
* algorithms.
*/
p = (unsigned char *)digest_info_ptr;
end = p + digest_info_len;
rc = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_CONSTRUCTED |
MBEDTLS_ASN1_SEQUENCE);
if (rc != 0) {
return CRYPTO_ERR_HASH;
}
end = p + len;
/* Get the hash algorithm */
rc = mbedtls_asn1_get_alg(&p, end, &hash_oid, &params);
if (rc != 0) {
return CRYPTO_ERR_HASH;
}
/* Hash should be octet string type and consume all bytes */
rc = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_OCTET_STRING);
if ((rc != 0) || ((size_t)(end - p) != len)) {
return CRYPTO_ERR_HASH;
}
hash = p;
rc = mbedtls_oid_get_md_alg(&hash_oid, &md_alg);
if (rc != 0) {
return CRYPTO_ERR_HASH;
}
/* convert the md_alg to psa_algo */
psa_md_alg = mbedtls_md_psa_alg_from_type(md_alg);
/* Length of hash must match the algorithm's size */
if (len != PSA_HASH_LENGTH(psa_md_alg)) {
return CRYPTO_ERR_HASH;
}
/*
* Calculate Hash and compare it against the retrieved hash from
* the certificate (one shot API).
*/
status = psa_hash_compare(psa_md_alg,
data_ptr, (size_t)data_len,
(const uint8_t *)hash, len);
if (status != PSA_SUCCESS) {
return CRYPTO_ERR_HASH;
}
return CRYPTO_SUCCESS;
}
#endif /*
* CRYPTO_SUPPORT == CRYPTO_AUTH_VERIFY_ONLY || \
* CRYPTO_SUPPORT == CRYPTO_AUTH_VERIFY_AND_HASH_CALC
*/
#if CRYPTO_SUPPORT == CRYPTO_HASH_CALC_ONLY || \
CRYPTO_SUPPORT == CRYPTO_AUTH_VERIFY_AND_HASH_CALC
/*
* Map a generic crypto message digest algorithm to the corresponding macro used
* by Mbed TLS.
*/
static inline mbedtls_md_type_t md_type(enum crypto_md_algo algo)
{
switch (algo) {
case CRYPTO_MD_SHA512:
return MBEDTLS_MD_SHA512;
case CRYPTO_MD_SHA384:
return MBEDTLS_MD_SHA384;
case CRYPTO_MD_SHA256:
return MBEDTLS_MD_SHA256;
default:
/* Invalid hash algorithm. */
return MBEDTLS_MD_NONE;
}
}
/*
* Calculate a hash
*
* output points to the computed hash
*/
static int calc_hash(enum crypto_md_algo md_algo, void *data_ptr,
unsigned int data_len,
unsigned char output[CRYPTO_MD_MAX_SIZE])
{
size_t hash_length;
psa_status_t status;
psa_algorithm_t psa_md_alg;
/* convert the md_alg to psa_algo */
psa_md_alg = mbedtls_md_psa_alg_from_type(md_type(md_algo));
/*
* Calculate the hash of the data, it is safe to pass the
* 'output' hash buffer pointer considering its size is always
* bigger than or equal to MBEDTLS_MD_MAX_SIZE.
*/
status = psa_hash_compute(psa_md_alg, data_ptr, (size_t)data_len,
(uint8_t *)output, CRYPTO_MD_MAX_SIZE,
&hash_length);
if (status != PSA_SUCCESS) {
return CRYPTO_ERR_HASH;
}
return CRYPTO_SUCCESS;
}
#endif /*
* CRYPTO_SUPPORT == CRYPTO_HASH_CALC_ONLY || \
* CRYPTO_SUPPORT == CRYPTO_AUTH_VERIFY_AND_HASH_CALC
*/
#if TF_MBEDTLS_USE_AES_GCM
/*
* Stack based buffer allocation for decryption operation. It could
* be configured to balance stack usage vs execution speed.
*/
#define DEC_OP_BUF_SIZE 128
static int aes_gcm_decrypt(void *data_ptr, size_t len, const void *key,
unsigned int key_len, const void *iv,
unsigned int iv_len, const void *tag,
unsigned int tag_len)
{
mbedtls_gcm_context ctx;
mbedtls_cipher_id_t cipher = MBEDTLS_CIPHER_ID_AES;
unsigned char buf[DEC_OP_BUF_SIZE];
unsigned char tag_buf[CRYPTO_MAX_TAG_SIZE];
unsigned char *pt = data_ptr;
size_t dec_len;
int diff, i, rc;
size_t output_length __unused;
mbedtls_gcm_init(&ctx);
rc = mbedtls_gcm_setkey(&ctx, cipher, key, key_len * 8);
if (rc != 0) {
rc = CRYPTO_ERR_DECRYPTION;
goto exit_gcm;
}
#if (MBEDTLS_VERSION_MAJOR < 3)
rc = mbedtls_gcm_starts(&ctx, MBEDTLS_GCM_DECRYPT, iv, iv_len, NULL, 0);
#else
rc = mbedtls_gcm_starts(&ctx, MBEDTLS_GCM_DECRYPT, iv, iv_len);
#endif
if (rc != 0) {
rc = CRYPTO_ERR_DECRYPTION;
goto exit_gcm;
}
while (len > 0) {
dec_len = MIN(sizeof(buf), len);
#if (MBEDTLS_VERSION_MAJOR < 3)
rc = mbedtls_gcm_update(&ctx, dec_len, pt, buf);
#else
rc = mbedtls_gcm_update(&ctx, pt, dec_len, buf, sizeof(buf), &output_length);
#endif
if (rc != 0) {
rc = CRYPTO_ERR_DECRYPTION;
goto exit_gcm;
}
memcpy(pt, buf, dec_len);
pt += dec_len;
len -= dec_len;
}
#if (MBEDTLS_VERSION_MAJOR < 3)
rc = mbedtls_gcm_finish(&ctx, tag_buf, sizeof(tag_buf));
#else
rc = mbedtls_gcm_finish(&ctx, NULL, 0, &output_length, tag_buf, sizeof(tag_buf));
#endif
if (rc != 0) {
rc = CRYPTO_ERR_DECRYPTION;
goto exit_gcm;
}
/* Check tag in "constant-time" */
for (diff = 0, i = 0; i < tag_len; i++)
diff |= ((const unsigned char *)tag)[i] ^ tag_buf[i];
if (diff != 0) {
rc = CRYPTO_ERR_DECRYPTION;
goto exit_gcm;
}
/* GCM decryption success */
rc = CRYPTO_SUCCESS;
exit_gcm:
mbedtls_gcm_free(&ctx);
return rc;
}
/*
* Authenticated decryption of an image
*/
static int auth_decrypt(enum crypto_dec_algo dec_algo, void *data_ptr,
size_t len, const void *key, unsigned int key_len,
unsigned int key_flags, const void *iv,
unsigned int iv_len, const void *tag,
unsigned int tag_len)
{
int rc;
assert((key_flags & ENC_KEY_IS_IDENTIFIER) == 0);
switch (dec_algo) {
case CRYPTO_GCM_DECRYPT:
rc = aes_gcm_decrypt(data_ptr, len, key, key_len, iv, iv_len,
tag, tag_len);
if (rc != 0)
return rc;
break;
default:
return CRYPTO_ERR_DECRYPTION;
}
return CRYPTO_SUCCESS;
}
#endif /* TF_MBEDTLS_USE_AES_GCM */
/*
* Register crypto library descriptor
*/
#if CRYPTO_SUPPORT == CRYPTO_AUTH_VERIFY_AND_HASH_CALC
#if TF_MBEDTLS_USE_AES_GCM
REGISTER_CRYPTO_LIB(LIB_NAME, init, verify_signature, verify_hash, calc_hash,
auth_decrypt, NULL);
#else
REGISTER_CRYPTO_LIB(LIB_NAME, init, verify_signature, verify_hash, calc_hash,
NULL, NULL);
#endif
#elif CRYPTO_SUPPORT == CRYPTO_AUTH_VERIFY_ONLY
#if TF_MBEDTLS_USE_AES_GCM
REGISTER_CRYPTO_LIB(LIB_NAME, init, verify_signature, verify_hash, NULL,
auth_decrypt, NULL);
#else
REGISTER_CRYPTO_LIB(LIB_NAME, init, verify_signature, verify_hash, NULL,
NULL, NULL);
#endif
#elif CRYPTO_SUPPORT == CRYPTO_HASH_CALC_ONLY
REGISTER_CRYPTO_LIB(LIB_NAME, init, NULL, NULL, calc_hash, NULL, NULL);
#endif /* CRYPTO_SUPPORT == CRYPTO_AUTH_VERIFY_AND_HASH_CALC */