blob: bd7a4521f06fa24fc7e4f43ec62f28bfa6d429c6 [file] [log] [blame]
/*
* Copyright (c) 2013-2024, Arm Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <string.h>
#include <arch.h>
#include <arch_features.h>
#include <arch_helpers.h>
#include <common/bl_common.h>
#include <common/debug.h>
#include <context.h>
#include <drivers/delay_timer.h>
#include <lib/el3_runtime/context_mgmt.h>
#include <lib/extensions/spe.h>
#include <lib/utils.h>
#include <plat/common/platform.h>
#include "psci_private.h"
/*
* SPD power management operations, expected to be supplied by the registered
* SPD on successful SP initialization
*/
const spd_pm_ops_t *psci_spd_pm;
/*
* PSCI requested local power state map. This array is used to store the local
* power states requested by a CPU for power levels from level 1 to
* PLAT_MAX_PWR_LVL. It does not store the requested local power state for power
* level 0 (PSCI_CPU_PWR_LVL) as the requested and the target power state for a
* CPU are the same.
*
* During state coordination, the platform is passed an array containing the
* local states requested for a particular non cpu power domain by each cpu
* within the domain.
*
* TODO: Dense packing of the requested states will cause cache thrashing
* when multiple power domains write to it. If we allocate the requested
* states at each power level in a cache-line aligned per-domain memory,
* the cache thrashing can be avoided.
*/
static plat_local_state_t
psci_req_local_pwr_states[PLAT_MAX_PWR_LVL][PLATFORM_CORE_COUNT];
unsigned int psci_plat_core_count;
/*******************************************************************************
* Arrays that hold the platform's power domain tree information for state
* management of power domains.
* Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain
* which is an ancestor of a CPU power domain.
* Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain
******************************************************************************/
non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS]
#if USE_COHERENT_MEM
__section(".tzfw_coherent_mem")
#endif
;
/* Lock for PSCI state coordination */
DEFINE_PSCI_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]);
cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT];
/*******************************************************************************
* Pointer to functions exported by the platform to complete power mgmt. ops
******************************************************************************/
const plat_psci_ops_t *psci_plat_pm_ops;
/******************************************************************************
* Check that the maximum power level supported by the platform makes sense
*****************************************************************************/
CASSERT((PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL) &&
(PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL),
assert_platform_max_pwrlvl_check);
#if PSCI_OS_INIT_MODE
/*******************************************************************************
* The power state coordination mode used in CPU_SUSPEND.
* Defaults to platform-coordinated mode.
******************************************************************************/
suspend_mode_t psci_suspend_mode = PLAT_COORD;
#endif
/*
* The plat_local_state used by the platform is one of these types: RUN,
* RETENTION and OFF. The platform can define further sub-states for each type
* apart from RUN. This categorization is done to verify the sanity of the
* psci_power_state passed by the platform and to print debug information. The
* categorization is done on the basis of the following conditions:
*
* 1. If (plat_local_state == 0) then the category is STATE_TYPE_RUN.
*
* 2. If (0 < plat_local_state <= PLAT_MAX_RET_STATE), then the category is
* STATE_TYPE_RETN.
*
* 3. If (plat_local_state > PLAT_MAX_RET_STATE), then the category is
* STATE_TYPE_OFF.
*/
typedef enum plat_local_state_type {
STATE_TYPE_RUN = 0,
STATE_TYPE_RETN,
STATE_TYPE_OFF
} plat_local_state_type_t;
/* Function used to categorize plat_local_state. */
static plat_local_state_type_t find_local_state_type(plat_local_state_t state)
{
if (state != 0U) {
if (state > PLAT_MAX_RET_STATE) {
return STATE_TYPE_OFF;
} else {
return STATE_TYPE_RETN;
}
} else {
return STATE_TYPE_RUN;
}
}
/******************************************************************************
* Check that the maximum retention level supported by the platform is less
* than the maximum off level.
*****************************************************************************/
CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE,
assert_platform_max_off_and_retn_state_check);
/******************************************************************************
* This function ensures that the power state parameter in a CPU_SUSPEND request
* is valid. If so, it returns the requested states for each power level.
*****************************************************************************/
int psci_validate_power_state(unsigned int power_state,
psci_power_state_t *state_info)
{
/* Check SBZ bits in power state are zero */
if (psci_check_power_state(power_state) != 0U)
return PSCI_E_INVALID_PARAMS;
assert(psci_plat_pm_ops->validate_power_state != NULL);
/* Validate the power_state using platform pm_ops */
return psci_plat_pm_ops->validate_power_state(power_state, state_info);
}
/******************************************************************************
* This function retrieves the `psci_power_state_t` for system suspend from
* the platform.
*****************************************************************************/
void psci_query_sys_suspend_pwrstate(psci_power_state_t *state_info)
{
/*
* Assert that the required pm_ops hook is implemented to ensure that
* the capability detected during psci_setup() is valid.
*/
assert(psci_plat_pm_ops->get_sys_suspend_power_state != NULL);
/*
* Query the platform for the power_state required for system suspend
*/
psci_plat_pm_ops->get_sys_suspend_power_state(state_info);
}
#if PSCI_OS_INIT_MODE
/*******************************************************************************
* This function verifies that all the other cores at the 'end_pwrlvl' have been
* idled and the current CPU is the last running CPU at the 'end_pwrlvl'.
* Returns 1 (true) if the current CPU is the last ON CPU or 0 (false)
* otherwise.
******************************************************************************/
static bool psci_is_last_cpu_to_idle_at_pwrlvl(unsigned int end_pwrlvl)
{
unsigned int my_idx, lvl;
unsigned int parent_idx = 0;
unsigned int cpu_start_idx, ncpus, cpu_idx;
plat_local_state_t local_state;
if (end_pwrlvl == PSCI_CPU_PWR_LVL) {
return true;
}
my_idx = plat_my_core_pos();
for (lvl = PSCI_CPU_PWR_LVL; lvl <= end_pwrlvl; lvl++) {
parent_idx = psci_cpu_pd_nodes[my_idx].parent_node;
}
cpu_start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
for (cpu_idx = cpu_start_idx; cpu_idx < cpu_start_idx + ncpus;
cpu_idx++) {
local_state = psci_get_cpu_local_state_by_idx(cpu_idx);
if (cpu_idx == my_idx) {
assert(is_local_state_run(local_state) != 0);
continue;
}
if (is_local_state_run(local_state) != 0) {
return false;
}
}
return true;
}
#endif
/*******************************************************************************
* This function verifies that all the other cores in the system have been
* turned OFF and the current CPU is the last running CPU in the system.
* Returns true, if the current CPU is the last ON CPU or false otherwise.
******************************************************************************/
bool psci_is_last_on_cpu(void)
{
unsigned int cpu_idx, my_idx = plat_my_core_pos();
for (cpu_idx = 0; cpu_idx < psci_plat_core_count; cpu_idx++) {
if (cpu_idx == my_idx) {
assert(psci_get_aff_info_state() == AFF_STATE_ON);
continue;
}
if (psci_get_aff_info_state_by_idx(cpu_idx) != AFF_STATE_OFF) {
VERBOSE("core=%u other than current core=%u %s\n",
cpu_idx, my_idx, "running in the system");
return false;
}
}
return true;
}
/*******************************************************************************
* This function verifies that all cores in the system have been turned ON.
* Returns true, if all CPUs are ON or false otherwise.
******************************************************************************/
static bool psci_are_all_cpus_on(void)
{
unsigned int cpu_idx;
for (cpu_idx = 0; cpu_idx < psci_plat_core_count; cpu_idx++) {
if (psci_get_aff_info_state_by_idx(cpu_idx) == AFF_STATE_OFF) {
return false;
}
}
return true;
}
/*******************************************************************************
* Routine to return the maximum power level to traverse to after a cpu has
* been physically powered up. It is expected to be called immediately after
* reset from assembler code.
******************************************************************************/
static unsigned int get_power_on_target_pwrlvl(void)
{
unsigned int pwrlvl;
/*
* Assume that this cpu was suspended and retrieve its target power
* level. If it is invalid then it could only have been turned off
* earlier. PLAT_MAX_PWR_LVL will be the highest power level a
* cpu can be turned off to.
*/
pwrlvl = psci_get_suspend_pwrlvl();
if (pwrlvl == PSCI_INVALID_PWR_LVL)
pwrlvl = PLAT_MAX_PWR_LVL;
assert(pwrlvl < PSCI_INVALID_PWR_LVL);
return pwrlvl;
}
/******************************************************************************
* Helper function to update the requested local power state array. This array
* does not store the requested state for the CPU power level. Hence an
* assertion is added to prevent us from accessing the CPU power level.
*****************************************************************************/
static void psci_set_req_local_pwr_state(unsigned int pwrlvl,
unsigned int cpu_idx,
plat_local_state_t req_pwr_state)
{
assert(pwrlvl > PSCI_CPU_PWR_LVL);
if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) &&
(cpu_idx < psci_plat_core_count)) {
psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx] = req_pwr_state;
}
}
/******************************************************************************
* This function initializes the psci_req_local_pwr_states.
*****************************************************************************/
void __init psci_init_req_local_pwr_states(void)
{
/* Initialize the requested state of all non CPU power domains as OFF */
unsigned int pwrlvl;
unsigned int core;
for (pwrlvl = 0U; pwrlvl < PLAT_MAX_PWR_LVL; pwrlvl++) {
for (core = 0; core < psci_plat_core_count; core++) {
psci_req_local_pwr_states[pwrlvl][core] =
PLAT_MAX_OFF_STATE;
}
}
}
/******************************************************************************
* Helper function to return a reference to an array containing the local power
* states requested by each cpu for a power domain at 'pwrlvl'. The size of the
* array will be the number of cpu power domains of which this power domain is
* an ancestor. These requested states will be used to determine a suitable
* target state for this power domain during psci state coordination. An
* assertion is added to prevent us from accessing the CPU power level.
*****************************************************************************/
static plat_local_state_t *psci_get_req_local_pwr_states(unsigned int pwrlvl,
unsigned int cpu_idx)
{
assert(pwrlvl > PSCI_CPU_PWR_LVL);
if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) &&
(cpu_idx < psci_plat_core_count)) {
return &psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx];
} else
return NULL;
}
#if PSCI_OS_INIT_MODE
/******************************************************************************
* Helper function to save a copy of the psci_req_local_pwr_states (prev) for a
* CPU (cpu_idx), and update psci_req_local_pwr_states with the new requested
* local power states (state_info).
*****************************************************************************/
void psci_update_req_local_pwr_states(unsigned int end_pwrlvl,
unsigned int cpu_idx,
psci_power_state_t *state_info,
plat_local_state_t *prev)
{
unsigned int lvl;
#ifdef PLAT_MAX_CPU_SUSPEND_PWR_LVL
unsigned int max_pwrlvl = PLAT_MAX_CPU_SUSPEND_PWR_LVL;
#else
unsigned int max_pwrlvl = PLAT_MAX_PWR_LVL;
#endif
plat_local_state_t req_state;
for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= max_pwrlvl; lvl++) {
/* Save the previous requested local power state */
prev[lvl - 1U] = *psci_get_req_local_pwr_states(lvl, cpu_idx);
/* Update the new requested local power state */
if (lvl <= end_pwrlvl) {
req_state = state_info->pwr_domain_state[lvl];
} else {
req_state = state_info->pwr_domain_state[end_pwrlvl];
}
psci_set_req_local_pwr_state(lvl, cpu_idx, req_state);
}
}
/******************************************************************************
* Helper function to restore the previously saved requested local power states
* (prev) for a CPU (cpu_idx) to psci_req_local_pwr_states.
*****************************************************************************/
void psci_restore_req_local_pwr_states(unsigned int cpu_idx,
plat_local_state_t *prev)
{
unsigned int lvl;
#ifdef PLAT_MAX_CPU_SUSPEND_PWR_LVL
unsigned int max_pwrlvl = PLAT_MAX_CPU_SUSPEND_PWR_LVL;
#else
unsigned int max_pwrlvl = PLAT_MAX_PWR_LVL;
#endif
for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= max_pwrlvl; lvl++) {
/* Restore the previous requested local power state */
psci_set_req_local_pwr_state(lvl, cpu_idx, prev[lvl - 1U]);
}
}
#endif
/*
* psci_non_cpu_pd_nodes can be placed either in normal memory or coherent
* memory.
*
* With !USE_COHERENT_MEM, psci_non_cpu_pd_nodes is placed in normal memory,
* it's accessed by both cached and non-cached participants. To serve the common
* minimum, perform a cache flush before read and after write so that non-cached
* participants operate on latest data in main memory.
*
* When USE_COHERENT_MEM is used, psci_non_cpu_pd_nodes is placed in coherent
* memory. With HW_ASSISTED_COHERENCY, all PSCI participants are cache-coherent.
* In both cases, no cache operations are required.
*/
/*
* Retrieve local state of non-CPU power domain node from a non-cached CPU,
* after any required cache maintenance operation.
*/
static plat_local_state_t get_non_cpu_pd_node_local_state(
unsigned int parent_idx)
{
#if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
flush_dcache_range(
(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
sizeof(psci_non_cpu_pd_nodes[parent_idx]));
#endif
return psci_non_cpu_pd_nodes[parent_idx].local_state;
}
/*
* Update local state of non-CPU power domain node from a cached CPU; perform
* any required cache maintenance operation afterwards.
*/
static void set_non_cpu_pd_node_local_state(unsigned int parent_idx,
plat_local_state_t state)
{
psci_non_cpu_pd_nodes[parent_idx].local_state = state;
#if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
flush_dcache_range(
(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
sizeof(psci_non_cpu_pd_nodes[parent_idx]));
#endif
}
/******************************************************************************
* Helper function to return the current local power state of each power domain
* from the current cpu power domain to its ancestor at the 'end_pwrlvl'. This
* function will be called after a cpu is powered on to find the local state
* each power domain has emerged from.
*****************************************************************************/
void psci_get_target_local_pwr_states(unsigned int end_pwrlvl,
psci_power_state_t *target_state)
{
unsigned int parent_idx, lvl;
plat_local_state_t *pd_state = target_state->pwr_domain_state;
pd_state[PSCI_CPU_PWR_LVL] = psci_get_cpu_local_state();
parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
/* Copy the local power state from node to state_info */
for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
pd_state[lvl] = get_non_cpu_pd_node_local_state(parent_idx);
parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
}
/* Set the the higher levels to RUN */
for (; lvl <= PLAT_MAX_PWR_LVL; lvl++)
target_state->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
}
/******************************************************************************
* Helper function to set the target local power state that each power domain
* from the current cpu power domain to its ancestor at the 'end_pwrlvl' will
* enter. This function will be called after coordination of requested power
* states has been done for each power level.
*****************************************************************************/
void psci_set_target_local_pwr_states(unsigned int end_pwrlvl,
const psci_power_state_t *target_state)
{
unsigned int parent_idx, lvl;
const plat_local_state_t *pd_state = target_state->pwr_domain_state;
psci_set_cpu_local_state(pd_state[PSCI_CPU_PWR_LVL]);
/*
* Need to flush as local_state might be accessed with Data Cache
* disabled during power on
*/
psci_flush_cpu_data(psci_svc_cpu_data.local_state);
parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
/* Copy the local_state from state_info */
for (lvl = 1U; lvl <= end_pwrlvl; lvl++) {
set_non_cpu_pd_node_local_state(parent_idx, pd_state[lvl]);
parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
}
}
/*******************************************************************************
* PSCI helper function to get the parent nodes corresponding to a cpu_index.
******************************************************************************/
void psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx,
unsigned int end_lvl,
unsigned int *node_index)
{
unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node;
unsigned int i;
unsigned int *node = node_index;
for (i = PSCI_CPU_PWR_LVL + 1U; i <= end_lvl; i++) {
*node = parent_node;
node++;
parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node;
}
}
/******************************************************************************
* This function is invoked post CPU power up and initialization. It sets the
* affinity info state, target power state and requested power state for the
* current CPU and all its ancestor power domains to RUN.
*****************************************************************************/
void psci_set_pwr_domains_to_run(unsigned int end_pwrlvl)
{
unsigned int parent_idx, cpu_idx = plat_my_core_pos(), lvl;
parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
/* Reset the local_state to RUN for the non cpu power domains. */
for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
set_non_cpu_pd_node_local_state(parent_idx,
PSCI_LOCAL_STATE_RUN);
psci_set_req_local_pwr_state(lvl,
cpu_idx,
PSCI_LOCAL_STATE_RUN);
parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
}
/* Set the affinity info state to ON */
psci_set_aff_info_state(AFF_STATE_ON);
psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN);
psci_flush_cpu_data(psci_svc_cpu_data);
}
/******************************************************************************
* This function is used in platform-coordinated mode.
*
* This function is passed the local power states requested for each power
* domain (state_info) between the current CPU domain and its ancestors until
* the target power level (end_pwrlvl). It updates the array of requested power
* states with this information.
*
* Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it
* retrieves the states requested by all the cpus of which the power domain at
* that level is an ancestor. It passes this information to the platform to
* coordinate and return the target power state. If the target state for a level
* is RUN then subsequent levels are not considered. At the CPU level, state
* coordination is not required. Hence, the requested and the target states are
* the same.
*
* The 'state_info' is updated with the target state for each level between the
* CPU and the 'end_pwrlvl' and returned to the caller.
*
* This function will only be invoked with data cache enabled and while
* powering down a core.
*****************************************************************************/
void psci_do_state_coordination(unsigned int end_pwrlvl,
psci_power_state_t *state_info)
{
unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos();
unsigned int start_idx;
unsigned int ncpus;
plat_local_state_t target_state, *req_states;
assert(end_pwrlvl <= PLAT_MAX_PWR_LVL);
parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
/* For level 0, the requested state will be equivalent
to target state */
for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
/* First update the requested power state */
psci_set_req_local_pwr_state(lvl, cpu_idx,
state_info->pwr_domain_state[lvl]);
/* Get the requested power states for this power level */
start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
req_states = psci_get_req_local_pwr_states(lvl, start_idx);
/*
* Let the platform coordinate amongst the requested states at
* this power level and return the target local power state.
*/
ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
target_state = plat_get_target_pwr_state(lvl,
req_states,
ncpus);
state_info->pwr_domain_state[lvl] = target_state;
/* Break early if the negotiated target power state is RUN */
if (is_local_state_run(state_info->pwr_domain_state[lvl]) != 0)
break;
parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
}
/*
* This is for cases when we break out of the above loop early because
* the target power state is RUN at a power level < end_pwlvl.
* We update the requested power state from state_info and then
* set the target state as RUN.
*/
for (lvl = lvl + 1U; lvl <= end_pwrlvl; lvl++) {
psci_set_req_local_pwr_state(lvl, cpu_idx,
state_info->pwr_domain_state[lvl]);
state_info->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
}
}
#if PSCI_OS_INIT_MODE
/******************************************************************************
* This function is used in OS-initiated mode.
*
* This function is passed the local power states requested for each power
* domain (state_info) between the current CPU domain and its ancestors until
* the target power level (end_pwrlvl), and ensures the requested power states
* are valid. It updates the array of requested power states with this
* information.
*
* Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it
* retrieves the states requested by all the cpus of which the power domain at
* that level is an ancestor. It passes this information to the platform to
* coordinate and return the target power state. If the requested state does
* not match the target state, the request is denied.
*
* The 'state_info' is not modified.
*
* This function will only be invoked with data cache enabled and while
* powering down a core.
*****************************************************************************/
int psci_validate_state_coordination(unsigned int end_pwrlvl,
psci_power_state_t *state_info)
{
int rc = PSCI_E_SUCCESS;
unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos();
unsigned int start_idx;
unsigned int ncpus;
plat_local_state_t target_state, *req_states;
plat_local_state_t prev[PLAT_MAX_PWR_LVL];
assert(end_pwrlvl <= PLAT_MAX_PWR_LVL);
parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
/*
* Save a copy of the previous requested local power states and update
* the new requested local power states.
*/
psci_update_req_local_pwr_states(end_pwrlvl, cpu_idx, state_info, prev);
for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
/* Get the requested power states for this power level */
start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
req_states = psci_get_req_local_pwr_states(lvl, start_idx);
/*
* Let the platform coordinate amongst the requested states at
* this power level and return the target local power state.
*/
ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
target_state = plat_get_target_pwr_state(lvl,
req_states,
ncpus);
/*
* Verify that the requested power state matches the target
* local power state.
*/
if (state_info->pwr_domain_state[lvl] != target_state) {
if (target_state == PSCI_LOCAL_STATE_RUN) {
rc = PSCI_E_DENIED;
} else {
rc = PSCI_E_INVALID_PARAMS;
}
goto exit;
}
}
/*
* Verify that the current core is the last running core at the
* specified power level.
*/
lvl = state_info->last_at_pwrlvl;
if (!psci_is_last_cpu_to_idle_at_pwrlvl(lvl)) {
rc = PSCI_E_DENIED;
}
exit:
if (rc != PSCI_E_SUCCESS) {
/* Restore the previous requested local power states. */
psci_restore_req_local_pwr_states(cpu_idx, prev);
return rc;
}
return rc;
}
#endif
/******************************************************************************
* This function validates a suspend request by making sure that if a standby
* state is requested then no power level is turned off and the highest power
* level is placed in a standby/retention state.
*
* It also ensures that the state level X will enter is not shallower than the
* state level X + 1 will enter.
*
* This validation will be enabled only for DEBUG builds as the platform is
* expected to perform these validations as well.
*****************************************************************************/
int psci_validate_suspend_req(const psci_power_state_t *state_info,
unsigned int is_power_down_state)
{
unsigned int max_off_lvl, target_lvl, max_retn_lvl;
plat_local_state_t state;
plat_local_state_type_t req_state_type, deepest_state_type;
int i;
/* Find the target suspend power level */
target_lvl = psci_find_target_suspend_lvl(state_info);
if (target_lvl == PSCI_INVALID_PWR_LVL)
return PSCI_E_INVALID_PARAMS;
/* All power domain levels are in a RUN state to begin with */
deepest_state_type = STATE_TYPE_RUN;
for (i = (int) target_lvl; i >= (int) PSCI_CPU_PWR_LVL; i--) {
state = state_info->pwr_domain_state[i];
req_state_type = find_local_state_type(state);
/*
* While traversing from the highest power level to the lowest,
* the state requested for lower levels has to be the same or
* deeper i.e. equal to or greater than the state at the higher
* levels. If this condition is true, then the requested state
* becomes the deepest state encountered so far.
*/
if (req_state_type < deepest_state_type)
return PSCI_E_INVALID_PARAMS;
deepest_state_type = req_state_type;
}
/* Find the highest off power level */
max_off_lvl = psci_find_max_off_lvl(state_info);
/* The target_lvl is either equal to the max_off_lvl or max_retn_lvl */
max_retn_lvl = PSCI_INVALID_PWR_LVL;
if (target_lvl != max_off_lvl)
max_retn_lvl = target_lvl;
/*
* If this is not a request for a power down state then max off level
* has to be invalid and max retention level has to be a valid power
* level.
*/
if ((is_power_down_state == 0U) &&
((max_off_lvl != PSCI_INVALID_PWR_LVL) ||
(max_retn_lvl == PSCI_INVALID_PWR_LVL)))
return PSCI_E_INVALID_PARAMS;
return PSCI_E_SUCCESS;
}
/******************************************************************************
* This function finds the highest power level which will be powered down
* amongst all the power levels specified in the 'state_info' structure
*****************************************************************************/
unsigned int psci_find_max_off_lvl(const psci_power_state_t *state_info)
{
int i;
for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
if (is_local_state_off(state_info->pwr_domain_state[i]) != 0)
return (unsigned int) i;
}
return PSCI_INVALID_PWR_LVL;
}
/******************************************************************************
* This functions finds the level of the highest power domain which will be
* placed in a low power state during a suspend operation.
*****************************************************************************/
unsigned int psci_find_target_suspend_lvl(const psci_power_state_t *state_info)
{
int i;
for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
if (is_local_state_run(state_info->pwr_domain_state[i]) == 0)
return (unsigned int) i;
}
return PSCI_INVALID_PWR_LVL;
}
/*******************************************************************************
* This function is passed the highest level in the topology tree that the
* operation should be applied to and a list of node indexes. It picks up locks
* from the node index list in order of increasing power domain level in the
* range specified.
******************************************************************************/
void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl,
const unsigned int *parent_nodes)
{
unsigned int parent_idx;
unsigned int level;
/* No locking required for level 0. Hence start locking from level 1 */
for (level = PSCI_CPU_PWR_LVL + 1U; level <= end_pwrlvl; level++) {
parent_idx = parent_nodes[level - 1U];
psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]);
}
}
/*******************************************************************************
* This function is passed the highest level in the topology tree that the
* operation should be applied to and a list of node indexes. It releases the
* locks in order of decreasing power domain level in the range specified.
******************************************************************************/
void psci_release_pwr_domain_locks(unsigned int end_pwrlvl,
const unsigned int *parent_nodes)
{
unsigned int parent_idx;
unsigned int level;
/* Unlock top down. No unlocking required for level 0. */
for (level = end_pwrlvl; level >= (PSCI_CPU_PWR_LVL + 1U); level--) {
parent_idx = parent_nodes[level - 1U];
psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]);
}
}
/*******************************************************************************
* This function determines the full entrypoint information for the requested
* PSCI entrypoint on power on/resume and returns it.
******************************************************************************/
#ifdef __aarch64__
static int psci_get_ns_ep_info(entry_point_info_t *ep,
uintptr_t entrypoint,
u_register_t context_id)
{
u_register_t ep_attr, sctlr;
unsigned int daif, ee, mode;
u_register_t ns_scr_el3 = read_scr_el3();
u_register_t ns_sctlr_el1 = read_sctlr_el1();
sctlr = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
read_sctlr_el2() : ns_sctlr_el1;
ee = 0;
ep_attr = NON_SECURE | EP_ST_DISABLE;
if ((sctlr & SCTLR_EE_BIT) != 0U) {
ep_attr |= EP_EE_BIG;
ee = 1;
}
SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
ep->pc = entrypoint;
zeromem(&ep->args, sizeof(ep->args));
ep->args.arg0 = context_id;
/*
* Figure out whether the cpu enters the non-secure address space
* in aarch32 or aarch64
*/
if ((ns_scr_el3 & SCR_RW_BIT) != 0U) {
/*
* Check whether a Thumb entry point has been provided for an
* aarch64 EL
*/
if ((entrypoint & 0x1UL) != 0UL)
return PSCI_E_INVALID_ADDRESS;
mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? MODE_EL2 : MODE_EL1;
ep->spsr = SPSR_64((uint64_t)mode, MODE_SP_ELX,
DISABLE_ALL_EXCEPTIONS);
} else {
mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
MODE32_hyp : MODE32_svc;
/*
* TODO: Choose async. exception bits if HYP mode is not
* implemented according to the values of SCR.{AW, FW} bits
*/
daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT;
ep->spsr = SPSR_MODE32((uint64_t)mode, entrypoint & 0x1, ee,
daif);
}
return PSCI_E_SUCCESS;
}
#else /* !__aarch64__ */
static int psci_get_ns_ep_info(entry_point_info_t *ep,
uintptr_t entrypoint,
u_register_t context_id)
{
u_register_t ep_attr;
unsigned int aif, ee, mode;
u_register_t scr = read_scr();
u_register_t ns_sctlr, sctlr;
/* Switch to non secure state */
write_scr(scr | SCR_NS_BIT);
isb();
ns_sctlr = read_sctlr();
sctlr = scr & SCR_HCE_BIT ? read_hsctlr() : ns_sctlr;
/* Return to original state */
write_scr(scr);
isb();
ee = 0;
ep_attr = NON_SECURE | EP_ST_DISABLE;
if (sctlr & SCTLR_EE_BIT) {
ep_attr |= EP_EE_BIG;
ee = 1;
}
SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
ep->pc = entrypoint;
zeromem(&ep->args, sizeof(ep->args));
ep->args.arg0 = context_id;
mode = scr & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc;
/*
* TODO: Choose async. exception bits if HYP mode is not
* implemented according to the values of SCR.{AW, FW} bits
*/
aif = SPSR_ABT_BIT | SPSR_IRQ_BIT | SPSR_FIQ_BIT;
ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, aif);
return PSCI_E_SUCCESS;
}
#endif /* __aarch64__ */
/*******************************************************************************
* This function validates the entrypoint with the platform layer if the
* appropriate pm_ops hook is exported by the platform and returns the
* 'entry_point_info'.
******************************************************************************/
int psci_validate_entry_point(entry_point_info_t *ep,
uintptr_t entrypoint,
u_register_t context_id)
{
int rc;
/* Validate the entrypoint using platform psci_ops */
if (psci_plat_pm_ops->validate_ns_entrypoint != NULL) {
rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint);
if (rc != PSCI_E_SUCCESS)
return PSCI_E_INVALID_ADDRESS;
}
/*
* Verify and derive the re-entry information for
* the non-secure world from the non-secure state from
* where this call originated.
*/
rc = psci_get_ns_ep_info(ep, entrypoint, context_id);
return rc;
}
/*******************************************************************************
* Generic handler which is called when a cpu is physically powered on. It
* traverses the node information and finds the highest power level powered
* off and performs generic, architectural, platform setup and state management
* to power on that power level and power levels below it.
* e.g. For a cpu that's been powered on, it will call the platform specific
* code to enable the gic cpu interface and for a cluster it will enable
* coherency at the interconnect level in addition to gic cpu interface.
******************************************************************************/
void psci_warmboot_entrypoint(void)
{
unsigned int end_pwrlvl;
unsigned int cpu_idx = plat_my_core_pos();
unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} };
/* Init registers that never change for the lifetime of TF-A */
cm_manage_extensions_el3();
/*
* Verify that we have been explicitly turned ON or resumed from
* suspend.
*/
if (psci_get_aff_info_state() == AFF_STATE_OFF) {
ERROR("Unexpected affinity info state.\n");
panic();
}
/*
* Get the maximum power domain level to traverse to after this cpu
* has been physically powered up.
*/
end_pwrlvl = get_power_on_target_pwrlvl();
/* Get the parent nodes */
psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes);
/*
* This function acquires the lock corresponding to each power level so
* that by the time all locks are taken, the system topology is snapshot
* and state management can be done safely.
*/
psci_acquire_pwr_domain_locks(end_pwrlvl, parent_nodes);
psci_get_target_local_pwr_states(end_pwrlvl, &state_info);
#if ENABLE_PSCI_STAT
plat_psci_stat_accounting_stop(&state_info);
#endif
/*
* This CPU could be resuming from suspend or it could have just been
* turned on. To distinguish between these 2 cases, we examine the
* affinity state of the CPU:
* - If the affinity state is ON_PENDING then it has just been
* turned on.
* - Else it is resuming from suspend.
*
* Depending on the type of warm reset identified, choose the right set
* of power management handler and perform the generic, architecture
* and platform specific handling.
*/
if (psci_get_aff_info_state() == AFF_STATE_ON_PENDING)
psci_cpu_on_finish(cpu_idx, &state_info);
else
psci_cpu_suspend_finish(cpu_idx, &state_info);
/*
* Generic management: Now we just need to retrieve the
* information that we had stashed away during the cpu_on
* call to set this cpu on its way.
*/
cm_prepare_el3_exit_ns();
/*
* Set the requested and target state of this CPU and all the higher
* power domains which are ancestors of this CPU to run.
*/
psci_set_pwr_domains_to_run(end_pwrlvl);
#if ENABLE_PSCI_STAT
/*
* Update PSCI stats.
* Caches are off when writing stats data on the power down path.
* Since caches are now enabled, it's necessary to do cache
* maintenance before reading that same data.
*/
psci_stats_update_pwr_up(end_pwrlvl, &state_info);
#endif
/*
* This loop releases the lock corresponding to each power level
* in the reverse order to which they were acquired.
*/
psci_release_pwr_domain_locks(end_pwrlvl, parent_nodes);
}
/*******************************************************************************
* This function initializes the set of hooks that PSCI invokes as part of power
* management operation. The power management hooks are expected to be provided
* by the SPD, after it finishes all its initialization
******************************************************************************/
void psci_register_spd_pm_hook(const spd_pm_ops_t *pm)
{
assert(pm != NULL);
psci_spd_pm = pm;
if (pm->svc_migrate != NULL)
psci_caps |= define_psci_cap(PSCI_MIG_AARCH64);
if (pm->svc_migrate_info != NULL)
psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64)
| define_psci_cap(PSCI_MIG_INFO_TYPE);
}
/*******************************************************************************
* This function invokes the migrate info hook in the spd_pm_ops. It performs
* the necessary return value validation. If the Secure Payload is UP and
* migrate capable, it returns the mpidr of the CPU on which the Secure payload
* is resident through the mpidr parameter. Else the value of the parameter on
* return is undefined.
******************************************************************************/
int psci_spd_migrate_info(u_register_t *mpidr)
{
int rc;
if ((psci_spd_pm == NULL) || (psci_spd_pm->svc_migrate_info == NULL))
return PSCI_E_NOT_SUPPORTED;
rc = psci_spd_pm->svc_migrate_info(mpidr);
assert((rc == PSCI_TOS_UP_MIG_CAP) || (rc == PSCI_TOS_NOT_UP_MIG_CAP) ||
(rc == PSCI_TOS_NOT_PRESENT_MP) || (rc == PSCI_E_NOT_SUPPORTED));
return rc;
}
/*******************************************************************************
* This function prints the state of all power domains present in the
* system
******************************************************************************/
void psci_print_power_domain_map(void)
{
#if LOG_LEVEL >= LOG_LEVEL_INFO
unsigned int idx;
plat_local_state_t state;
plat_local_state_type_t state_type;
/* This array maps to the PSCI_STATE_X definitions in psci.h */
static const char * const psci_state_type_str[] = {
"ON",
"RETENTION",
"OFF",
};
INFO("PSCI Power Domain Map:\n");
for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - psci_plat_core_count);
idx++) {
state_type = find_local_state_type(
psci_non_cpu_pd_nodes[idx].local_state);
INFO(" Domain Node : Level %u, parent_node %u,"
" State %s (0x%x)\n",
psci_non_cpu_pd_nodes[idx].level,
psci_non_cpu_pd_nodes[idx].parent_node,
psci_state_type_str[state_type],
psci_non_cpu_pd_nodes[idx].local_state);
}
for (idx = 0; idx < psci_plat_core_count; idx++) {
state = psci_get_cpu_local_state_by_idx(idx);
state_type = find_local_state_type(state);
INFO(" CPU Node : MPID 0x%llx, parent_node %u,"
" State %s (0x%x)\n",
(unsigned long long)psci_cpu_pd_nodes[idx].mpidr,
psci_cpu_pd_nodes[idx].parent_node,
psci_state_type_str[state_type],
psci_get_cpu_local_state_by_idx(idx));
}
#endif
}
/******************************************************************************
* Return whether any secondaries were powered up with CPU_ON call. A CPU that
* have ever been powered up would have set its MPDIR value to something other
* than PSCI_INVALID_MPIDR. Note that MPDIR isn't reset back to
* PSCI_INVALID_MPIDR when a CPU is powered down later, so the return value is
* meaningful only when called on the primary CPU during early boot.
*****************************************************************************/
int psci_secondaries_brought_up(void)
{
unsigned int idx, n_valid = 0U;
for (idx = 0U; idx < ARRAY_SIZE(psci_cpu_pd_nodes); idx++) {
if (psci_cpu_pd_nodes[idx].mpidr != PSCI_INVALID_MPIDR)
n_valid++;
}
assert(n_valid > 0U);
return (n_valid > 1U) ? 1 : 0;
}
/*******************************************************************************
* Initiate power down sequence, by calling power down operations registered for
* this CPU.
******************************************************************************/
void psci_pwrdown_cpu(unsigned int power_level)
{
psci_do_manage_extensions();
#if HW_ASSISTED_COHERENCY
/*
* With hardware-assisted coherency, the CPU drivers only initiate the
* power down sequence, without performing cache-maintenance operations
* in software. Data caches enabled both before and after this call.
*/
prepare_cpu_pwr_dwn(power_level);
#else
/*
* Without hardware-assisted coherency, the CPU drivers disable data
* caches, then perform cache-maintenance operations in software.
*
* This also calls prepare_cpu_pwr_dwn() to initiate power down
* sequence, but that function will return with data caches disabled.
* We must ensure that the stack memory is flushed out to memory before
* we start popping from it again.
*/
psci_do_pwrdown_cache_maintenance(power_level);
#endif
}
/*******************************************************************************
* This function invokes the callback 'stop_func()' with the 'mpidr' of each
* online PE. Caller can pass suitable method to stop a remote core.
*
* 'wait_ms' is the timeout value in milliseconds for the other cores to
* transition to power down state. Passing '0' makes it non-blocking.
*
* The function returns 'PSCI_E_DENIED' if some cores failed to stop within the
* given timeout.
******************************************************************************/
int psci_stop_other_cores(unsigned int wait_ms,
void (*stop_func)(u_register_t mpidr))
{
unsigned int idx, this_cpu_idx;
this_cpu_idx = plat_my_core_pos();
/* Invoke stop_func for each core */
for (idx = 0U; idx < psci_plat_core_count; idx++) {
/* skip current CPU */
if (idx == this_cpu_idx) {
continue;
}
/* Check if the CPU is ON */
if (psci_get_aff_info_state_by_idx(idx) == AFF_STATE_ON) {
(*stop_func)(psci_cpu_pd_nodes[idx].mpidr);
}
}
/* Need to wait for other cores to shutdown */
if (wait_ms != 0U) {
while ((wait_ms-- != 0U) && (!psci_is_last_on_cpu())) {
mdelay(1U);
}
if (!psci_is_last_on_cpu()) {
WARN("Failed to stop all cores!\n");
psci_print_power_domain_map();
return PSCI_E_DENIED;
}
}
return PSCI_E_SUCCESS;
}
/*******************************************************************************
* This function verifies that all the other cores in the system have been
* turned OFF and the current CPU is the last running CPU in the system.
* Returns true if the current CPU is the last ON CPU or false otherwise.
*
* This API has following differences with psci_is_last_on_cpu
* 1. PSCI states are locked
******************************************************************************/
bool psci_is_last_on_cpu_safe(void)
{
unsigned int this_core = plat_my_core_pos();
unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes);
psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
if (!psci_is_last_on_cpu()) {
psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
return false;
}
psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
return true;
}
/*******************************************************************************
* This function verifies that all cores in the system have been turned ON.
* Returns true, if all CPUs are ON or false otherwise.
*
* This API has following differences with psci_are_all_cpus_on
* 1. PSCI states are locked
******************************************************************************/
bool psci_are_all_cpus_on_safe(void)
{
unsigned int this_core = plat_my_core_pos();
unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes);
psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
if (!psci_are_all_cpus_on()) {
psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
return false;
}
psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
return true;
}
/*******************************************************************************
* This function performs architectural feature specific management.
* It ensures the architectural features are disabled during cpu
* power off/suspend operations.
******************************************************************************/
void psci_do_manage_extensions(void)
{
/*
* On power down we need to disable statistical profiling extensions
* before exiting coherency.
*/
if (is_feat_spe_supported()) {
spe_disable();
}
}