blob: e480e77275e73ee47865f2d6c2aa3357027680d1 [file] [log] [blame]
/*
* Copyright (c) 2015, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch_helpers.h>
#include <arm_gic.h>
#include <assert.h>
#include <bl_common.h>
#include <debug.h>
#include <gic_v2.h>
#include <interrupt_mgmt.h>
#include <platform.h>
#include <stdint.h>
#include <tegra_def.h>
#include <tegra_private.h>
/* Value used to initialize Non-Secure IRQ priorities four at a time */
#define GICD_IPRIORITYR_DEF_VAL \
(GIC_HIGHEST_NS_PRIORITY | \
(GIC_HIGHEST_NS_PRIORITY << 8) | \
(GIC_HIGHEST_NS_PRIORITY << 16) | \
(GIC_HIGHEST_NS_PRIORITY << 24))
static const irq_sec_cfg_t *g_irq_sec_ptr;
static uint32_t g_num_irqs;
/*******************************************************************************
* Place the cpu interface in a state where it can never make a cpu exit wfi as
* as result of an asserted interrupt. This is critical for powering down a cpu
******************************************************************************/
void tegra_gic_cpuif_deactivate(void)
{
uint32_t val;
/* Disable secure, non-secure interrupts and disable their bypass */
val = gicc_read_ctlr(TEGRA_GICC_BASE);
val &= ~(ENABLE_GRP0 | ENABLE_GRP1);
val |= FIQ_BYP_DIS_GRP1 | FIQ_BYP_DIS_GRP0;
val |= IRQ_BYP_DIS_GRP0 | IRQ_BYP_DIS_GRP1;
gicc_write_ctlr(TEGRA_GICC_BASE, val);
}
/*******************************************************************************
* Enable secure interrupts and set the priority mask register to allow all
* interrupts to trickle in.
******************************************************************************/
static void tegra_gic_cpuif_setup(uint32_t gicc_base)
{
uint32_t val;
val = ENABLE_GRP0 | ENABLE_GRP1 | FIQ_EN | FIQ_BYP_DIS_GRP0;
val |= IRQ_BYP_DIS_GRP0 | FIQ_BYP_DIS_GRP1 | IRQ_BYP_DIS_GRP1;
gicc_write_ctlr(gicc_base, val);
gicc_write_pmr(gicc_base, GIC_PRI_MASK);
}
/*******************************************************************************
* Per cpu gic distributor setup which will be done by all cpus after a cold
* boot/hotplug. This marks out the secure interrupts & enables them.
******************************************************************************/
static void tegra_gic_pcpu_distif_setup(uint32_t gicd_base)
{
uint32_t index, sec_ppi_sgi_mask = 0;
assert(gicd_base != 0U);
/* Setup PPI priorities doing four at a time */
for (index = 0U; index < 32U; index += 4U) {
gicd_write_ipriorityr(gicd_base, index,
GICD_IPRIORITYR_DEF_VAL);
}
/*
* Invert the bitmask to create a mask for non-secure PPIs and
* SGIs. Program the GICD_IGROUPR0 with this bit mask. This write will
* update the GICR_IGROUPR0 as well in case we are running on a GICv3
* system. This is critical if GICD_CTLR.ARE_NS=1.
*/
gicd_write_igroupr(gicd_base, 0, ~sec_ppi_sgi_mask);
}
/*******************************************************************************
* Global gic distributor setup which will be done by the primary cpu after a
* cold boot. It marks out the non secure SPIs, PPIs & SGIs and enables them.
* It then enables the secure GIC distributor interface.
******************************************************************************/
static void tegra_gic_distif_setup(uint32_t gicd_base)
{
uint32_t index, num_ints, irq_num;
uint8_t target_cpus;
uint32_t val;
/*
* Mark out non-secure interrupts. Calculate number of
* IGROUPR registers to consider. Will be equal to the
* number of IT_LINES
*/
num_ints = gicd_read_typer(gicd_base) & IT_LINES_NO_MASK;
num_ints = (num_ints + 1U) << 5;
for (index = MIN_SPI_ID; index < num_ints; index += 32U) {
gicd_write_igroupr(gicd_base, index, 0xFFFFFFFFU);
}
/* Setup SPI priorities doing four at a time */
for (index = MIN_SPI_ID; index < num_ints; index += 4U) {
gicd_write_ipriorityr(gicd_base, index,
GICD_IPRIORITYR_DEF_VAL);
}
/* Configure SPI secure interrupts now */
if (g_irq_sec_ptr != NULL) {
for (index = 0U; index < g_num_irqs; index++) {
irq_num = g_irq_sec_ptr[index].irq;
target_cpus = (uint8_t)g_irq_sec_ptr[index].target_cpus;
if (irq_num >= MIN_SPI_ID) {
/* Configure as a secure interrupt */
gicd_clr_igroupr(gicd_base, irq_num);
/* Configure SPI priority */
mmio_write_8((uint64_t)gicd_base +
(uint64_t)GICD_IPRIORITYR +
(uint64_t)irq_num,
GIC_HIGHEST_SEC_PRIORITY &
GIC_PRI_MASK);
/* Configure as level triggered */
val = gicd_read_icfgr(gicd_base, irq_num);
val |= (3U << ((irq_num & 0xFU) << 1U));
gicd_write_icfgr(gicd_base, irq_num, val);
/* Route SPI to the target CPUs */
gicd_set_itargetsr(gicd_base, irq_num,
target_cpus);
/* Enable this interrupt */
gicd_set_isenabler(gicd_base, irq_num);
}
}
}
/*
* Configure the SGI and PPI. This is done in a separated function
* because each CPU is responsible for initializing its own private
* interrupts.
*/
tegra_gic_pcpu_distif_setup(gicd_base);
/* enable distributor */
gicd_write_ctlr(gicd_base, ENABLE_GRP0 | ENABLE_GRP1);
}
void tegra_gic_setup(const irq_sec_cfg_t *irq_sec_ptr, uint32_t num_irqs)
{
g_irq_sec_ptr = irq_sec_ptr;
g_num_irqs = num_irqs;
tegra_gic_cpuif_setup(TEGRA_GICC_BASE);
tegra_gic_distif_setup(TEGRA_GICD_BASE);
}
/*******************************************************************************
* An ARM processor signals interrupt exceptions through the IRQ and FIQ pins.
* The interrupt controller knows which pin/line it uses to signal a type of
* interrupt. This function provides a common implementation of
* plat_interrupt_type_to_line() in an ARM GIC environment for optional re-use
* across platforms. It lets the interrupt management framework determine
* for a type of interrupt and security state, which line should be used in the
* SCR_EL3 to control its routing to EL3. The interrupt line is represented as
* the bit position of the IRQ or FIQ bit in the SCR_EL3.
******************************************************************************/
static uint32_t tegra_gic_interrupt_type_to_line(uint32_t type,
uint32_t security_state)
{
assert((type == INTR_TYPE_S_EL1) ||
(type == INTR_TYPE_EL3) ||
(type == INTR_TYPE_NS));
assert(sec_state_is_valid(security_state));
/*
* We ignore the security state parameter under the assumption that
* both normal and secure worlds are using ARM GICv2. This parameter
* will be used when the secure world starts using GICv3.
*/
#if ARM_GIC_ARCH == 2
return gicv2_interrupt_type_to_line(TEGRA_GICC_BASE, type);
#else
#error "Invalid ARM GIC architecture version specified for platform port"
#endif /* ARM_GIC_ARCH */
}
#if ARM_GIC_ARCH == 2
/*******************************************************************************
* This function returns the type of the highest priority pending interrupt at
* the GIC cpu interface. INTR_TYPE_INVAL is returned when there is no
* interrupt pending.
******************************************************************************/
static uint32_t tegra_gic_get_pending_interrupt_type(void)
{
uint32_t id;
uint32_t index;
uint32_t ret = INTR_TYPE_NS;
id = gicc_read_hppir(TEGRA_GICC_BASE) & INT_ID_MASK;
/* get the interrupt type */
if (id < 1022U) {
for (index = 0U; index < g_num_irqs; index++) {
if (id == g_irq_sec_ptr[index].irq) {
ret = g_irq_sec_ptr[index].type;
break;
}
}
} else {
if (id == GIC_SPURIOUS_INTERRUPT) {
ret = INTR_TYPE_INVAL;
}
}
return ret;
}
/*******************************************************************************
* This function returns the id of the highest priority pending interrupt at
* the GIC cpu interface. INTR_ID_UNAVAILABLE is returned when there is no
* interrupt pending.
******************************************************************************/
static uint32_t tegra_gic_get_pending_interrupt_id(void)
{
uint32_t id, ret;
id = gicc_read_hppir(TEGRA_GICC_BASE) & INT_ID_MASK;
if (id < 1022UL) {
ret = id;
} else if (id == 1023UL) {
ret = 0xFFFFFFFFUL; /* INTR_ID_UNAVAILABLE */
} else {
/*
* Find out which non-secure interrupt it is under the assumption that
* the GICC_CTLR.AckCtl bit is 0.
*/
ret = gicc_read_ahppir(TEGRA_GICC_BASE) & INT_ID_MASK;
}
return ret;
}
/*******************************************************************************
* This functions reads the GIC cpu interface Interrupt Acknowledge register
* to start handling the pending interrupt. It returns the contents of the IAR.
******************************************************************************/
static uint32_t tegra_gic_acknowledge_interrupt(void)
{
return gicc_read_IAR(TEGRA_GICC_BASE);
}
/*******************************************************************************
* This functions writes the GIC cpu interface End Of Interrupt register with
* the passed value to finish handling the active interrupt
******************************************************************************/
static void tegra_gic_end_of_interrupt(uint32_t id)
{
gicc_write_EOIR(TEGRA_GICC_BASE, id);
}
/*******************************************************************************
* This function returns the type of the interrupt id depending upon the group
* this interrupt has been configured under by the interrupt controller i.e.
* group0 or group1.
******************************************************************************/
static uint32_t tegra_gic_get_interrupt_type(uint32_t id)
{
uint32_t group;
uint32_t index;
uint32_t ret = INTR_TYPE_NS;
group = gicd_get_igroupr(TEGRA_GICD_BASE, id);
/* get the interrupt type */
if (group == GRP0) {
for (index = 0U; index < g_num_irqs; index++) {
if (id == g_irq_sec_ptr[index].irq) {
ret = g_irq_sec_ptr[index].type;
break;
}
}
}
return ret;
}
#else
#error "Invalid ARM GIC architecture version specified for platform port"
#endif /* ARM_GIC_ARCH */
uint32_t plat_ic_get_pending_interrupt_id(void)
{
return tegra_gic_get_pending_interrupt_id();
}
uint32_t plat_ic_get_pending_interrupt_type(void)
{
return tegra_gic_get_pending_interrupt_type();
}
uint32_t plat_ic_acknowledge_interrupt(void)
{
return tegra_gic_acknowledge_interrupt();
}
uint32_t plat_ic_get_interrupt_type(uint32_t id)
{
return tegra_gic_get_interrupt_type(id);
}
void plat_ic_end_of_interrupt(uint32_t id)
{
tegra_gic_end_of_interrupt(id);
}
uint32_t plat_interrupt_type_to_line(uint32_t type,
uint32_t security_state)
{
return tegra_gic_interrupt_type_to_line(type, security_state);
}