| /* |
| * Copyright (C) 2018-2022, STMicroelectronics - All Rights Reserved |
| * |
| * SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause |
| */ |
| |
| #include <errno.h> |
| #include <stddef.h> |
| |
| #include <arch.h> |
| #include <arch_helpers.h> |
| #include <common/debug.h> |
| #include <drivers/clk.h> |
| #include <drivers/delay_timer.h> |
| #include <drivers/st/stm32mp1_ddr.h> |
| #include <drivers/st/stm32mp1_ddr_regs.h> |
| #include <drivers/st/stm32mp1_pwr.h> |
| #include <drivers/st/stm32mp1_ram.h> |
| #include <drivers/st/stm32mp_ddr.h> |
| #include <lib/mmio.h> |
| #include <plat/common/platform.h> |
| |
| #include <platform_def.h> |
| |
| #define DDRCTL_REG(x, y) \ |
| { \ |
| .name = #x, \ |
| .offset = offsetof(struct stm32mp_ddrctl, x), \ |
| .par_offset = offsetof(struct y, x) \ |
| } |
| |
| #define DDRPHY_REG(x, y) \ |
| { \ |
| .name = #x, \ |
| .offset = offsetof(struct stm32mp_ddrphy, x), \ |
| .par_offset = offsetof(struct y, x) \ |
| } |
| |
| /* |
| * PARAMETERS: value get from device tree : |
| * size / order need to be aligned with binding |
| * modification NOT ALLOWED !!! |
| */ |
| #define DDRCTL_REG_REG_SIZE 25 /* st,ctl-reg */ |
| #define DDRCTL_REG_TIMING_SIZE 12 /* st,ctl-timing */ |
| #define DDRCTL_REG_MAP_SIZE 9 /* st,ctl-map */ |
| #if STM32MP_DDR_DUAL_AXI_PORT |
| #define DDRCTL_REG_PERF_SIZE 17 /* st,ctl-perf */ |
| #else |
| #define DDRCTL_REG_PERF_SIZE 11 /* st,ctl-perf */ |
| #endif |
| |
| #if STM32MP_DDR_32BIT_INTERFACE |
| #define DDRPHY_REG_REG_SIZE 11 /* st,phy-reg */ |
| #else |
| #define DDRPHY_REG_REG_SIZE 9 /* st,phy-reg */ |
| #endif |
| #define DDRPHY_REG_TIMING_SIZE 10 /* st,phy-timing */ |
| |
| #define DDRCTL_REG_REG(x) DDRCTL_REG(x, stm32mp1_ddrctrl_reg) |
| static const struct stm32mp_ddr_reg_desc ddr_reg[DDRCTL_REG_REG_SIZE] = { |
| DDRCTL_REG_REG(mstr), |
| DDRCTL_REG_REG(mrctrl0), |
| DDRCTL_REG_REG(mrctrl1), |
| DDRCTL_REG_REG(derateen), |
| DDRCTL_REG_REG(derateint), |
| DDRCTL_REG_REG(pwrctl), |
| DDRCTL_REG_REG(pwrtmg), |
| DDRCTL_REG_REG(hwlpctl), |
| DDRCTL_REG_REG(rfshctl0), |
| DDRCTL_REG_REG(rfshctl3), |
| DDRCTL_REG_REG(crcparctl0), |
| DDRCTL_REG_REG(zqctl0), |
| DDRCTL_REG_REG(dfitmg0), |
| DDRCTL_REG_REG(dfitmg1), |
| DDRCTL_REG_REG(dfilpcfg0), |
| DDRCTL_REG_REG(dfiupd0), |
| DDRCTL_REG_REG(dfiupd1), |
| DDRCTL_REG_REG(dfiupd2), |
| DDRCTL_REG_REG(dfiphymstr), |
| DDRCTL_REG_REG(odtmap), |
| DDRCTL_REG_REG(dbg0), |
| DDRCTL_REG_REG(dbg1), |
| DDRCTL_REG_REG(dbgcmd), |
| DDRCTL_REG_REG(poisoncfg), |
| DDRCTL_REG_REG(pccfg), |
| }; |
| |
| #define DDRCTL_REG_TIMING(x) DDRCTL_REG(x, stm32mp1_ddrctrl_timing) |
| static const struct stm32mp_ddr_reg_desc ddr_timing[DDRCTL_REG_TIMING_SIZE] = { |
| DDRCTL_REG_TIMING(rfshtmg), |
| DDRCTL_REG_TIMING(dramtmg0), |
| DDRCTL_REG_TIMING(dramtmg1), |
| DDRCTL_REG_TIMING(dramtmg2), |
| DDRCTL_REG_TIMING(dramtmg3), |
| DDRCTL_REG_TIMING(dramtmg4), |
| DDRCTL_REG_TIMING(dramtmg5), |
| DDRCTL_REG_TIMING(dramtmg6), |
| DDRCTL_REG_TIMING(dramtmg7), |
| DDRCTL_REG_TIMING(dramtmg8), |
| DDRCTL_REG_TIMING(dramtmg14), |
| DDRCTL_REG_TIMING(odtcfg), |
| }; |
| |
| #define DDRCTL_REG_MAP(x) DDRCTL_REG(x, stm32mp1_ddrctrl_map) |
| static const struct stm32mp_ddr_reg_desc ddr_map[DDRCTL_REG_MAP_SIZE] = { |
| DDRCTL_REG_MAP(addrmap1), |
| DDRCTL_REG_MAP(addrmap2), |
| DDRCTL_REG_MAP(addrmap3), |
| DDRCTL_REG_MAP(addrmap4), |
| DDRCTL_REG_MAP(addrmap5), |
| DDRCTL_REG_MAP(addrmap6), |
| DDRCTL_REG_MAP(addrmap9), |
| DDRCTL_REG_MAP(addrmap10), |
| DDRCTL_REG_MAP(addrmap11), |
| }; |
| |
| #define DDRCTL_REG_PERF(x) DDRCTL_REG(x, stm32mp1_ddrctrl_perf) |
| static const struct stm32mp_ddr_reg_desc ddr_perf[DDRCTL_REG_PERF_SIZE] = { |
| DDRCTL_REG_PERF(sched), |
| DDRCTL_REG_PERF(sched1), |
| DDRCTL_REG_PERF(perfhpr1), |
| DDRCTL_REG_PERF(perflpr1), |
| DDRCTL_REG_PERF(perfwr1), |
| DDRCTL_REG_PERF(pcfgr_0), |
| DDRCTL_REG_PERF(pcfgw_0), |
| DDRCTL_REG_PERF(pcfgqos0_0), |
| DDRCTL_REG_PERF(pcfgqos1_0), |
| DDRCTL_REG_PERF(pcfgwqos0_0), |
| DDRCTL_REG_PERF(pcfgwqos1_0), |
| #if STM32MP_DDR_DUAL_AXI_PORT |
| DDRCTL_REG_PERF(pcfgr_1), |
| DDRCTL_REG_PERF(pcfgw_1), |
| DDRCTL_REG_PERF(pcfgqos0_1), |
| DDRCTL_REG_PERF(pcfgqos1_1), |
| DDRCTL_REG_PERF(pcfgwqos0_1), |
| DDRCTL_REG_PERF(pcfgwqos1_1), |
| #endif |
| }; |
| |
| #define DDRPHY_REG_REG(x) DDRPHY_REG(x, stm32mp1_ddrphy_reg) |
| static const struct stm32mp_ddr_reg_desc ddrphy_reg[DDRPHY_REG_REG_SIZE] = { |
| DDRPHY_REG_REG(pgcr), |
| DDRPHY_REG_REG(aciocr), |
| DDRPHY_REG_REG(dxccr), |
| DDRPHY_REG_REG(dsgcr), |
| DDRPHY_REG_REG(dcr), |
| DDRPHY_REG_REG(odtcr), |
| DDRPHY_REG_REG(zq0cr1), |
| DDRPHY_REG_REG(dx0gcr), |
| DDRPHY_REG_REG(dx1gcr), |
| #if STM32MP_DDR_32BIT_INTERFACE |
| DDRPHY_REG_REG(dx2gcr), |
| DDRPHY_REG_REG(dx3gcr), |
| #endif |
| }; |
| |
| #define DDRPHY_REG_TIMING(x) DDRPHY_REG(x, stm32mp1_ddrphy_timing) |
| static const struct stm32mp_ddr_reg_desc ddrphy_timing[DDRPHY_REG_TIMING_SIZE] = { |
| DDRPHY_REG_TIMING(ptr0), |
| DDRPHY_REG_TIMING(ptr1), |
| DDRPHY_REG_TIMING(ptr2), |
| DDRPHY_REG_TIMING(dtpr0), |
| DDRPHY_REG_TIMING(dtpr1), |
| DDRPHY_REG_TIMING(dtpr2), |
| DDRPHY_REG_TIMING(mr0), |
| DDRPHY_REG_TIMING(mr1), |
| DDRPHY_REG_TIMING(mr2), |
| DDRPHY_REG_TIMING(mr3), |
| }; |
| |
| /* |
| * REGISTERS ARRAY: used to parse device tree and interactive mode |
| */ |
| static const struct stm32mp_ddr_reg_info ddr_registers[REG_TYPE_NB] = { |
| [REG_REG] = { |
| .name = "static", |
| .desc = ddr_reg, |
| .size = DDRCTL_REG_REG_SIZE, |
| .base = DDR_BASE |
| }, |
| [REG_TIMING] = { |
| .name = "timing", |
| .desc = ddr_timing, |
| .size = DDRCTL_REG_TIMING_SIZE, |
| .base = DDR_BASE |
| }, |
| [REG_PERF] = { |
| .name = "perf", |
| .desc = ddr_perf, |
| .size = DDRCTL_REG_PERF_SIZE, |
| .base = DDR_BASE |
| }, |
| [REG_MAP] = { |
| .name = "map", |
| .desc = ddr_map, |
| .size = DDRCTL_REG_MAP_SIZE, |
| .base = DDR_BASE |
| }, |
| [REGPHY_REG] = { |
| .name = "static", |
| .desc = ddrphy_reg, |
| .size = DDRPHY_REG_REG_SIZE, |
| .base = DDRPHY_BASE |
| }, |
| [REGPHY_TIMING] = { |
| .name = "timing", |
| .desc = ddrphy_timing, |
| .size = DDRPHY_REG_TIMING_SIZE, |
| .base = DDRPHY_BASE |
| }, |
| }; |
| |
| static void stm32mp1_ddrphy_idone_wait(struct stm32mp_ddrphy *phy) |
| { |
| uint32_t pgsr; |
| int error = 0; |
| uint64_t timeout = timeout_init_us(TIMEOUT_US_1S); |
| |
| do { |
| pgsr = mmio_read_32((uintptr_t)&phy->pgsr); |
| |
| VERBOSE(" > [0x%lx] pgsr = 0x%x &\n", |
| (uintptr_t)&phy->pgsr, pgsr); |
| |
| if (timeout_elapsed(timeout)) { |
| panic(); |
| } |
| |
| if ((pgsr & DDRPHYC_PGSR_DTERR) != 0U) { |
| VERBOSE("DQS Gate Trainig Error\n"); |
| error++; |
| } |
| |
| if ((pgsr & DDRPHYC_PGSR_DTIERR) != 0U) { |
| VERBOSE("DQS Gate Trainig Intermittent Error\n"); |
| error++; |
| } |
| |
| if ((pgsr & DDRPHYC_PGSR_DFTERR) != 0U) { |
| VERBOSE("DQS Drift Error\n"); |
| error++; |
| } |
| |
| if ((pgsr & DDRPHYC_PGSR_RVERR) != 0U) { |
| VERBOSE("Read Valid Training Error\n"); |
| error++; |
| } |
| |
| if ((pgsr & DDRPHYC_PGSR_RVEIRR) != 0U) { |
| VERBOSE("Read Valid Training Intermittent Error\n"); |
| error++; |
| } |
| } while (((pgsr & DDRPHYC_PGSR_IDONE) == 0U) && (error == 0)); |
| VERBOSE("\n[0x%lx] pgsr = 0x%x\n", |
| (uintptr_t)&phy->pgsr, pgsr); |
| } |
| |
| static void stm32mp1_ddrphy_init(struct stm32mp_ddrphy *phy, uint32_t pir) |
| { |
| uint32_t pir_init = pir | DDRPHYC_PIR_INIT; |
| |
| mmio_write_32((uintptr_t)&phy->pir, pir_init); |
| VERBOSE("[0x%lx] pir = 0x%x -> 0x%x\n", |
| (uintptr_t)&phy->pir, pir_init, |
| mmio_read_32((uintptr_t)&phy->pir)); |
| |
| /* Need to wait 10 configuration clock before start polling */ |
| udelay(10); |
| |
| /* Wait DRAM initialization and Gate Training Evaluation complete */ |
| stm32mp1_ddrphy_idone_wait(phy); |
| } |
| |
| /* Wait quasi dynamic register update */ |
| static void stm32mp1_wait_operating_mode(struct stm32mp_ddr_priv *priv, uint32_t mode) |
| { |
| uint64_t timeout; |
| uint32_t stat; |
| int break_loop = 0; |
| |
| timeout = timeout_init_us(TIMEOUT_US_1S); |
| for ( ; ; ) { |
| uint32_t operating_mode; |
| uint32_t selref_type; |
| |
| stat = mmio_read_32((uintptr_t)&priv->ctl->stat); |
| operating_mode = stat & DDRCTRL_STAT_OPERATING_MODE_MASK; |
| selref_type = stat & DDRCTRL_STAT_SELFREF_TYPE_MASK; |
| VERBOSE("[0x%lx] stat = 0x%x\n", |
| (uintptr_t)&priv->ctl->stat, stat); |
| if (timeout_elapsed(timeout)) { |
| panic(); |
| } |
| |
| if (mode == DDRCTRL_STAT_OPERATING_MODE_SR) { |
| /* |
| * Self-refresh due to software |
| * => checking also STAT.selfref_type. |
| */ |
| if ((operating_mode == |
| DDRCTRL_STAT_OPERATING_MODE_SR) && |
| (selref_type == DDRCTRL_STAT_SELFREF_TYPE_SR)) { |
| break_loop = 1; |
| } |
| } else if (operating_mode == mode) { |
| break_loop = 1; |
| } else if ((mode == DDRCTRL_STAT_OPERATING_MODE_NORMAL) && |
| (operating_mode == DDRCTRL_STAT_OPERATING_MODE_SR) && |
| (selref_type == DDRCTRL_STAT_SELFREF_TYPE_ASR)) { |
| /* Normal mode: handle also automatic self refresh */ |
| break_loop = 1; |
| } |
| |
| if (break_loop == 1) { |
| break; |
| } |
| } |
| |
| VERBOSE("[0x%lx] stat = 0x%x\n", |
| (uintptr_t)&priv->ctl->stat, stat); |
| } |
| |
| /* Mode Register Writes (MRW or MRS) */ |
| static void stm32mp1_mode_register_write(struct stm32mp_ddr_priv *priv, uint8_t addr, |
| uint32_t data) |
| { |
| uint32_t mrctrl0; |
| |
| VERBOSE("MRS: %d = %x\n", addr, data); |
| |
| /* |
| * 1. Poll MRSTAT.mr_wr_busy until it is '0'. |
| * This checks that there is no outstanding MR transaction. |
| * No write should be performed to MRCTRL0 and MRCTRL1 |
| * if MRSTAT.mr_wr_busy = 1. |
| */ |
| while ((mmio_read_32((uintptr_t)&priv->ctl->mrstat) & |
| DDRCTRL_MRSTAT_MR_WR_BUSY) != 0U) { |
| ; |
| } |
| |
| /* |
| * 2. Write the MRCTRL0.mr_type, MRCTRL0.mr_addr, MRCTRL0.mr_rank |
| * and (for MRWs) MRCTRL1.mr_data to define the MR transaction. |
| */ |
| mrctrl0 = DDRCTRL_MRCTRL0_MR_TYPE_WRITE | |
| DDRCTRL_MRCTRL0_MR_RANK_ALL | |
| (((uint32_t)addr << DDRCTRL_MRCTRL0_MR_ADDR_SHIFT) & |
| DDRCTRL_MRCTRL0_MR_ADDR_MASK); |
| mmio_write_32((uintptr_t)&priv->ctl->mrctrl0, mrctrl0); |
| VERBOSE("[0x%lx] mrctrl0 = 0x%x (0x%x)\n", |
| (uintptr_t)&priv->ctl->mrctrl0, |
| mmio_read_32((uintptr_t)&priv->ctl->mrctrl0), mrctrl0); |
| mmio_write_32((uintptr_t)&priv->ctl->mrctrl1, data); |
| VERBOSE("[0x%lx] mrctrl1 = 0x%x\n", |
| (uintptr_t)&priv->ctl->mrctrl1, |
| mmio_read_32((uintptr_t)&priv->ctl->mrctrl1)); |
| |
| /* |
| * 3. In a separate APB transaction, write the MRCTRL0.mr_wr to 1. This |
| * bit is self-clearing, and triggers the MR transaction. |
| * The uMCTL2 then asserts the MRSTAT.mr_wr_busy while it performs |
| * the MR transaction to SDRAM, and no further access can be |
| * initiated until it is deasserted. |
| */ |
| mrctrl0 |= DDRCTRL_MRCTRL0_MR_WR; |
| mmio_write_32((uintptr_t)&priv->ctl->mrctrl0, mrctrl0); |
| |
| while ((mmio_read_32((uintptr_t)&priv->ctl->mrstat) & |
| DDRCTRL_MRSTAT_MR_WR_BUSY) != 0U) { |
| ; |
| } |
| |
| VERBOSE("[0x%lx] mrctrl0 = 0x%x\n", |
| (uintptr_t)&priv->ctl->mrctrl0, mrctrl0); |
| } |
| |
| /* Switch DDR3 from DLL-on to DLL-off */ |
| static void stm32mp1_ddr3_dll_off(struct stm32mp_ddr_priv *priv) |
| { |
| uint32_t mr1 = mmio_read_32((uintptr_t)&priv->phy->mr1); |
| uint32_t mr2 = mmio_read_32((uintptr_t)&priv->phy->mr2); |
| uint32_t dbgcam; |
| |
| VERBOSE("mr1: 0x%x\n", mr1); |
| VERBOSE("mr2: 0x%x\n", mr2); |
| |
| /* |
| * 1. Set the DBG1.dis_hif = 1. |
| * This prevents further reads/writes being received on the HIF. |
| */ |
| mmio_setbits_32((uintptr_t)&priv->ctl->dbg1, DDRCTRL_DBG1_DIS_HIF); |
| VERBOSE("[0x%lx] dbg1 = 0x%x\n", |
| (uintptr_t)&priv->ctl->dbg1, |
| mmio_read_32((uintptr_t)&priv->ctl->dbg1)); |
| |
| /* |
| * 2. Ensure all commands have been flushed from the uMCTL2 by polling |
| * DBGCAM.wr_data_pipeline_empty = 1, |
| * DBGCAM.rd_data_pipeline_empty = 1, |
| * DBGCAM.dbg_wr_q_depth = 0 , |
| * DBGCAM.dbg_lpr_q_depth = 0, and |
| * DBGCAM.dbg_hpr_q_depth = 0. |
| */ |
| do { |
| dbgcam = mmio_read_32((uintptr_t)&priv->ctl->dbgcam); |
| VERBOSE("[0x%lx] dbgcam = 0x%x\n", |
| (uintptr_t)&priv->ctl->dbgcam, dbgcam); |
| } while ((((dbgcam & DDRCTRL_DBGCAM_DATA_PIPELINE_EMPTY) == |
| DDRCTRL_DBGCAM_DATA_PIPELINE_EMPTY)) && |
| ((dbgcam & DDRCTRL_DBGCAM_DBG_Q_DEPTH) == 0U)); |
| |
| /* |
| * 3. Perform an MRS command (using MRCTRL0 and MRCTRL1 registers) |
| * to disable RTT_NOM: |
| * a. DDR3: Write to MR1[9], MR1[6] and MR1[2] |
| * b. DDR4: Write to MR1[10:8] |
| */ |
| mr1 &= ~(BIT(9) | BIT(6) | BIT(2)); |
| stm32mp1_mode_register_write(priv, 1, mr1); |
| |
| /* |
| * 4. For DDR4 only: Perform an MRS command |
| * (using MRCTRL0 and MRCTRL1 registers) to write to MR5[8:6] |
| * to disable RTT_PARK |
| */ |
| |
| /* |
| * 5. Perform an MRS command (using MRCTRL0 and MRCTRL1 registers) |
| * to write to MR2[10:9], to disable RTT_WR |
| * (and therefore disable dynamic ODT). |
| * This applies for both DDR3 and DDR4. |
| */ |
| mr2 &= ~GENMASK(10, 9); |
| stm32mp1_mode_register_write(priv, 2, mr2); |
| |
| /* |
| * 6. Perform an MRS command (using MRCTRL0 and MRCTRL1 registers) |
| * to disable the DLL. The timing of this MRS is automatically |
| * handled by the uMCTL2. |
| * a. DDR3: Write to MR1[0] |
| * b. DDR4: Write to MR1[0] |
| */ |
| mr1 |= BIT(0); |
| stm32mp1_mode_register_write(priv, 1, mr1); |
| |
| /* |
| * 7. Put the SDRAM into self-refresh mode by setting |
| * PWRCTL.selfref_sw = 1, and polling STAT.operating_mode to ensure |
| * the DDRC has entered self-refresh. |
| */ |
| mmio_setbits_32((uintptr_t)&priv->ctl->pwrctl, |
| DDRCTRL_PWRCTL_SELFREF_SW); |
| VERBOSE("[0x%lx] pwrctl = 0x%x\n", |
| (uintptr_t)&priv->ctl->pwrctl, |
| mmio_read_32((uintptr_t)&priv->ctl->pwrctl)); |
| |
| /* |
| * 8. Wait until STAT.operating_mode[1:0]==11 indicating that the |
| * DWC_ddr_umctl2 core is in self-refresh mode. |
| * Ensure transition to self-refresh was due to software |
| * by checking that STAT.selfref_type[1:0]=2. |
| */ |
| stm32mp1_wait_operating_mode(priv, DDRCTRL_STAT_OPERATING_MODE_SR); |
| |
| /* |
| * 9. Set the MSTR.dll_off_mode = 1. |
| * warning: MSTR.dll_off_mode is a quasi-dynamic type 2 field |
| */ |
| stm32mp_ddr_start_sw_done(priv->ctl); |
| |
| mmio_setbits_32((uintptr_t)&priv->ctl->mstr, DDRCTRL_MSTR_DLL_OFF_MODE); |
| VERBOSE("[0x%lx] mstr = 0x%x\n", |
| (uintptr_t)&priv->ctl->mstr, |
| mmio_read_32((uintptr_t)&priv->ctl->mstr)); |
| |
| stm32mp_ddr_wait_sw_done_ack(priv->ctl); |
| |
| /* 10. Change the clock frequency to the desired value. */ |
| |
| /* |
| * 11. Update any registers which may be required to change for the new |
| * frequency. This includes static and dynamic registers. |
| * This includes both uMCTL2 registers and PHY registers. |
| */ |
| |
| /* Change Bypass Mode Frequency Range */ |
| if (clk_get_rate(DDRPHYC) < 100000000U) { |
| mmio_clrbits_32((uintptr_t)&priv->phy->dllgcr, |
| DDRPHYC_DLLGCR_BPS200); |
| } else { |
| mmio_setbits_32((uintptr_t)&priv->phy->dllgcr, |
| DDRPHYC_DLLGCR_BPS200); |
| } |
| |
| mmio_setbits_32((uintptr_t)&priv->phy->acdllcr, DDRPHYC_ACDLLCR_DLLDIS); |
| |
| mmio_setbits_32((uintptr_t)&priv->phy->dx0dllcr, |
| DDRPHYC_DXNDLLCR_DLLDIS); |
| mmio_setbits_32((uintptr_t)&priv->phy->dx1dllcr, |
| DDRPHYC_DXNDLLCR_DLLDIS); |
| #if STM32MP_DDR_32BIT_INTERFACE |
| mmio_setbits_32((uintptr_t)&priv->phy->dx2dllcr, |
| DDRPHYC_DXNDLLCR_DLLDIS); |
| mmio_setbits_32((uintptr_t)&priv->phy->dx3dllcr, |
| DDRPHYC_DXNDLLCR_DLLDIS); |
| #endif |
| |
| /* 12. Exit the self-refresh state by setting PWRCTL.selfref_sw = 0. */ |
| mmio_clrbits_32((uintptr_t)&priv->ctl->pwrctl, |
| DDRCTRL_PWRCTL_SELFREF_SW); |
| stm32mp1_wait_operating_mode(priv, DDRCTRL_STAT_OPERATING_MODE_NORMAL); |
| |
| /* |
| * 13. If ZQCTL0.dis_srx_zqcl = 0, the uMCTL2 performs a ZQCL command |
| * at this point. |
| */ |
| |
| /* |
| * 14. Perform MRS commands as required to re-program timing registers |
| * in the SDRAM for the new frequency |
| * (in particular, CL, CWL and WR may need to be changed). |
| */ |
| |
| /* 15. Write DBG1.dis_hif = 0 to re-enable reads and writes. */ |
| mmio_clrbits_32((uintptr_t)&priv->ctl->dbg1, DDRCTRL_DBG1_DIS_HIF); |
| VERBOSE("[0x%lx] dbg1 = 0x%x\n", |
| (uintptr_t)&priv->ctl->dbg1, |
| mmio_read_32((uintptr_t)&priv->ctl->dbg1)); |
| } |
| |
| static void stm32mp1_refresh_disable(struct stm32mp_ddrctl *ctl) |
| { |
| stm32mp_ddr_start_sw_done(ctl); |
| /* Quasi-dynamic register update*/ |
| mmio_setbits_32((uintptr_t)&ctl->rfshctl3, |
| DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH); |
| mmio_clrbits_32((uintptr_t)&ctl->pwrctl, DDRCTRL_PWRCTL_POWERDOWN_EN); |
| mmio_clrbits_32((uintptr_t)&ctl->dfimisc, |
| DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN); |
| stm32mp_ddr_wait_sw_done_ack(ctl); |
| } |
| |
| static void stm32mp1_refresh_restore(struct stm32mp_ddrctl *ctl, |
| uint32_t rfshctl3, uint32_t pwrctl) |
| { |
| stm32mp_ddr_start_sw_done(ctl); |
| if ((rfshctl3 & DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH) == 0U) { |
| mmio_clrbits_32((uintptr_t)&ctl->rfshctl3, |
| DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH); |
| } |
| if ((pwrctl & DDRCTRL_PWRCTL_POWERDOWN_EN) != 0U) { |
| mmio_setbits_32((uintptr_t)&ctl->pwrctl, |
| DDRCTRL_PWRCTL_POWERDOWN_EN); |
| } |
| mmio_setbits_32((uintptr_t)&ctl->dfimisc, |
| DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN); |
| stm32mp_ddr_wait_sw_done_ack(ctl); |
| } |
| |
| void stm32mp1_ddr_init(struct stm32mp_ddr_priv *priv, |
| struct stm32mp_ddr_config *config) |
| { |
| uint32_t pir; |
| int ret = -EINVAL; |
| |
| if ((config->c_reg.mstr & DDRCTRL_MSTR_DDR3) != 0U) { |
| ret = stm32mp_board_ddr_power_init(STM32MP_DDR3); |
| } else if ((config->c_reg.mstr & DDRCTRL_MSTR_LPDDR2) != 0U) { |
| ret = stm32mp_board_ddr_power_init(STM32MP_LPDDR2); |
| } else if ((config->c_reg.mstr & DDRCTRL_MSTR_LPDDR3) != 0U) { |
| ret = stm32mp_board_ddr_power_init(STM32MP_LPDDR3); |
| } else { |
| ERROR("DDR type not supported\n"); |
| } |
| |
| if (ret != 0) { |
| panic(); |
| } |
| |
| VERBOSE("name = %s\n", config->info.name); |
| VERBOSE("speed = %u kHz\n", config->info.speed); |
| VERBOSE("size = 0x%x\n", config->info.size); |
| |
| /* DDR INIT SEQUENCE */ |
| |
| /* |
| * 1. Program the DWC_ddr_umctl2 registers |
| * nota: check DFIMISC.dfi_init_complete = 0 |
| */ |
| |
| /* 1.1 RESETS: presetn, core_ddrc_rstn, aresetn */ |
| mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAPBRST); |
| mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAXIRST); |
| mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCORERST); |
| mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYAPBRST); |
| mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYRST); |
| mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYCTLRST); |
| |
| /* 1.2. start CLOCK */ |
| if (stm32mp1_ddr_clk_enable(priv, config->info.speed) != 0) { |
| panic(); |
| } |
| |
| /* 1.3. deassert reset */ |
| /* De-assert PHY rstn and ctl_rstn via DPHYRST and DPHYCTLRST. */ |
| mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYRST); |
| mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYCTLRST); |
| /* |
| * De-assert presetn once the clocks are active |
| * and stable via DDRCAPBRST bit. |
| */ |
| mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAPBRST); |
| |
| /* 1.4. wait 128 cycles to permit initialization of end logic */ |
| udelay(2); |
| /* For PCLK = 133MHz => 1 us is enough, 2 to allow lower frequency */ |
| |
| /* 1.5. initialize registers ddr_umctl2 */ |
| /* Stop uMCTL2 before PHY is ready */ |
| mmio_clrbits_32((uintptr_t)&priv->ctl->dfimisc, |
| DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN); |
| VERBOSE("[0x%lx] dfimisc = 0x%x\n", |
| (uintptr_t)&priv->ctl->dfimisc, |
| mmio_read_32((uintptr_t)&priv->ctl->dfimisc)); |
| |
| stm32mp_ddr_set_reg(priv, REG_REG, &config->c_reg, ddr_registers); |
| |
| /* DDR3 = don't set DLLOFF for init mode */ |
| if ((config->c_reg.mstr & |
| (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE)) |
| == (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE)) { |
| VERBOSE("deactivate DLL OFF in mstr\n"); |
| mmio_clrbits_32((uintptr_t)&priv->ctl->mstr, |
| DDRCTRL_MSTR_DLL_OFF_MODE); |
| VERBOSE("[0x%lx] mstr = 0x%x\n", |
| (uintptr_t)&priv->ctl->mstr, |
| mmio_read_32((uintptr_t)&priv->ctl->mstr)); |
| } |
| |
| stm32mp_ddr_set_reg(priv, REG_TIMING, &config->c_timing, ddr_registers); |
| stm32mp_ddr_set_reg(priv, REG_MAP, &config->c_map, ddr_registers); |
| |
| /* Skip CTRL init, SDRAM init is done by PHY PUBL */ |
| mmio_clrsetbits_32((uintptr_t)&priv->ctl->init0, |
| DDRCTRL_INIT0_SKIP_DRAM_INIT_MASK, |
| DDRCTRL_INIT0_SKIP_DRAM_INIT_NORMAL); |
| VERBOSE("[0x%lx] init0 = 0x%x\n", |
| (uintptr_t)&priv->ctl->init0, |
| mmio_read_32((uintptr_t)&priv->ctl->init0)); |
| |
| stm32mp_ddr_set_reg(priv, REG_PERF, &config->c_perf, ddr_registers); |
| |
| /* 2. deassert reset signal core_ddrc_rstn, aresetn and presetn */ |
| mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCORERST); |
| mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAXIRST); |
| mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYAPBRST); |
| |
| /* |
| * 3. start PHY init by accessing relevant PUBL registers |
| * (DXGCR, DCR, PTR*, MR*, DTPR*) |
| */ |
| stm32mp_ddr_set_reg(priv, REGPHY_REG, &config->p_reg, ddr_registers); |
| stm32mp_ddr_set_reg(priv, REGPHY_TIMING, &config->p_timing, ddr_registers); |
| |
| /* DDR3 = don't set DLLOFF for init mode */ |
| if ((config->c_reg.mstr & |
| (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE)) |
| == (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE)) { |
| VERBOSE("deactivate DLL OFF in mr1\n"); |
| mmio_clrbits_32((uintptr_t)&priv->phy->mr1, BIT(0)); |
| VERBOSE("[0x%lx] mr1 = 0x%x\n", |
| (uintptr_t)&priv->phy->mr1, |
| mmio_read_32((uintptr_t)&priv->phy->mr1)); |
| } |
| |
| /* |
| * 4. Monitor PHY init status by polling PUBL register PGSR.IDONE |
| * Perform DDR PHY DRAM initialization and Gate Training Evaluation |
| */ |
| stm32mp1_ddrphy_idone_wait(priv->phy); |
| |
| /* |
| * 5. Indicate to PUBL that controller performs SDRAM initialization |
| * by setting PIR.INIT and PIR CTLDINIT and pool PGSR.IDONE |
| * DRAM init is done by PHY, init0.skip_dram.init = 1 |
| */ |
| |
| pir = DDRPHYC_PIR_DLLSRST | DDRPHYC_PIR_DLLLOCK | DDRPHYC_PIR_ZCAL | |
| DDRPHYC_PIR_ITMSRST | DDRPHYC_PIR_DRAMINIT | DDRPHYC_PIR_ICPC; |
| |
| if ((config->c_reg.mstr & DDRCTRL_MSTR_DDR3) != 0U) { |
| pir |= DDRPHYC_PIR_DRAMRST; /* Only for DDR3 */ |
| } |
| |
| stm32mp1_ddrphy_init(priv->phy, pir); |
| |
| /* |
| * 6. SET DFIMISC.dfi_init_complete_en to 1 |
| * Enable quasi-dynamic register programming. |
| */ |
| stm32mp_ddr_start_sw_done(priv->ctl); |
| |
| mmio_setbits_32((uintptr_t)&priv->ctl->dfimisc, |
| DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN); |
| VERBOSE("[0x%lx] dfimisc = 0x%x\n", |
| (uintptr_t)&priv->ctl->dfimisc, |
| mmio_read_32((uintptr_t)&priv->ctl->dfimisc)); |
| |
| stm32mp_ddr_wait_sw_done_ack(priv->ctl); |
| |
| /* |
| * 7. Wait for DWC_ddr_umctl2 to move to normal operation mode |
| * by monitoring STAT.operating_mode signal |
| */ |
| |
| /* Wait uMCTL2 ready */ |
| stm32mp1_wait_operating_mode(priv, DDRCTRL_STAT_OPERATING_MODE_NORMAL); |
| |
| /* Switch to DLL OFF mode */ |
| if ((config->c_reg.mstr & DDRCTRL_MSTR_DLL_OFF_MODE) != 0U) { |
| stm32mp1_ddr3_dll_off(priv); |
| } |
| |
| VERBOSE("DDR DQS training : "); |
| |
| /* |
| * 8. Disable Auto refresh and power down by setting |
| * - RFSHCTL3.dis_au_refresh = 1 |
| * - PWRCTL.powerdown_en = 0 |
| * - DFIMISC.dfiinit_complete_en = 0 |
| */ |
| stm32mp1_refresh_disable(priv->ctl); |
| |
| /* |
| * 9. Program PUBL PGCR to enable refresh during training |
| * and rank to train |
| * not done => keep the programed value in PGCR |
| */ |
| |
| /* |
| * 10. configure PUBL PIR register to specify which training step |
| * to run |
| * RVTRN is executed only on LPDDR2/LPDDR3 |
| */ |
| pir = DDRPHYC_PIR_QSTRN; |
| if ((config->c_reg.mstr & DDRCTRL_MSTR_DDR3) == 0U) { |
| pir |= DDRPHYC_PIR_RVTRN; |
| } |
| |
| stm32mp1_ddrphy_init(priv->phy, pir); |
| |
| /* 11. monitor PUB PGSR.IDONE to poll cpmpletion of training sequence */ |
| stm32mp1_ddrphy_idone_wait(priv->phy); |
| |
| /* |
| * 12. set back registers in step 8 to the orginal values if desidered |
| */ |
| stm32mp1_refresh_restore(priv->ctl, config->c_reg.rfshctl3, |
| config->c_reg.pwrctl); |
| |
| stm32mp_ddr_enable_axi_port(priv->ctl); |
| } |