| /* |
| * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved. |
| * |
| * SPDX-License-Identifier: BSD-3-Clause |
| */ |
| |
| #include <arch.h> |
| #include <arch_helpers.h> |
| #include <assert.h> |
| #include <bl_common.h> |
| #include <context.h> |
| #include <context_mgmt.h> |
| #include <interrupt_mgmt.h> |
| #include <platform.h> |
| #include <platform_def.h> |
| #include <smcc_helpers.h> |
| #include <string.h> |
| #include <utils.h> |
| |
| |
| /******************************************************************************* |
| * Context management library initialisation routine. This library is used by |
| * runtime services to share pointers to 'cpu_context' structures for the secure |
| * and non-secure states. Management of the structures and their associated |
| * memory is not done by the context management library e.g. the PSCI service |
| * manages the cpu context used for entry from and exit to the non-secure state. |
| * The Secure payload dispatcher service manages the context(s) corresponding to |
| * the secure state. It also uses this library to get access to the non-secure |
| * state cpu context pointers. |
| * Lastly, this library provides the api to make SP_EL3 point to the cpu context |
| * which will used for programming an entry into a lower EL. The same context |
| * will used to save state upon exception entry from that EL. |
| ******************************************************************************/ |
| void cm_init(void) |
| { |
| /* |
| * The context management library has only global data to intialize, but |
| * that will be done when the BSS is zeroed out |
| */ |
| } |
| |
| /******************************************************************************* |
| * The following function initializes the cpu_context 'ctx' for |
| * first use, and sets the initial entrypoint state as specified by the |
| * entry_point_info structure. |
| * |
| * The security state to initialize is determined by the SECURE attribute |
| * of the entry_point_info. The function returns a pointer to the initialized |
| * context and sets this as the next context to return to. |
| * |
| * The EE and ST attributes are used to configure the endianess and secure |
| * timer availability for the new execution context. |
| * |
| * To prepare the register state for entry call cm_prepare_el3_exit() and |
| * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to |
| * cm_e1_sysreg_context_restore(). |
| ******************************************************************************/ |
| static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep) |
| { |
| unsigned int security_state; |
| uint32_t scr_el3; |
| el3_state_t *state; |
| gp_regs_t *gp_regs; |
| unsigned long sctlr_elx; |
| |
| assert(ctx); |
| |
| security_state = GET_SECURITY_STATE(ep->h.attr); |
| |
| /* Clear any residual register values from the context */ |
| zeromem(ctx, sizeof(*ctx)); |
| |
| /* |
| * Base the context SCR on the current value, adjust for entry point |
| * specific requirements and set trap bits from the IMF |
| * TODO: provide the base/global SCR bits using another mechanism? |
| */ |
| scr_el3 = read_scr(); |
| scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT | |
| SCR_ST_BIT | SCR_HCE_BIT); |
| |
| if (security_state != SECURE) |
| scr_el3 |= SCR_NS_BIT; |
| |
| if (GET_RW(ep->spsr) == MODE_RW_64) |
| scr_el3 |= SCR_RW_BIT; |
| |
| if (EP_GET_ST(ep->h.attr)) |
| scr_el3 |= SCR_ST_BIT; |
| |
| #ifndef HANDLE_EA_EL3_FIRST |
| /* Explicitly stop to trap aborts from lower exception levels. */ |
| scr_el3 &= ~SCR_EA_BIT; |
| #endif |
| |
| #ifdef IMAGE_BL31 |
| /* |
| * IRQ/FIQ bits only need setting if interrupt routing |
| * model has been set up for BL31. |
| */ |
| scr_el3 |= get_scr_el3_from_routing_model(security_state); |
| #endif |
| |
| /* |
| * Set up SCTLR_ELx for the target exception level: |
| * EE bit is taken from the entrypoint attributes |
| * M, C and I bits must be zero (as required by PSCI specification) |
| * |
| * The target exception level is based on the spsr mode requested. |
| * If execution is requested to EL2 or hyp mode, HVC is enabled |
| * via SCR_EL3.HCE. |
| * |
| * Always compute the SCTLR_EL1 value and save in the cpu_context |
| * - the EL2 registers are set up by cm_preapre_ns_entry() as they |
| * are not part of the stored cpu_context |
| * |
| * TODO: In debug builds the spsr should be validated and checked |
| * against the CPU support, security state, endianess and pc |
| */ |
| sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0; |
| if (GET_RW(ep->spsr) == MODE_RW_64) |
| sctlr_elx |= SCTLR_EL1_RES1; |
| else { |
| sctlr_elx |= SCTLR_AARCH32_EL1_RES1; |
| /* |
| * If lower non-secure EL is AArch32, enable the CP15BEN, nTWI |
| * & nTWI bits. This aligns with SCTLR initialization on |
| * systems with an AArch32 EL3, where these bits |
| * architecturally reset to 1. |
| */ |
| if (security_state != SECURE) |
| sctlr_elx |= SCTLR_CP15BEN_BIT | SCTLR_NTWI_BIT |
| | SCTLR_NTWE_BIT; |
| } |
| |
| write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx); |
| |
| if ((GET_RW(ep->spsr) == MODE_RW_64 |
| && GET_EL(ep->spsr) == MODE_EL2) |
| || (GET_RW(ep->spsr) != MODE_RW_64 |
| && GET_M32(ep->spsr) == MODE32_hyp)) { |
| scr_el3 |= SCR_HCE_BIT; |
| } |
| |
| /* Populate EL3 state so that we've the right context before doing ERET */ |
| state = get_el3state_ctx(ctx); |
| write_ctx_reg(state, CTX_SCR_EL3, scr_el3); |
| write_ctx_reg(state, CTX_ELR_EL3, ep->pc); |
| write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr); |
| |
| /* |
| * Store the X0-X7 value from the entrypoint into the context |
| * Use memcpy as we are in control of the layout of the structures |
| */ |
| gp_regs = get_gpregs_ctx(ctx); |
| memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t)); |
| } |
| |
| /******************************************************************************* |
| * The following function initializes the cpu_context for a CPU specified by |
| * its `cpu_idx` for first use, and sets the initial entrypoint state as |
| * specified by the entry_point_info structure. |
| ******************************************************************************/ |
| void cm_init_context_by_index(unsigned int cpu_idx, |
| const entry_point_info_t *ep) |
| { |
| cpu_context_t *ctx; |
| ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr)); |
| cm_init_context_common(ctx, ep); |
| } |
| |
| /******************************************************************************* |
| * The following function initializes the cpu_context for the current CPU |
| * for first use, and sets the initial entrypoint state as specified by the |
| * entry_point_info structure. |
| ******************************************************************************/ |
| void cm_init_my_context(const entry_point_info_t *ep) |
| { |
| cpu_context_t *ctx; |
| ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr)); |
| cm_init_context_common(ctx, ep); |
| } |
| |
| /******************************************************************************* |
| * Prepare the CPU system registers for first entry into secure or normal world |
| * |
| * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized |
| * If execution is requested to non-secure EL1 or svc mode, and the CPU supports |
| * EL2 then EL2 is disabled by configuring all necessary EL2 registers. |
| * For all entries, the EL1 registers are initialized from the cpu_context |
| ******************************************************************************/ |
| void cm_prepare_el3_exit(uint32_t security_state) |
| { |
| uint32_t sctlr_elx, scr_el3, cptr_el2; |
| cpu_context_t *ctx = cm_get_context(security_state); |
| |
| assert(ctx); |
| |
| if (security_state == NON_SECURE) { |
| scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3); |
| if (scr_el3 & SCR_HCE_BIT) { |
| /* Use SCTLR_EL1.EE value to initialise sctlr_el2 */ |
| sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx), |
| CTX_SCTLR_EL1); |
| sctlr_elx &= ~SCTLR_EE_BIT; |
| sctlr_elx |= SCTLR_EL2_RES1; |
| write_sctlr_el2(sctlr_elx); |
| } else if (read_id_aa64pfr0_el1() & |
| (ID_AA64PFR0_ELX_MASK << ID_AA64PFR0_EL2_SHIFT)) { |
| /* EL2 present but unused, need to disable safely */ |
| |
| /* HCR_EL2 = 0, except RW bit set to match SCR_EL3 */ |
| write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0); |
| |
| /* SCTLR_EL2 : can be ignored when bypassing */ |
| |
| /* CPTR_EL2 : disable all traps TCPAC, TTA, TFP */ |
| cptr_el2 = read_cptr_el2(); |
| cptr_el2 &= ~(TCPAC_BIT | TTA_BIT | TFP_BIT); |
| write_cptr_el2(cptr_el2); |
| |
| /* Enable EL1 access to timer */ |
| write_cnthctl_el2(EL1PCEN_BIT | EL1PCTEN_BIT); |
| |
| /* Reset CNTVOFF_EL2 */ |
| write_cntvoff_el2(0); |
| |
| /* Set VPIDR, VMPIDR to match MIDR, MPIDR */ |
| write_vpidr_el2(read_midr_el1()); |
| write_vmpidr_el2(read_mpidr_el1()); |
| |
| /* |
| * Reset VTTBR_EL2. |
| * Needed because cache maintenance operations depend on |
| * the VMID even when non-secure EL1&0 stage 2 address |
| * translation are disabled. |
| */ |
| write_vttbr_el2(0); |
| /* |
| * Avoid unexpected debug traps in case where MDCR_EL2 |
| * is not completely reset by the hardware - set |
| * MDCR_EL2.HPMN to PMCR_EL0.N and zero the remaining |
| * bits. |
| * MDCR_EL2.HPMN and PMCR_EL0.N fields are the same size |
| * (5 bits) and HPMN is at offset zero within MDCR_EL2. |
| */ |
| write_mdcr_el2((read_pmcr_el0() & PMCR_EL0_N_BITS) |
| >> PMCR_EL0_N_SHIFT); |
| /* |
| * Avoid unexpected traps of non-secure access to |
| * certain system registers at EL1 or lower where |
| * HSTR_EL2 is not completely reset to zero by the |
| * hardware - zero the entire register. |
| */ |
| write_hstr_el2(0); |
| /* |
| * Reset CNTHP_CTL_EL2 to disable the EL2 physical timer |
| * and therefore prevent timer interrupts. |
| */ |
| write_cnthp_ctl_el2(0); |
| } |
| } |
| |
| el1_sysregs_context_restore(get_sysregs_ctx(ctx)); |
| |
| cm_set_next_context(ctx); |
| } |
| |
| /******************************************************************************* |
| * The next four functions are used by runtime services to save and restore |
| * EL1 context on the 'cpu_context' structure for the specified security |
| * state. |
| ******************************************************************************/ |
| void cm_el1_sysregs_context_save(uint32_t security_state) |
| { |
| cpu_context_t *ctx; |
| |
| ctx = cm_get_context(security_state); |
| assert(ctx); |
| |
| el1_sysregs_context_save(get_sysregs_ctx(ctx)); |
| } |
| |
| void cm_el1_sysregs_context_restore(uint32_t security_state) |
| { |
| cpu_context_t *ctx; |
| |
| ctx = cm_get_context(security_state); |
| assert(ctx); |
| |
| el1_sysregs_context_restore(get_sysregs_ctx(ctx)); |
| } |
| |
| /******************************************************************************* |
| * This function populates ELR_EL3 member of 'cpu_context' pertaining to the |
| * given security state with the given entrypoint |
| ******************************************************************************/ |
| void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint) |
| { |
| cpu_context_t *ctx; |
| el3_state_t *state; |
| |
| ctx = cm_get_context(security_state); |
| assert(ctx); |
| |
| /* Populate EL3 state so that ERET jumps to the correct entry */ |
| state = get_el3state_ctx(ctx); |
| write_ctx_reg(state, CTX_ELR_EL3, entrypoint); |
| } |
| |
| /******************************************************************************* |
| * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context' |
| * pertaining to the given security state |
| ******************************************************************************/ |
| void cm_set_elr_spsr_el3(uint32_t security_state, |
| uintptr_t entrypoint, uint32_t spsr) |
| { |
| cpu_context_t *ctx; |
| el3_state_t *state; |
| |
| ctx = cm_get_context(security_state); |
| assert(ctx); |
| |
| /* Populate EL3 state so that ERET jumps to the correct entry */ |
| state = get_el3state_ctx(ctx); |
| write_ctx_reg(state, CTX_ELR_EL3, entrypoint); |
| write_ctx_reg(state, CTX_SPSR_EL3, spsr); |
| } |
| |
| /******************************************************************************* |
| * This function updates a single bit in the SCR_EL3 member of the 'cpu_context' |
| * pertaining to the given security state using the value and bit position |
| * specified in the parameters. It preserves all other bits. |
| ******************************************************************************/ |
| void cm_write_scr_el3_bit(uint32_t security_state, |
| uint32_t bit_pos, |
| uint32_t value) |
| { |
| cpu_context_t *ctx; |
| el3_state_t *state; |
| uint32_t scr_el3; |
| |
| ctx = cm_get_context(security_state); |
| assert(ctx); |
| |
| /* Ensure that the bit position is a valid one */ |
| assert((1 << bit_pos) & SCR_VALID_BIT_MASK); |
| |
| /* Ensure that the 'value' is only a bit wide */ |
| assert(value <= 1); |
| |
| /* |
| * Get the SCR_EL3 value from the cpu context, clear the desired bit |
| * and set it to its new value. |
| */ |
| state = get_el3state_ctx(ctx); |
| scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); |
| scr_el3 &= ~(1 << bit_pos); |
| scr_el3 |= value << bit_pos; |
| write_ctx_reg(state, CTX_SCR_EL3, scr_el3); |
| } |
| |
| /******************************************************************************* |
| * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the |
| * given security state. |
| ******************************************************************************/ |
| uint32_t cm_get_scr_el3(uint32_t security_state) |
| { |
| cpu_context_t *ctx; |
| el3_state_t *state; |
| |
| ctx = cm_get_context(security_state); |
| assert(ctx); |
| |
| /* Populate EL3 state so that ERET jumps to the correct entry */ |
| state = get_el3state_ctx(ctx); |
| return read_ctx_reg(state, CTX_SCR_EL3); |
| } |
| |
| /******************************************************************************* |
| * This function is used to program the context that's used for exception |
| * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for |
| * the required security state |
| ******************************************************************************/ |
| void cm_set_next_eret_context(uint32_t security_state) |
| { |
| cpu_context_t *ctx; |
| |
| ctx = cm_get_context(security_state); |
| assert(ctx); |
| |
| cm_set_next_context(ctx); |
| } |