blob: 95f05e7bc10b8b71df70fce76859dffd30f4b332 [file] [log] [blame]
/*
* Copyright (C) 2021-2024, STMicroelectronics - All Rights Reserved
*
* SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
*/
#include <errno.h>
#include <arch_helpers.h>
#include <common/debug.h>
#include <common/fdt_wrappers.h>
#include <drivers/clk.h>
#include <drivers/st/stm32mp2_ddr.h>
#include <drivers/st/stm32mp2_ddr_helpers.h>
#include <drivers/st/stm32mp2_ram.h>
#include <drivers/st/stm32mp_ddr.h>
#include <drivers/st/stm32mp_ddr_test.h>
#include <drivers/st/stm32mp_ram.h>
#include <lib/mmio.h>
#include <libfdt.h>
#include <platform_def.h>
static struct stm32mp_ddr_priv ddr_priv_data;
static bool ddr_self_refresh;
static int ddr_dt_get_ui_param(void *fdt, int node, struct stm32mp_ddr_config *config)
{
int ret;
uint32_t size;
size = sizeof(struct user_input_basic) / sizeof(int);
ret = fdt_read_uint32_array(fdt, node, "st,phy-basic", size, (uint32_t *)&config->uib);
VERBOSE("%s: %s[0x%x] = %d\n", __func__, "st,phy-basic", size, ret);
if (ret != 0) {
ERROR("%s: can't read %s, error=%d\n", __func__, "st,phy-basic", ret);
return -EINVAL;
}
size = sizeof(struct user_input_advanced) / sizeof(int);
ret = fdt_read_uint32_array(fdt, node, "st,phy-advanced", size, (uint32_t *)&config->uia);
VERBOSE("%s: %s[0x%x] = %d\n", __func__, "st,phy-advanced", size, ret);
if (ret != 0) {
ERROR("%s: can't read %s, error=%d\n", __func__, "st,phy-advanced", ret);
return -EINVAL;
}
size = sizeof(struct user_input_mode_register) / sizeof(int);
ret = fdt_read_uint32_array(fdt, node, "st,phy-mr", size, (uint32_t *)&config->uim);
VERBOSE("%s: %s[0x%x] = %d\n", __func__, "st,phy-mr", size, ret);
if (ret != 0) {
ERROR("%s: can't read %s, error=%d\n", __func__, "st,phy-mr", ret);
return -EINVAL;
}
size = sizeof(struct user_input_swizzle) / sizeof(int);
ret = fdt_read_uint32_array(fdt, node, "st,phy-swizzle", size, (uint32_t *)&config->uis);
VERBOSE("%s: %s[0x%x] = %d\n", __func__, "st,phy-swizzle", size, ret);
if (ret != 0) {
ERROR("%s: can't read %s, error=%d\n", __func__, "st,phy-swizzle", ret);
return -EINVAL;
}
return 0;
}
static int stm32mp2_ddr_setup(void)
{
struct stm32mp_ddr_priv *priv = &ddr_priv_data;
int ret;
struct stm32mp_ddr_config config;
int node;
uintptr_t uret;
void *fdt;
const struct stm32mp_ddr_param param[] = {
CTL_PARAM(reg),
CTL_PARAM(timing),
CTL_PARAM(map),
CTL_PARAM(perf)
};
if (fdt_get_address(&fdt) == 0) {
return -ENOENT;
}
node = fdt_node_offset_by_compatible(fdt, -1, DT_DDR_COMPAT);
if (node < 0) {
ERROR("%s: can't read DDR node in DT\n", __func__);
return -EINVAL;
}
ret = stm32mp_ddr_dt_get_info(fdt, node, &config.info);
if (ret < 0) {
return ret;
}
ret = stm32mp_ddr_dt_get_param(fdt, node, param, ARRAY_SIZE(param), (uintptr_t)&config);
if (ret < 0) {
return ret;
}
ret = ddr_dt_get_ui_param(fdt, node, &config);
if (ret < 0) {
return ret;
}
config.self_refresh = false;
if (stm32mp_is_wakeup_from_standby()) {
config.self_refresh = true;
}
/* Map dynamically RETRAM area to save or restore PHY retention registers */
if (stm32mp_map_retram() != 0) {
panic();
}
stm32mp2_ddr_init(priv, &config);
/* Unmap RETRAM, no more used until next DDR initialization call */
if (stm32mp_unmap_retram() != 0) {
panic();
}
priv->info.size = config.info.size;
VERBOSE("%s : ram size(%lx, %lx)\n", __func__, priv->info.base, priv->info.size);
if (stm32mp_map_ddr_non_cacheable() != 0) {
panic();
}
if (config.self_refresh) {
uret = stm32mp_ddr_test_rw_access();
if (uret != 0UL) {
ERROR("DDR rw test: can't access memory @ 0x%lx\n", uret);
panic();
}
/* TODO Restore area overwritten by training */
//stm32_restore_ddr_training_area();
} else {
size_t retsize;
uret = stm32mp_ddr_test_data_bus();
if (uret != 0UL) {
ERROR("DDR data bus test: can't access memory @ 0x%lx\n", uret);
panic();
}
uret = stm32mp_ddr_test_addr_bus(config.info.size);
if (uret != 0UL) {
ERROR("DDR addr bus test: can't access memory @ 0x%lx\n", uret);
panic();
}
retsize = stm32mp_ddr_check_size();
if (retsize < config.info.size) {
ERROR("DDR size: 0x%zx does not match DT config: 0x%zx\n",
retsize, config.info.size);
panic();
}
INFO("Memory size = 0x%zx (%zu MB)\n", retsize, retsize / (1024U * 1024U));
}
/*
* Initialization sequence has configured DDR registers with settings.
* The Self Refresh (SR) mode corresponding to these settings has now
* to be set.
*/
ddr_set_sr_mode(ddr_read_sr_mode());
if (stm32mp_unmap_ddr() != 0) {
panic();
}
/* Save DDR self_refresh state */
ddr_self_refresh = config.self_refresh;
return 0;
}
bool stm32mp2_ddr_is_restored(void)
{
return ddr_self_refresh;
}
int stm32mp2_ddr_probe(void)
{
struct stm32mp_ddr_priv *priv = &ddr_priv_data;
VERBOSE("STM32MP DDR probe\n");
priv->ctl = (struct stm32mp_ddrctl *)stm32mp_ddrctrl_base();
priv->phy = (struct stm32mp_ddrphy *)stm32mp_ddrphyc_base();
priv->pwr = stm32mp_pwr_base();
priv->rcc = stm32mp_rcc_base();
priv->info.base = STM32MP_DDR_BASE;
priv->info.size = 0;
return stm32mp2_ddr_setup();
}