| /* |
| * Copyright (c) 2016, ARM Limited and Contributors. All rights reserved. |
| * |
| * SPDX-License-Identifier: BSD-3-Clause |
| */ |
| #include <arm_gic.h> |
| #include <assert.h> |
| #include <arch_helpers.h> |
| #include <bl_common.h> |
| #include <cci.h> |
| #include <common_def.h> |
| #include <console.h> |
| #include <context_mgmt.h> |
| #include <debug.h> |
| #include <generic_delay_timer.h> |
| #include <mcucfg.h> |
| #include <mmio.h> |
| #include <mtk_sip_svc.h> |
| #include <mtk_plat_common.h> |
| #include <mt_cpuxgpt.h> |
| #include <platform.h> |
| #include <plat_private.h> |
| #include <string.h> |
| #include <xlat_tables.h> |
| /******************************************************************************* |
| * Declarations of linker defined symbols which will help us find the layout |
| * of trusted SRAM |
| ******************************************************************************/ |
| unsigned long __RO_START__; |
| unsigned long __RO_END__; |
| |
| /* |
| * The next 2 constants identify the extents of the code & RO data region. |
| * These addresses are used by the MMU setup code and therefore they must be |
| * page-aligned. It is the responsibility of the linker script to ensure that |
| * __RO_START__ and __RO_END__ linker symbols refer to page-aligned addresses. |
| */ |
| #define BL31_RO_BASE (unsigned long)(&__RO_START__) |
| #define BL31_RO_LIMIT (unsigned long)(&__RO_END__) |
| |
| /* |
| * Placeholder variables for copying the arguments that have been passed to |
| * BL3-1 from BL2. |
| */ |
| static entry_point_info_t bl32_image_ep_info; |
| static entry_point_info_t bl33_image_ep_info; |
| |
| static const int cci_map[] = { |
| PLAT_MT_CCI_CLUSTER0_SL_IFACE_IX, |
| PLAT_MT_CCI_CLUSTER1_SL_IFACE_IX |
| }; |
| |
| static uint32_t cci_map_length = ARRAY_SIZE(cci_map); |
| |
| /* Table of regions to map using the MMU. */ |
| static const mmap_region_t plat_mmap[] = { |
| /* for TF text, RO, RW */ |
| MAP_REGION_FLAT(MTK_DEV_RNG0_BASE, MTK_DEV_RNG0_SIZE, |
| MT_DEVICE | MT_RW | MT_SECURE), |
| MAP_REGION_FLAT(MTK_DEV_RNG1_BASE, MTK_DEV_RNG1_SIZE, |
| MT_DEVICE | MT_RW | MT_SECURE), |
| MAP_REGION_FLAT(RAM_CONSOLE_BASE & ~(PAGE_SIZE_MASK), RAM_CONSOLE_SIZE, |
| MT_DEVICE | MT_RW | MT_NS), |
| { 0 } |
| |
| }; |
| |
| /******************************************************************************* |
| * Macro generating the code for the function setting up the pagetables as per |
| * the platform memory map & initialize the mmu, for the given exception level |
| ******************************************************************************/ |
| #define DEFINE_CONFIGURE_MMU_EL(_el) \ |
| void plat_configure_mmu_el ## _el(unsigned long total_base, \ |
| unsigned long total_size, \ |
| unsigned long ro_start, \ |
| unsigned long ro_limit, \ |
| unsigned long coh_start, \ |
| unsigned long coh_limit) \ |
| { \ |
| mmap_add_region(total_base, total_base, \ |
| total_size, \ |
| MT_MEMORY | MT_RW | MT_SECURE); \ |
| mmap_add_region(ro_start, ro_start, \ |
| ro_limit - ro_start, \ |
| MT_MEMORY | MT_RO | MT_SECURE); \ |
| mmap_add_region(coh_start, coh_start, \ |
| coh_limit - coh_start, \ |
| MT_DEVICE | MT_RW | MT_SECURE); \ |
| mmap_add(plat_mmap); \ |
| init_xlat_tables(); \ |
| \ |
| enable_mmu_el ## _el(0); \ |
| } |
| |
| /* Define EL3 variants of the function initialising the MMU */ |
| DEFINE_CONFIGURE_MMU_EL(3) |
| |
| unsigned int plat_get_syscnt_freq2(void) |
| { |
| return SYS_COUNTER_FREQ_IN_TICKS; |
| } |
| |
| void plat_cci_init(void) |
| { |
| /* Initialize CCI driver */ |
| cci_init(PLAT_MT_CCI_BASE, cci_map, cci_map_length); |
| } |
| |
| void plat_cci_enable(void) |
| { |
| /* |
| * Enable CCI coherency for this cluster. |
| * No need for locks as no other cpu is active at the moment. |
| */ |
| cci_enable_snoop_dvm_reqs(MPIDR_AFFLVL1_VAL(read_mpidr())); |
| } |
| |
| void plat_cci_disable(void) |
| { |
| cci_disable_snoop_dvm_reqs(MPIDR_AFFLVL1_VAL(read_mpidr())); |
| } |
| |
| |
| static void platform_setup_cpu(void) |
| { |
| /* setup big cores */ |
| mmio_write_32((uintptr_t)&mt6795_mcucfg->mp1_config_res, |
| MP1_DIS_RGU0_WAIT_PD_CPUS_L1_ACK | |
| MP1_DIS_RGU1_WAIT_PD_CPUS_L1_ACK | |
| MP1_DIS_RGU2_WAIT_PD_CPUS_L1_ACK | |
| MP1_DIS_RGU3_WAIT_PD_CPUS_L1_ACK | |
| MP1_DIS_RGU_NOCPU_WAIT_PD_CPUS_L1_ACK); |
| mmio_setbits_32((uintptr_t)&mt6795_mcucfg->mp1_miscdbg, MP1_AINACTS); |
| mmio_setbits_32((uintptr_t)&mt6795_mcucfg->mp1_clkenm_div, |
| MP1_SW_CG_GEN); |
| mmio_clrbits_32((uintptr_t)&mt6795_mcucfg->mp1_rst_ctl, |
| MP1_L2RSTDISABLE); |
| |
| /* set big cores arm64 boot mode */ |
| mmio_setbits_32((uintptr_t)&mt6795_mcucfg->mp1_cpucfg, |
| MP1_CPUCFG_64BIT); |
| |
| /* set LITTLE cores arm64 boot mode */ |
| mmio_setbits_32((uintptr_t)&mt6795_mcucfg->mp0_rv_addr[0].rv_addr_hw, |
| MP0_CPUCFG_64BIT); |
| } |
| |
| /******************************************************************************* |
| * Return a pointer to the 'entry_point_info' structure of the next image for |
| * the security state specified. BL33 corresponds to the non-secure image type |
| * while BL32 corresponds to the secure image type. A NULL pointer is returned |
| * if the image does not exist. |
| ******************************************************************************/ |
| entry_point_info_t *bl31_plat_get_next_image_ep_info(uint32_t type) |
| { |
| entry_point_info_t *next_image_info; |
| |
| next_image_info = (type == NON_SECURE) ? |
| &bl33_image_ep_info : &bl32_image_ep_info; |
| |
| /* None of the images on this platform can have 0x0 as the entrypoint */ |
| if (next_image_info->pc) |
| return next_image_info; |
| else |
| return NULL; |
| } |
| |
| /******************************************************************************* |
| * Perform any BL3-1 early platform setup. Here is an opportunity to copy |
| * parameters passed by the calling EL (S-EL1 in BL2 & S-EL3 in BL1) before they |
| * are lost (potentially). This needs to be done before the MMU is initialized |
| * so that the memory layout can be used while creating page tables. |
| * BL2 has flushed this information to memory, so we are guaranteed to pick up |
| * good data. |
| ******************************************************************************/ |
| void bl31_early_platform_setup(bl31_params_t *from_bl2, |
| void *plat_params_from_bl2) |
| { |
| struct mtk_bl_param_t *pmtk_bl_param = |
| (struct mtk_bl_param_t *)from_bl2; |
| struct atf_arg_t *teearg; |
| unsigned long long normal_base; |
| unsigned long long atf_base; |
| |
| assert(from_bl2 != NULL); |
| /* |
| * Mediatek preloader(i.e, BL2) is in 32 bit state, high 32bits |
| * of 64 bit GP registers are UNKNOWN if CPU warm reset from 32 bit |
| * to 64 bit state. So we need to clear high 32bit, |
| * which may be random value. |
| */ |
| pmtk_bl_param = |
| (struct mtk_bl_param_t *)((uint64_t)pmtk_bl_param & 0x00000000ffffffff); |
| plat_params_from_bl2 = |
| (void *)((uint64_t)plat_params_from_bl2 & 0x00000000ffffffff); |
| |
| teearg = (struct atf_arg_t *)pmtk_bl_param->tee_info_addr; |
| |
| console_init(teearg->atf_log_port, UART_CLOCK, UART_BAUDRATE); |
| memcpy((void *)>eearg, (void *)teearg, sizeof(struct atf_arg_t)); |
| |
| normal_base = 0; |
| /* in ATF boot time, timer for cntpct_el0 is not initialized |
| * so it will not count now. |
| */ |
| atf_base = read_cntpct_el0(); |
| sched_clock_init(normal_base, atf_base); |
| |
| VERBOSE("bl31_setup\n"); |
| |
| /* Populate entry point information for BL3-2 and BL3-3 */ |
| SET_PARAM_HEAD(&bl32_image_ep_info, |
| PARAM_EP, |
| VERSION_1, |
| 0); |
| SET_SECURITY_STATE(bl32_image_ep_info.h.attr, SECURE); |
| bl32_image_ep_info.pc = BL32_BASE; |
| |
| SET_PARAM_HEAD(&bl33_image_ep_info, |
| PARAM_EP, |
| VERSION_1, |
| 0); |
| /* |
| * Tell BL3-1 where the non-trusted software image |
| * is located and the entry state information |
| */ |
| /* BL33_START_ADDRESS */ |
| bl33_image_ep_info.pc = pmtk_bl_param->bl33_start_addr; |
| bl33_image_ep_info.spsr = plat_get_spsr_for_bl33_entry(); |
| bl33_image_ep_info.args.arg4 = pmtk_bl_param->bootarg_loc; |
| bl33_image_ep_info.args.arg5 = pmtk_bl_param->bootarg_size; |
| SET_SECURITY_STATE(bl33_image_ep_info.h.attr, NON_SECURE); |
| } |
| /******************************************************************************* |
| * Perform any BL3-1 platform setup code |
| ******************************************************************************/ |
| |
| void bl31_platform_setup(void) |
| { |
| platform_setup_cpu(); |
| |
| generic_delay_timer_init(); |
| |
| plat_mt_gic_driver_init(); |
| /* Initialize the gic cpu and distributor interfaces */ |
| plat_mt_gic_init(); |
| |
| /* Topologies are best known to the platform. */ |
| mt_setup_topology(); |
| } |
| /******************************************************************************* |
| * Perform the very early platform specific architectural setup here. At the |
| * moment this is only intializes the mmu in a quick and dirty way. |
| * Init MTK propiartary log buffer control field. |
| ******************************************************************************/ |
| void bl31_plat_arch_setup(void) |
| { |
| /* Enable non-secure access to CCI-400 registers */ |
| mmio_write_32(CCI400_BASE + CCI_SEC_ACCESS_OFFSET, 0x1); |
| |
| plat_cci_init(); |
| plat_cci_enable(); |
| |
| if (gteearg.atf_log_buf_size != 0) { |
| INFO("mmap atf buffer : 0x%x, 0x%x\n\r", |
| gteearg.atf_log_buf_start, |
| gteearg.atf_log_buf_size); |
| |
| mmap_add_region( |
| gteearg.atf_log_buf_start & |
| ~(PAGE_SIZE_2MB_MASK), |
| gteearg.atf_log_buf_start & |
| ~(PAGE_SIZE_2MB_MASK), |
| PAGE_SIZE_2MB, |
| MT_DEVICE | MT_RW | MT_NS); |
| |
| INFO("mmap atf buffer (force 2MB aligned):0x%x, 0x%x\n", |
| (gteearg.atf_log_buf_start & ~(PAGE_SIZE_2MB_MASK)), |
| PAGE_SIZE_2MB); |
| } |
| /* |
| * add TZRAM_BASE to memory map |
| * then set RO and COHERENT to different attribute |
| */ |
| plat_configure_mmu_el3( |
| (TZRAM_BASE & ~(PAGE_SIZE_MASK)), |
| (TZRAM_SIZE & ~(PAGE_SIZE_MASK)), |
| (BL31_RO_BASE & ~(PAGE_SIZE_MASK)), |
| BL31_RO_LIMIT, |
| BL_COHERENT_RAM_BASE, |
| BL_COHERENT_RAM_END); |
| /* Initialize for ATF log buffer */ |
| if (gteearg.atf_log_buf_size != 0) { |
| gteearg.atf_aee_debug_buf_size = ATF_AEE_BUFFER_SIZE; |
| gteearg.atf_aee_debug_buf_start = |
| gteearg.atf_log_buf_start + |
| gteearg.atf_log_buf_size - ATF_AEE_BUFFER_SIZE; |
| INFO("ATF log service is registered (0x%x, aee:0x%x)\n", |
| gteearg.atf_log_buf_start, |
| gteearg.atf_aee_debug_buf_start); |
| } else{ |
| gteearg.atf_aee_debug_buf_size = 0; |
| gteearg.atf_aee_debug_buf_start = 0; |
| } |
| |
| /* Platform code before bl31_main */ |
| /* compatible to the earlier chipset */ |
| |
| /* Show to ATF log buffer & UART */ |
| INFO("BL3-1: %s\n", version_string); |
| INFO("BL3-1: %s\n", build_message); |
| |
| } |
| #if 0 |
| /* MTK Define */ |
| #define ACTLR_CPUECTLR_BIT (1 << 1) |
| |
| void enable_ns_access_to_cpuectlr(void) |
| { |
| unsigned int next_actlr; |
| |
| |
| /* ACTLR_EL1 do not implement CUPECTLR */ |
| next_actlr = read_actlr_el2(); |
| next_actlr |= ACTLR_CPUECTLR_BIT; |
| write_actlr_el2(next_actlr); |
| |
| next_actlr = read_actlr_el3(); |
| next_actlr |= ACTLR_CPUECTLR_BIT; |
| write_actlr_el3(next_actlr); |
| } |
| #endif |
| /******************************************************************************* |
| * This function prepare boot argument for 64 bit kernel entry |
| ******************************************************************************/ |
| static entry_point_info_t *bl31_plat_get_next_kernel64_ep_info(void) |
| { |
| entry_point_info_t *next_image_info; |
| unsigned long el_status; |
| unsigned int mode; |
| |
| el_status = 0; |
| mode = 0; |
| |
| /* Kernel image is always non-secured */ |
| next_image_info = &bl33_image_ep_info; |
| |
| /* Figure out what mode we enter the non-secure world in */ |
| el_status = read_id_aa64pfr0_el1() >> ID_AA64PFR0_EL2_SHIFT; |
| el_status &= ID_AA64PFR0_ELX_MASK; |
| |
| if (el_status) { |
| INFO("Kernel_EL2\n"); |
| mode = MODE_EL2; |
| } else{ |
| INFO("Kernel_EL1\n"); |
| mode = MODE_EL1; |
| } |
| |
| INFO("Kernel is 64Bit\n"); |
| next_image_info->spsr = |
| SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS); |
| next_image_info->pc = get_kernel_info_pc(); |
| next_image_info->args.arg0 = get_kernel_info_r0(); |
| next_image_info->args.arg1 = get_kernel_info_r1(); |
| |
| INFO("pc=0x%lx, r0=0x%lx, r1=0x%lx\n", |
| next_image_info->pc, |
| next_image_info->args.arg0, |
| next_image_info->args.arg1); |
| |
| |
| SET_SECURITY_STATE(next_image_info->h.attr, NON_SECURE); |
| |
| /* None of the images on this platform can have 0x0 as the entrypoint */ |
| if (next_image_info->pc) |
| return next_image_info; |
| else |
| return NULL; |
| } |
| |
| /******************************************************************************* |
| * This function prepare boot argument for 32 bit kernel entry |
| ******************************************************************************/ |
| static entry_point_info_t *bl31_plat_get_next_kernel32_ep_info(void) |
| { |
| entry_point_info_t *next_image_info; |
| unsigned int mode; |
| |
| mode = 0; |
| |
| /* Kernel image is always non-secured */ |
| next_image_info = &bl33_image_ep_info; |
| |
| /* Figure out what mode we enter the non-secure world in */ |
| mode = MODE32_hyp; |
| /* |
| * TODO: Consider the possibility of specifying the SPSR in |
| * the FIP ToC and allowing the platform to have a say as |
| * well. |
| */ |
| |
| INFO("Kernel is 32Bit\n"); |
| next_image_info->spsr = |
| SPSR_MODE32(mode, SPSR_T_ARM, SPSR_E_LITTLE, |
| (DAIF_FIQ_BIT | DAIF_IRQ_BIT | DAIF_ABT_BIT)); |
| next_image_info->pc = get_kernel_info_pc(); |
| next_image_info->args.arg0 = get_kernel_info_r0(); |
| next_image_info->args.arg1 = get_kernel_info_r1(); |
| next_image_info->args.arg2 = get_kernel_info_r2(); |
| |
| INFO("pc=0x%lx, r0=0x%lx, r1=0x%lx, r2=0x%lx\n", |
| next_image_info->pc, |
| next_image_info->args.arg0, |
| next_image_info->args.arg1, |
| next_image_info->args.arg2); |
| |
| |
| SET_SECURITY_STATE(next_image_info->h.attr, NON_SECURE); |
| |
| /* None of the images on this platform can have 0x0 as the entrypoint */ |
| if (next_image_info->pc) |
| return next_image_info; |
| else |
| return NULL; |
| } |
| |
| /******************************************************************************* |
| * This function prepare boot argument for kernel entrypoint |
| ******************************************************************************/ |
| void bl31_prepare_kernel_entry(uint64_t k32_64) |
| { |
| entry_point_info_t *next_image_info; |
| uint32_t image_type; |
| |
| /* Determine which image to execute next */ |
| /* image_type = bl31_get_next_image_type(); */ |
| image_type = NON_SECURE; |
| |
| /* Program EL3 registers to enable entry into the next EL */ |
| if (k32_64 == 0) |
| next_image_info = bl31_plat_get_next_kernel32_ep_info(); |
| else |
| next_image_info = bl31_plat_get_next_kernel64_ep_info(); |
| |
| assert(next_image_info); |
| assert(image_type == GET_SECURITY_STATE(next_image_info->h.attr)); |
| |
| INFO("BL3-1: Preparing for EL3 exit to %s world, Kernel\n", |
| (image_type == SECURE) ? "secure" : "normal"); |
| INFO("BL3-1: Next image address = 0x%llx\n", |
| (unsigned long long) next_image_info->pc); |
| INFO("BL3-1: Next image spsr = 0x%x\n", next_image_info->spsr); |
| cm_init_context(read_mpidr_el1(), next_image_info); |
| cm_prepare_el3_exit(image_type); |
| } |