blob: fd620492f8463c7152b836b6b978240fcd280666 [file] [log] [blame]
/*
* Copyright (C) 2022-2024, STMicroelectronics - All Rights Reserved
*
* SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
*/
#include <assert.h>
#include <errno.h>
#include <limits.h>
#include <stdint.h>
#include <stdio.h>
#include <arch.h>
#include <arch_helpers.h>
#include "clk-stm32-core.h"
#include <common/debug.h>
#include <common/fdt_wrappers.h>
#include <drivers/clk.h>
#include <drivers/delay_timer.h>
#include <drivers/st/stm32mp13_rcc.h>
#include <drivers/st/stm32mp1_clk.h>
#include <drivers/st/stm32mp_clkfunc.h>
#include <dt-bindings/clock/stm32mp13-clksrc.h>
#include <lib/mmio.h>
#include <lib/spinlock.h>
#include <lib/utils_def.h>
#include <libfdt.h>
#include <plat/common/platform.h>
#include <platform_def.h>
struct stm32_osci_dt_cfg {
unsigned long freq;
bool bypass;
bool digbyp;
bool css;
uint32_t drive;
};
enum pll_mn {
PLL_CFG_M,
PLL_CFG_N,
PLL_DIV_MN_NB
};
enum pll_pqr {
PLL_CFG_P,
PLL_CFG_Q,
PLL_CFG_R,
PLL_DIV_PQR_NB
};
enum pll_csg {
PLL_CSG_MOD_PER,
PLL_CSG_INC_STEP,
PLL_CSG_SSCG_MODE,
PLL_CSG_NB
};
struct stm32_pll_vco {
uint32_t status;
uint32_t src;
uint32_t div_mn[PLL_DIV_MN_NB];
uint32_t frac;
bool csg_enabled;
uint32_t csg[PLL_CSG_NB];
};
struct stm32_pll_output {
uint32_t output[PLL_DIV_PQR_NB];
};
struct stm32_pll_dt_cfg {
struct stm32_pll_vco vco;
struct stm32_pll_output output;
};
struct stm32_clk_platdata {
uint32_t nosci;
struct stm32_osci_dt_cfg *osci;
uint32_t npll;
struct stm32_pll_dt_cfg *pll;
uint32_t nclksrc;
uint32_t *clksrc;
uint32_t nclkdiv;
uint32_t *clkdiv;
};
enum stm32_clock {
/* ROOT CLOCKS */
_CK_OFF,
_CK_HSI,
_CK_HSE,
_CK_CSI,
_CK_LSI,
_CK_LSE,
_I2SCKIN,
_CSI_DIV122,
_HSE_DIV,
_HSE_DIV2,
_CK_PLL1,
_CK_PLL2,
_CK_PLL3,
_CK_PLL4,
_PLL1P,
_PLL1P_DIV,
_PLL2P,
_PLL2Q,
_PLL2R,
_PLL3P,
_PLL3Q,
_PLL3R,
_PLL4P,
_PLL4Q,
_PLL4R,
_PCLK1,
_PCLK2,
_PCLK3,
_PCLK4,
_PCLK5,
_PCLK6,
_CKMPU,
_CKAXI,
_CKMLAHB,
_CKPER,
_CKTIMG1,
_CKTIMG2,
_CKTIMG3,
_USB_PHY_48,
_MCO1_K,
_MCO2_K,
_TRACECK,
/* BUS and KERNEL CLOCKS */
_DDRC1,
_DDRC1LP,
_DDRPHYC,
_DDRPHYCLP,
_DDRCAPB,
_DDRCAPBLP,
_AXIDCG,
_DDRPHYCAPB,
_DDRPHYCAPBLP,
_SYSCFG,
_DDRPERFM,
_IWDG2APB,
_USBPHY_K,
_USBO_K,
_RTCAPB,
_TZC,
_ETZPC,
_IWDG1APB,
_BSEC,
_STGENC,
_USART1_K,
_USART2_K,
_I2C3_K,
_I2C4_K,
_I2C5_K,
_TIM12,
_TIM15,
_RTCCK,
_GPIOA,
_GPIOB,
_GPIOC,
_GPIOD,
_GPIOE,
_GPIOF,
_GPIOG,
_GPIOH,
_GPIOI,
_PKA,
_SAES_K,
_CRYP1,
_HASH1,
_RNG1_K,
_BKPSRAM,
_SDMMC1_K,
_SDMMC2_K,
_DBGCK,
_USART3_K,
_UART4_K,
_UART5_K,
_UART7_K,
_UART8_K,
_USART6_K,
_MCE,
_FMC_K,
_QSPI_K,
CK_LAST
};
/* PARENT CONFIG */
static const uint16_t RTC_src[] = {
_CK_OFF, _CK_LSE, _CK_LSI, _CK_HSE
};
static const uint16_t MCO1_src[] = {
_CK_HSI, _CK_HSE, _CK_CSI, _CK_LSI, _CK_LSE
};
static const uint16_t MCO2_src[] = {
_CKMPU, _CKAXI, _CKMLAHB, _PLL4P, _CK_HSE, _CK_HSI
};
static const uint16_t PLL12_src[] = {
_CK_HSI, _CK_HSE
};
static const uint16_t PLL3_src[] = {
_CK_HSI, _CK_HSE, _CK_CSI
};
static const uint16_t PLL4_src[] = {
_CK_HSI, _CK_HSE, _CK_CSI, _I2SCKIN
};
static const uint16_t MPU_src[] = {
_CK_HSI, _CK_HSE, _PLL1P, _PLL1P_DIV
};
static const uint16_t AXI_src[] = {
_CK_HSI, _CK_HSE, _PLL2P
};
static const uint16_t MLAHBS_src[] = {
_CK_HSI, _CK_HSE, _CK_CSI, _PLL3P
};
static const uint16_t CKPER_src[] = {
_CK_HSI, _CK_CSI, _CK_HSE, _CK_OFF
};
static const uint16_t I2C12_src[] = {
_PCLK1, _PLL4R, _CK_HSI, _CK_CSI
};
static const uint16_t I2C3_src[] = {
_PCLK6, _PLL4R, _CK_HSI, _CK_CSI
};
static const uint16_t I2C4_src[] = {
_PCLK6, _PLL4R, _CK_HSI, _CK_CSI
};
static const uint16_t I2C5_src[] = {
_PCLK6, _PLL4R, _CK_HSI, _CK_CSI
};
static const uint16_t SPI1_src[] = {
_PLL4P, _PLL3Q, _I2SCKIN, _CKPER, _PLL3R
};
static const uint16_t SPI23_src[] = {
_PLL4P, _PLL3Q, _I2SCKIN, _CKPER, _PLL3R
};
static const uint16_t SPI4_src[] = {
_PCLK6, _PLL4Q, _CK_HSI, _CK_CSI, _CK_HSE, _I2SCKIN
};
static const uint16_t SPI5_src[] = {
_PCLK6, _PLL4Q, _CK_HSI, _CK_CSI, _CK_HSE
};
static const uint16_t UART1_src[] = {
_PCLK6, _PLL3Q, _CK_HSI, _CK_CSI, _PLL4Q, _CK_HSE
};
static const uint16_t UART2_src[] = {
_PCLK6, _PLL3Q, _CK_HSI, _CK_CSI, _PLL4Q, _CK_HSE
};
static const uint16_t UART35_src[] = {
_PCLK1, _PLL4Q, _CK_HSI, _CK_CSI, _CK_HSE
};
static const uint16_t UART4_src[] = {
_PCLK1, _PLL4Q, _CK_HSI, _CK_CSI, _CK_HSE
};
static const uint16_t UART6_src[] = {
_PCLK2, _PLL4Q, _CK_HSI, _CK_CSI, _CK_HSE
};
static const uint16_t UART78_src[] = {
_PCLK1, _PLL4Q, _CK_HSI, _CK_CSI, _CK_HSE
};
static const uint16_t LPTIM1_src[] = {
_PCLK1, _PLL4P, _PLL3Q, _CK_LSE, _CK_LSI, _CKPER
};
static const uint16_t LPTIM2_src[] = {
_PCLK3, _PLL4Q, _CKPER, _CK_LSE, _CK_LSI
};
static const uint16_t LPTIM3_src[] = {
_PCLK3, _PLL4Q, _CKPER, _CK_LSE, _CK_LSI
};
static const uint16_t LPTIM45_src[] = {
_PCLK3, _PLL4P, _PLL3Q, _CK_LSE, _CK_LSI, _CKPER
};
static const uint16_t SAI1_src[] = {
_PLL4Q, _PLL3Q, _I2SCKIN, _CKPER, _PLL3R
};
static const uint16_t SAI2_src[] = {
_PLL4Q, _PLL3Q, _I2SCKIN, _CKPER, _NO_ID, _PLL3R
};
static const uint16_t FDCAN_src[] = {
_CK_HSE, _PLL3Q, _PLL4Q, _PLL4R
};
static const uint16_t SPDIF_src[] = {
_PLL4P, _PLL3Q, _CK_HSI
};
static const uint16_t ADC1_src[] = {
_PLL4R, _CKPER, _PLL3Q
};
static const uint16_t ADC2_src[] = {
_PLL4R, _CKPER, _PLL3Q
};
static const uint16_t SDMMC1_src[] = {
_CKAXI, _PLL3R, _PLL4P, _CK_HSI
};
static const uint16_t SDMMC2_src[] = {
_CKAXI, _PLL3R, _PLL4P, _CK_HSI
};
static const uint16_t ETH1_src[] = {
_PLL4P, _PLL3Q
};
static const uint16_t ETH2_src[] = {
_PLL4P, _PLL3Q
};
static const uint16_t USBPHY_src[] = {
_CK_HSE, _PLL4R, _HSE_DIV2
};
static const uint16_t USBO_src[] = {
_PLL4R, _USB_PHY_48
};
static const uint16_t QSPI_src[] = {
_CKAXI, _PLL3R, _PLL4P, _CKPER
};
static const uint16_t FMC_src[] = {
_CKAXI, _PLL3R, _PLL4P, _CKPER
};
/* Position 2 of RNG1 mux is reserved */
static const uint16_t RNG1_src[] = {
_CK_CSI, _PLL4R, _CK_OFF, _CK_LSI
};
static const uint16_t STGEN_src[] = {
_CK_HSI, _CK_HSE
};
static const uint16_t DCMIPP_src[] = {
_CKAXI, _PLL2Q, _PLL4P, _CKPER
};
static const uint16_t SAES_src[] = {
_CKAXI, _CKPER, _PLL4R, _CK_LSI
};
#define MUX_CFG(id, src, _offset, _shift, _witdh)[id] = {\
.id_parents = src,\
.num_parents = ARRAY_SIZE(src),\
.mux = &(struct mux_cfg) {\
.offset = (_offset),\
.shift = (_shift),\
.width = (_witdh),\
.bitrdy = MUX_NO_BIT_RDY,\
},\
}
#define MUX_RDY_CFG(id, src, _offset, _shift, _witdh)[id] = {\
.id_parents = src,\
.num_parents = ARRAY_SIZE(src),\
.mux = &(struct mux_cfg) {\
.offset = (_offset),\
.shift = (_shift),\
.width = (_witdh),\
.bitrdy = 31,\
},\
}
static const struct parent_cfg parent_mp13[MUX_MAX] = {
MUX_CFG(MUX_ADC1, ADC1_src, RCC_ADC12CKSELR, 0, 2),
MUX_CFG(MUX_ADC2, ADC2_src, RCC_ADC12CKSELR, 2, 2),
MUX_RDY_CFG(MUX_AXI, AXI_src, RCC_ASSCKSELR, 0, 3),
MUX_CFG(MUX_CKPER, CKPER_src, RCC_CPERCKSELR, 0, 2),
MUX_CFG(MUX_DCMIPP, DCMIPP_src, RCC_DCMIPPCKSELR, 0, 2),
MUX_CFG(MUX_ETH1, ETH1_src, RCC_ETH12CKSELR, 0, 2),
MUX_CFG(MUX_ETH2, ETH2_src, RCC_ETH12CKSELR, 8, 2),
MUX_CFG(MUX_FDCAN, FDCAN_src, RCC_FDCANCKSELR, 0, 2),
MUX_CFG(MUX_FMC, FMC_src, RCC_FMCCKSELR, 0, 2),
MUX_CFG(MUX_I2C12, I2C12_src, RCC_I2C12CKSELR, 0, 3),
MUX_CFG(MUX_I2C3, I2C3_src, RCC_I2C345CKSELR, 0, 3),
MUX_CFG(MUX_I2C4, I2C4_src, RCC_I2C345CKSELR, 3, 3),
MUX_CFG(MUX_I2C5, I2C5_src, RCC_I2C345CKSELR, 6, 3),
MUX_CFG(MUX_LPTIM1, LPTIM1_src, RCC_LPTIM1CKSELR, 0, 3),
MUX_CFG(MUX_LPTIM2, LPTIM2_src, RCC_LPTIM23CKSELR, 0, 3),
MUX_CFG(MUX_LPTIM3, LPTIM3_src, RCC_LPTIM23CKSELR, 3, 3),
MUX_CFG(MUX_LPTIM45, LPTIM45_src, RCC_LPTIM45CKSELR, 0, 3),
MUX_CFG(MUX_MCO1, MCO1_src, RCC_MCO1CFGR, 0, 3),
MUX_CFG(MUX_MCO2, MCO2_src, RCC_MCO2CFGR, 0, 3),
MUX_RDY_CFG(MUX_MLAHB, MLAHBS_src, RCC_MSSCKSELR, 0, 2),
MUX_RDY_CFG(MUX_MPU, MPU_src, RCC_MPCKSELR, 0, 2),
MUX_RDY_CFG(MUX_PLL12, PLL12_src, RCC_RCK12SELR, 0, 2),
MUX_RDY_CFG(MUX_PLL3, PLL3_src, RCC_RCK3SELR, 0, 2),
MUX_RDY_CFG(MUX_PLL4, PLL4_src, RCC_RCK4SELR, 0, 2),
MUX_CFG(MUX_QSPI, QSPI_src, RCC_QSPICKSELR, 0, 2),
MUX_CFG(MUX_RNG1, RNG1_src, RCC_RNG1CKSELR, 0, 2),
MUX_CFG(MUX_RTC, RTC_src, RCC_BDCR, 16, 2),
MUX_CFG(MUX_SAES, SAES_src, RCC_SAESCKSELR, 0, 2),
MUX_CFG(MUX_SAI1, SAI1_src, RCC_SAI1CKSELR, 0, 3),
MUX_CFG(MUX_SAI2, SAI2_src, RCC_SAI2CKSELR, 0, 3),
MUX_CFG(MUX_SDMMC1, SDMMC1_src, RCC_SDMMC12CKSELR, 0, 3),
MUX_CFG(MUX_SDMMC2, SDMMC2_src, RCC_SDMMC12CKSELR, 3, 3),
MUX_CFG(MUX_SPDIF, SPDIF_src, RCC_SPDIFCKSELR, 0, 2),
MUX_CFG(MUX_SPI1, SPI1_src, RCC_SPI2S1CKSELR, 0, 3),
MUX_CFG(MUX_SPI23, SPI23_src, RCC_SPI2S23CKSELR, 0, 3),
MUX_CFG(MUX_SPI4, SPI4_src, RCC_SPI45CKSELR, 0, 3),
MUX_CFG(MUX_SPI5, SPI5_src, RCC_SPI45CKSELR, 3, 3),
MUX_CFG(MUX_STGEN, STGEN_src, RCC_STGENCKSELR, 0, 2),
MUX_CFG(MUX_UART1, UART1_src, RCC_UART12CKSELR, 0, 3),
MUX_CFG(MUX_UART2, UART2_src, RCC_UART12CKSELR, 3, 3),
MUX_CFG(MUX_UART35, UART35_src, RCC_UART35CKSELR, 0, 3),
MUX_CFG(MUX_UART4, UART4_src, RCC_UART4CKSELR, 0, 3),
MUX_CFG(MUX_UART6, UART6_src, RCC_UART6CKSELR, 0, 3),
MUX_CFG(MUX_UART78, UART78_src, RCC_UART78CKSELR, 0, 3),
MUX_CFG(MUX_USBO, USBO_src, RCC_USBCKSELR, 4, 1),
MUX_CFG(MUX_USBPHY, USBPHY_src, RCC_USBCKSELR, 0, 2),
};
/*
* GATE CONFIG
*/
enum enum_gate_cfg {
GATE_ZERO, /* reserved for no gate */
GATE_LSE,
GATE_RTCCK,
GATE_LSI,
GATE_HSI,
GATE_CSI,
GATE_HSE,
GATE_LSI_RDY,
GATE_CSI_RDY,
GATE_LSE_RDY,
GATE_HSE_RDY,
GATE_HSI_RDY,
GATE_MCO1,
GATE_MCO2,
GATE_DBGCK,
GATE_TRACECK,
GATE_PLL1,
GATE_PLL1_DIVP,
GATE_PLL1_DIVQ,
GATE_PLL1_DIVR,
GATE_PLL2,
GATE_PLL2_DIVP,
GATE_PLL2_DIVQ,
GATE_PLL2_DIVR,
GATE_PLL3,
GATE_PLL3_DIVP,
GATE_PLL3_DIVQ,
GATE_PLL3_DIVR,
GATE_PLL4,
GATE_PLL4_DIVP,
GATE_PLL4_DIVQ,
GATE_PLL4_DIVR,
GATE_DDRC1,
GATE_DDRC1LP,
GATE_DDRPHYC,
GATE_DDRPHYCLP,
GATE_DDRCAPB,
GATE_DDRCAPBLP,
GATE_AXIDCG,
GATE_DDRPHYCAPB,
GATE_DDRPHYCAPBLP,
GATE_TIM2,
GATE_TIM3,
GATE_TIM4,
GATE_TIM5,
GATE_TIM6,
GATE_TIM7,
GATE_LPTIM1,
GATE_SPI2,
GATE_SPI3,
GATE_USART3,
GATE_UART4,
GATE_UART5,
GATE_UART7,
GATE_UART8,
GATE_I2C1,
GATE_I2C2,
GATE_SPDIF,
GATE_TIM1,
GATE_TIM8,
GATE_SPI1,
GATE_USART6,
GATE_SAI1,
GATE_SAI2,
GATE_DFSDM,
GATE_ADFSDM,
GATE_FDCAN,
GATE_LPTIM2,
GATE_LPTIM3,
GATE_LPTIM4,
GATE_LPTIM5,
GATE_VREF,
GATE_DTS,
GATE_PMBCTRL,
GATE_HDP,
GATE_SYSCFG,
GATE_DCMIPP,
GATE_DDRPERFM,
GATE_IWDG2APB,
GATE_USBPHY,
GATE_STGENRO,
GATE_LTDC,
GATE_RTCAPB,
GATE_TZC,
GATE_ETZPC,
GATE_IWDG1APB,
GATE_BSEC,
GATE_STGENC,
GATE_USART1,
GATE_USART2,
GATE_SPI4,
GATE_SPI5,
GATE_I2C3,
GATE_I2C4,
GATE_I2C5,
GATE_TIM12,
GATE_TIM13,
GATE_TIM14,
GATE_TIM15,
GATE_TIM16,
GATE_TIM17,
GATE_DMA1,
GATE_DMA2,
GATE_DMAMUX1,
GATE_DMA3,
GATE_DMAMUX2,
GATE_ADC1,
GATE_ADC2,
GATE_USBO,
GATE_TSC,
GATE_GPIOA,
GATE_GPIOB,
GATE_GPIOC,
GATE_GPIOD,
GATE_GPIOE,
GATE_GPIOF,
GATE_GPIOG,
GATE_GPIOH,
GATE_GPIOI,
GATE_PKA,
GATE_SAES,
GATE_CRYP1,
GATE_HASH1,
GATE_RNG1,
GATE_BKPSRAM,
GATE_AXIMC,
GATE_MCE,
GATE_ETH1CK,
GATE_ETH1TX,
GATE_ETH1RX,
GATE_ETH1MAC,
GATE_FMC,
GATE_QSPI,
GATE_SDMMC1,
GATE_SDMMC2,
GATE_CRC1,
GATE_USBH,
GATE_ETH2CK,
GATE_ETH2TX,
GATE_ETH2RX,
GATE_ETH2MAC,
GATE_MDMA,
LAST_GATE
};
#define GATE_CFG(id, _offset, _bit_idx, _offset_clr)[id] = {\
.offset = (_offset),\
.bit_idx = (_bit_idx),\
.set_clr = (_offset_clr),\
}
static const struct gate_cfg gates_mp13[LAST_GATE] = {
GATE_CFG(GATE_LSE, RCC_BDCR, 0, 0),
GATE_CFG(GATE_RTCCK, RCC_BDCR, 20, 0),
GATE_CFG(GATE_LSI, RCC_RDLSICR, 0, 0),
GATE_CFG(GATE_HSI, RCC_OCENSETR, 0, 1),
GATE_CFG(GATE_CSI, RCC_OCENSETR, 4, 1),
GATE_CFG(GATE_HSE, RCC_OCENSETR, 8, 1),
GATE_CFG(GATE_LSI_RDY, RCC_RDLSICR, 1, 0),
GATE_CFG(GATE_CSI_RDY, RCC_OCRDYR, 4, 0),
GATE_CFG(GATE_LSE_RDY, RCC_BDCR, 2, 0),
GATE_CFG(GATE_HSE_RDY, RCC_OCRDYR, 8, 0),
GATE_CFG(GATE_HSI_RDY, RCC_OCRDYR, 0, 0),
GATE_CFG(GATE_MCO1, RCC_MCO1CFGR, 12, 0),
GATE_CFG(GATE_MCO2, RCC_MCO2CFGR, 12, 0),
GATE_CFG(GATE_DBGCK, RCC_DBGCFGR, 8, 0),
GATE_CFG(GATE_TRACECK, RCC_DBGCFGR, 9, 0),
GATE_CFG(GATE_PLL1, RCC_PLL1CR, 0, 0),
GATE_CFG(GATE_PLL1_DIVP, RCC_PLL1CR, 4, 0),
GATE_CFG(GATE_PLL1_DIVQ, RCC_PLL1CR, 5, 0),
GATE_CFG(GATE_PLL1_DIVR, RCC_PLL1CR, 6, 0),
GATE_CFG(GATE_PLL2, RCC_PLL2CR, 0, 0),
GATE_CFG(GATE_PLL2_DIVP, RCC_PLL2CR, 4, 0),
GATE_CFG(GATE_PLL2_DIVQ, RCC_PLL2CR, 5, 0),
GATE_CFG(GATE_PLL2_DIVR, RCC_PLL2CR, 6, 0),
GATE_CFG(GATE_PLL3, RCC_PLL3CR, 0, 0),
GATE_CFG(GATE_PLL3_DIVP, RCC_PLL3CR, 4, 0),
GATE_CFG(GATE_PLL3_DIVQ, RCC_PLL3CR, 5, 0),
GATE_CFG(GATE_PLL3_DIVR, RCC_PLL3CR, 6, 0),
GATE_CFG(GATE_PLL4, RCC_PLL4CR, 0, 0),
GATE_CFG(GATE_PLL4_DIVP, RCC_PLL4CR, 4, 0),
GATE_CFG(GATE_PLL4_DIVQ, RCC_PLL4CR, 5, 0),
GATE_CFG(GATE_PLL4_DIVR, RCC_PLL4CR, 6, 0),
GATE_CFG(GATE_DDRC1, RCC_DDRITFCR, 0, 0),
GATE_CFG(GATE_DDRC1LP, RCC_DDRITFCR, 1, 0),
GATE_CFG(GATE_DDRPHYC, RCC_DDRITFCR, 4, 0),
GATE_CFG(GATE_DDRPHYCLP, RCC_DDRITFCR, 5, 0),
GATE_CFG(GATE_DDRCAPB, RCC_DDRITFCR, 6, 0),
GATE_CFG(GATE_DDRCAPBLP, RCC_DDRITFCR, 7, 0),
GATE_CFG(GATE_AXIDCG, RCC_DDRITFCR, 8, 0),
GATE_CFG(GATE_DDRPHYCAPB, RCC_DDRITFCR, 9, 0),
GATE_CFG(GATE_DDRPHYCAPBLP, RCC_DDRITFCR, 10, 0),
GATE_CFG(GATE_TIM2, RCC_MP_APB1ENSETR, 0, 1),
GATE_CFG(GATE_TIM3, RCC_MP_APB1ENSETR, 1, 1),
GATE_CFG(GATE_TIM4, RCC_MP_APB1ENSETR, 2, 1),
GATE_CFG(GATE_TIM5, RCC_MP_APB1ENSETR, 3, 1),
GATE_CFG(GATE_TIM6, RCC_MP_APB1ENSETR, 4, 1),
GATE_CFG(GATE_TIM7, RCC_MP_APB1ENSETR, 5, 1),
GATE_CFG(GATE_LPTIM1, RCC_MP_APB1ENSETR, 9, 1),
GATE_CFG(GATE_SPI2, RCC_MP_APB1ENSETR, 11, 1),
GATE_CFG(GATE_SPI3, RCC_MP_APB1ENSETR, 12, 1),
GATE_CFG(GATE_USART3, RCC_MP_APB1ENSETR, 15, 1),
GATE_CFG(GATE_UART4, RCC_MP_APB1ENSETR, 16, 1),
GATE_CFG(GATE_UART5, RCC_MP_APB1ENSETR, 17, 1),
GATE_CFG(GATE_UART7, RCC_MP_APB1ENSETR, 18, 1),
GATE_CFG(GATE_UART8, RCC_MP_APB1ENSETR, 19, 1),
GATE_CFG(GATE_I2C1, RCC_MP_APB1ENSETR, 21, 1),
GATE_CFG(GATE_I2C2, RCC_MP_APB1ENSETR, 22, 1),
GATE_CFG(GATE_SPDIF, RCC_MP_APB1ENSETR, 26, 1),
GATE_CFG(GATE_TIM1, RCC_MP_APB2ENSETR, 0, 1),
GATE_CFG(GATE_TIM8, RCC_MP_APB2ENSETR, 1, 1),
GATE_CFG(GATE_SPI1, RCC_MP_APB2ENSETR, 8, 1),
GATE_CFG(GATE_USART6, RCC_MP_APB2ENSETR, 13, 1),
GATE_CFG(GATE_SAI1, RCC_MP_APB2ENSETR, 16, 1),
GATE_CFG(GATE_SAI2, RCC_MP_APB2ENSETR, 17, 1),
GATE_CFG(GATE_DFSDM, RCC_MP_APB2ENSETR, 20, 1),
GATE_CFG(GATE_ADFSDM, RCC_MP_APB2ENSETR, 21, 1),
GATE_CFG(GATE_FDCAN, RCC_MP_APB2ENSETR, 24, 1),
GATE_CFG(GATE_LPTIM2, RCC_MP_APB3ENSETR, 0, 1),
GATE_CFG(GATE_LPTIM3, RCC_MP_APB3ENSETR, 1, 1),
GATE_CFG(GATE_LPTIM4, RCC_MP_APB3ENSETR, 2, 1),
GATE_CFG(GATE_LPTIM5, RCC_MP_APB3ENSETR, 3, 1),
GATE_CFG(GATE_VREF, RCC_MP_APB3ENSETR, 13, 1),
GATE_CFG(GATE_DTS, RCC_MP_APB3ENSETR, 16, 1),
GATE_CFG(GATE_PMBCTRL, RCC_MP_APB3ENSETR, 17, 1),
GATE_CFG(GATE_HDP, RCC_MP_APB3ENSETR, 20, 1),
GATE_CFG(GATE_SYSCFG, RCC_MP_S_APB3ENSETR, 0, 1),
GATE_CFG(GATE_DCMIPP, RCC_MP_APB4ENSETR, 1, 1),
GATE_CFG(GATE_DDRPERFM, RCC_MP_APB4ENSETR, 8, 1),
GATE_CFG(GATE_IWDG2APB, RCC_MP_APB4ENSETR, 15, 1),
GATE_CFG(GATE_USBPHY, RCC_MP_APB4ENSETR, 16, 1),
GATE_CFG(GATE_STGENRO, RCC_MP_APB4ENSETR, 20, 1),
GATE_CFG(GATE_LTDC, RCC_MP_S_APB4ENSETR, 0, 1),
GATE_CFG(GATE_RTCAPB, RCC_MP_APB5ENSETR, 8, 1),
GATE_CFG(GATE_TZC, RCC_MP_APB5ENSETR, 11, 1),
GATE_CFG(GATE_ETZPC, RCC_MP_APB5ENSETR, 13, 1),
GATE_CFG(GATE_IWDG1APB, RCC_MP_APB5ENSETR, 15, 1),
GATE_CFG(GATE_BSEC, RCC_MP_APB5ENSETR, 16, 1),
GATE_CFG(GATE_STGENC, RCC_MP_APB5ENSETR, 20, 1),
GATE_CFG(GATE_USART1, RCC_MP_APB6ENSETR, 0, 1),
GATE_CFG(GATE_USART2, RCC_MP_APB6ENSETR, 1, 1),
GATE_CFG(GATE_SPI4, RCC_MP_APB6ENSETR, 2, 1),
GATE_CFG(GATE_SPI5, RCC_MP_APB6ENSETR, 3, 1),
GATE_CFG(GATE_I2C3, RCC_MP_APB6ENSETR, 4, 1),
GATE_CFG(GATE_I2C4, RCC_MP_APB6ENSETR, 5, 1),
GATE_CFG(GATE_I2C5, RCC_MP_APB6ENSETR, 6, 1),
GATE_CFG(GATE_TIM12, RCC_MP_APB6ENSETR, 7, 1),
GATE_CFG(GATE_TIM13, RCC_MP_APB6ENSETR, 8, 1),
GATE_CFG(GATE_TIM14, RCC_MP_APB6ENSETR, 9, 1),
GATE_CFG(GATE_TIM15, RCC_MP_APB6ENSETR, 10, 1),
GATE_CFG(GATE_TIM16, RCC_MP_APB6ENSETR, 11, 1),
GATE_CFG(GATE_TIM17, RCC_MP_APB6ENSETR, 12, 1),
GATE_CFG(GATE_DMA1, RCC_MP_AHB2ENSETR, 0, 1),
GATE_CFG(GATE_DMA2, RCC_MP_AHB2ENSETR, 1, 1),
GATE_CFG(GATE_DMAMUX1, RCC_MP_AHB2ENSETR, 2, 1),
GATE_CFG(GATE_DMA3, RCC_MP_AHB2ENSETR, 3, 1),
GATE_CFG(GATE_DMAMUX2, RCC_MP_AHB2ENSETR, 4, 1),
GATE_CFG(GATE_ADC1, RCC_MP_AHB2ENSETR, 5, 1),
GATE_CFG(GATE_ADC2, RCC_MP_AHB2ENSETR, 6, 1),
GATE_CFG(GATE_USBO, RCC_MP_AHB2ENSETR, 8, 1),
GATE_CFG(GATE_TSC, RCC_MP_AHB4ENSETR, 15, 1),
GATE_CFG(GATE_GPIOA, RCC_MP_S_AHB4ENSETR, 0, 1),
GATE_CFG(GATE_GPIOB, RCC_MP_S_AHB4ENSETR, 1, 1),
GATE_CFG(GATE_GPIOC, RCC_MP_S_AHB4ENSETR, 2, 1),
GATE_CFG(GATE_GPIOD, RCC_MP_S_AHB4ENSETR, 3, 1),
GATE_CFG(GATE_GPIOE, RCC_MP_S_AHB4ENSETR, 4, 1),
GATE_CFG(GATE_GPIOF, RCC_MP_S_AHB4ENSETR, 5, 1),
GATE_CFG(GATE_GPIOG, RCC_MP_S_AHB4ENSETR, 6, 1),
GATE_CFG(GATE_GPIOH, RCC_MP_S_AHB4ENSETR, 7, 1),
GATE_CFG(GATE_GPIOI, RCC_MP_S_AHB4ENSETR, 8, 1),
GATE_CFG(GATE_PKA, RCC_MP_AHB5ENSETR, 2, 1),
GATE_CFG(GATE_SAES, RCC_MP_AHB5ENSETR, 3, 1),
GATE_CFG(GATE_CRYP1, RCC_MP_AHB5ENSETR, 4, 1),
GATE_CFG(GATE_HASH1, RCC_MP_AHB5ENSETR, 5, 1),
GATE_CFG(GATE_RNG1, RCC_MP_AHB5ENSETR, 6, 1),
GATE_CFG(GATE_BKPSRAM, RCC_MP_AHB5ENSETR, 8, 1),
GATE_CFG(GATE_AXIMC, RCC_MP_AHB5ENSETR, 16, 1),
GATE_CFG(GATE_MCE, RCC_MP_AHB6ENSETR, 1, 1),
GATE_CFG(GATE_ETH1CK, RCC_MP_AHB6ENSETR, 7, 1),
GATE_CFG(GATE_ETH1TX, RCC_MP_AHB6ENSETR, 8, 1),
GATE_CFG(GATE_ETH1RX, RCC_MP_AHB6ENSETR, 9, 1),
GATE_CFG(GATE_ETH1MAC, RCC_MP_AHB6ENSETR, 10, 1),
GATE_CFG(GATE_FMC, RCC_MP_AHB6ENSETR, 12, 1),
GATE_CFG(GATE_QSPI, RCC_MP_AHB6ENSETR, 14, 1),
GATE_CFG(GATE_SDMMC1, RCC_MP_AHB6ENSETR, 16, 1),
GATE_CFG(GATE_SDMMC2, RCC_MP_AHB6ENSETR, 17, 1),
GATE_CFG(GATE_CRC1, RCC_MP_AHB6ENSETR, 20, 1),
GATE_CFG(GATE_USBH, RCC_MP_AHB6ENSETR, 24, 1),
GATE_CFG(GATE_ETH2CK, RCC_MP_AHB6ENSETR, 27, 1),
GATE_CFG(GATE_ETH2TX, RCC_MP_AHB6ENSETR, 28, 1),
GATE_CFG(GATE_ETH2RX, RCC_MP_AHB6ENSETR, 29, 1),
GATE_CFG(GATE_ETH2MAC, RCC_MP_AHB6ENSETR, 30, 1),
GATE_CFG(GATE_MDMA, RCC_MP_S_AHB6ENSETR, 0, 1),
};
/*
* DIV CONFIG
*/
static const struct clk_div_table axi_div_table[] = {
{ 0, 1 }, { 1, 2 }, { 2, 3 }, { 3, 4 },
{ 4, 4 }, { 5, 4 }, { 6, 4 }, { 7, 4 },
{ 0 },
};
static const struct clk_div_table mlahb_div_table[] = {
{ 0, 1 }, { 1, 2 }, { 2, 4 }, { 3, 8 },
{ 4, 16 }, { 5, 32 }, { 6, 64 }, { 7, 128 },
{ 8, 256 }, { 9, 512 }, { 10, 512}, { 11, 512 },
{ 12, 512 }, { 13, 512 }, { 14, 512}, { 15, 512 },
{ 0 },
};
static const struct clk_div_table apb_div_table[] = {
{ 0, 1 }, { 1, 2 }, { 2, 4 }, { 3, 8 },
{ 4, 16 }, { 5, 16 }, { 6, 16 }, { 7, 16 },
{ 0 },
};
#define DIV_CFG(id, _offset, _shift, _width, _flags, _table, _bitrdy)[id] = {\
.offset = _offset,\
.shift = _shift,\
.width = _width,\
.flags = _flags,\
.table = _table,\
.bitrdy = _bitrdy,\
}
static const struct div_cfg dividers_mp13[DIV_MAX] = {
DIV_CFG(DIV_PLL1DIVP, RCC_PLL1CFGR2, 0, 7, 0, NULL, DIV_NO_BIT_RDY),
DIV_CFG(DIV_PLL2DIVP, RCC_PLL2CFGR2, 0, 7, 0, NULL, DIV_NO_BIT_RDY),
DIV_CFG(DIV_PLL2DIVQ, RCC_PLL2CFGR2, 8, 7, 0, NULL, DIV_NO_BIT_RDY),
DIV_CFG(DIV_PLL2DIVR, RCC_PLL2CFGR2, 16, 7, 0, NULL, DIV_NO_BIT_RDY),
DIV_CFG(DIV_PLL3DIVP, RCC_PLL3CFGR2, 0, 7, 0, NULL, DIV_NO_BIT_RDY),
DIV_CFG(DIV_PLL3DIVQ, RCC_PLL3CFGR2, 8, 7, 0, NULL, DIV_NO_BIT_RDY),
DIV_CFG(DIV_PLL3DIVR, RCC_PLL3CFGR2, 16, 7, 0, NULL, DIV_NO_BIT_RDY),
DIV_CFG(DIV_PLL4DIVP, RCC_PLL4CFGR2, 0, 7, 0, NULL, DIV_NO_BIT_RDY),
DIV_CFG(DIV_PLL4DIVQ, RCC_PLL4CFGR2, 8, 7, 0, NULL, DIV_NO_BIT_RDY),
DIV_CFG(DIV_PLL4DIVR, RCC_PLL4CFGR2, 16, 7, 0, NULL, DIV_NO_BIT_RDY),
DIV_CFG(DIV_MPU, RCC_MPCKDIVR, 0, 4, 0, NULL, DIV_NO_BIT_RDY),
DIV_CFG(DIV_AXI, RCC_AXIDIVR, 0, 3, 0, axi_div_table, 31),
DIV_CFG(DIV_MLAHB, RCC_MLAHBDIVR, 0, 4, 0, mlahb_div_table, 31),
DIV_CFG(DIV_APB1, RCC_APB1DIVR, 0, 3, 0, apb_div_table, 31),
DIV_CFG(DIV_APB2, RCC_APB2DIVR, 0, 3, 0, apb_div_table, 31),
DIV_CFG(DIV_APB3, RCC_APB3DIVR, 0, 3, 0, apb_div_table, 31),
DIV_CFG(DIV_APB4, RCC_APB4DIVR, 0, 3, 0, apb_div_table, 31),
DIV_CFG(DIV_APB5, RCC_APB5DIVR, 0, 3, 0, apb_div_table, 31),
DIV_CFG(DIV_APB6, RCC_APB6DIVR, 0, 3, 0, apb_div_table, 31),
DIV_CFG(DIV_RTC, RCC_RTCDIVR, 0, 6, 0, NULL, DIV_NO_BIT_RDY),
DIV_CFG(DIV_MCO1, RCC_MCO1CFGR, 4, 4, 0, NULL, DIV_NO_BIT_RDY),
DIV_CFG(DIV_MCO2, RCC_MCO2CFGR, 4, 4, 0, NULL, DIV_NO_BIT_RDY),
DIV_CFG(DIV_HSI, RCC_HSICFGR, 0, 2, CLK_DIVIDER_POWER_OF_TWO, NULL, DIV_NO_BIT_RDY),
DIV_CFG(DIV_TRACE, RCC_DBGCFGR, 0, 3, CLK_DIVIDER_POWER_OF_TWO, NULL, DIV_NO_BIT_RDY),
DIV_CFG(DIV_ETH1PTP, RCC_ETH12CKSELR, 4, 4, 0, NULL, DIV_NO_BIT_RDY),
DIV_CFG(DIV_ETH2PTP, RCC_ETH12CKSELR, 12, 4, 0, NULL, DIV_NO_BIT_RDY),
};
#define MAX_HSI_HZ 64000000
#define USB_PHY_48_MHZ 48000000
#define TIMEOUT_US_200MS U(200000)
#define TIMEOUT_US_1S U(1000000)
#define PLLRDY_TIMEOUT TIMEOUT_US_200MS
#define CLKSRC_TIMEOUT TIMEOUT_US_200MS
#define CLKDIV_TIMEOUT TIMEOUT_US_200MS
#define HSIDIV_TIMEOUT TIMEOUT_US_200MS
#define OSCRDY_TIMEOUT TIMEOUT_US_1S
enum stm32_osc {
OSC_HSI,
OSC_HSE,
OSC_CSI,
OSC_LSI,
OSC_LSE,
OSC_I2SCKIN,
NB_OSCILLATOR
};
enum stm32mp1_pll_id {
_PLL1,
_PLL2,
_PLL3,
_PLL4,
_PLL_NB
};
enum stm32mp1_plltype {
PLL_800,
PLL_1600,
PLL_2000,
PLL_TYPE_NB
};
#define RCC_OFFSET_PLLXCR 0
#define RCC_OFFSET_PLLXCFGR1 4
#define RCC_OFFSET_PLLXCFGR2 8
#define RCC_OFFSET_PLLXFRACR 12
#define RCC_OFFSET_PLLXCSGR 16
struct stm32_clk_pll {
enum stm32mp1_plltype plltype;
uint16_t clk_id;
uint16_t reg_pllxcr;
};
struct stm32mp1_pll {
uint8_t refclk_min;
uint8_t refclk_max;
};
/* Define characteristic of PLL according type */
static const struct stm32mp1_pll stm32mp1_pll[PLL_TYPE_NB] = {
[PLL_800] = {
.refclk_min = 4,
.refclk_max = 16,
},
[PLL_1600] = {
.refclk_min = 8,
.refclk_max = 16,
},
[PLL_2000] = {
.refclk_min = 8,
.refclk_max = 16,
},
};
#if STM32MP_USB_PROGRAMMER
static bool pll4_bootrom;
#endif
/* RCC clock device driver private */
static uint8_t refcounts_mp13[CK_LAST];
static const struct stm32_clk_pll *clk_st32_pll_data(unsigned int idx);
#if STM32MP_UART_PROGRAMMER || STM32MP_USB_PROGRAMMER
static void clk_oscillator_check_bypass(struct stm32_clk_priv *priv, int idx,
bool digbyp, bool bypass)
{
struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, idx);
struct stm32_clk_bypass *bypass_data = osc_data->bypass;
uintptr_t address;
if (bypass_data == NULL) {
return;
}
address = priv->base + bypass_data->offset;
if ((mmio_read_32(address) & RCC_OCENR_HSEBYP) &&
(!(digbyp || bypass))) {
panic();
}
}
#endif
static void stm32_enable_oscillator_hse(struct stm32_clk_priv *priv)
{
struct stm32_clk_platdata *pdata = priv->pdata;
struct stm32_osci_dt_cfg *osci = &pdata->osci[OSC_HSE];
bool digbyp = osci->digbyp;
bool bypass = osci->bypass;
bool css = osci->css;
if (_clk_stm32_get_rate(priv, _CK_HSE) == 0U) {
return;
}
clk_oscillator_set_bypass(priv, _CK_HSE, digbyp, bypass);
_clk_stm32_enable(priv, _CK_HSE);
#if STM32MP_UART_PROGRAMMER || STM32MP_USB_PROGRAMMER
clk_oscillator_check_bypass(priv, _CK_HSE, digbyp, bypass);
#endif
clk_oscillator_set_css(priv, _CK_HSE, css);
}
static void stm32_enable_oscillator_lse(struct stm32_clk_priv *priv)
{
struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, _CK_LSE);
struct stm32_clk_platdata *pdata = priv->pdata;
struct stm32_osci_dt_cfg *osci = &pdata->osci[OSC_LSE];
bool digbyp = osci->digbyp;
bool bypass = osci->bypass;
uint8_t drive = osci->drive;
if (_clk_stm32_get_rate(priv, _CK_LSE) == 0U) {
return;
}
/* Do not reconfigure LSE if already enabled */
if (_clk_stm32_gate_is_enabled(priv, osc_data->gate_id)) {
return;
}
clk_oscillator_set_bypass(priv, _CK_LSE, digbyp, bypass);
clk_oscillator_set_drive(priv, _CK_LSE, drive);
_clk_stm32_gate_enable(priv, osc_data->gate_id);
}
static int stm32mp1_set_hsidiv(uint8_t hsidiv)
{
uint64_t timeout;
uintptr_t rcc_base = stm32mp_rcc_base();
uintptr_t address = rcc_base + RCC_OCRDYR;
mmio_clrsetbits_32(rcc_base + RCC_HSICFGR,
RCC_HSICFGR_HSIDIV_MASK,
RCC_HSICFGR_HSIDIV_MASK & (uint32_t)hsidiv);
timeout = timeout_init_us(HSIDIV_TIMEOUT);
while ((mmio_read_32(address) & RCC_OCRDYR_HSIDIVRDY) == 0U) {
if (timeout_elapsed(timeout)) {
EARLY_ERROR("HSIDIV failed @ 0x%lx: 0x%x\n",
address, mmio_read_32(address));
return -ETIMEDOUT;
}
}
return 0;
}
static int stm32mp1_hsidiv(unsigned long hsifreq)
{
uint8_t hsidiv;
uint32_t hsidivfreq = MAX_HSI_HZ;
for (hsidiv = 0; hsidiv < 4U; hsidiv++) {
if (hsidivfreq == hsifreq) {
break;
}
hsidivfreq /= 2U;
}
if (hsidiv == 4U) {
EARLY_ERROR("Invalid clk-hsi frequency\n");
return -EINVAL;
}
if (hsidiv != 0U) {
return stm32mp1_set_hsidiv(hsidiv);
}
return 0;
}
static int stm32_clk_oscillators_lse_set_css(struct stm32_clk_priv *priv)
{
struct stm32_clk_platdata *pdata = priv->pdata;
struct stm32_osci_dt_cfg *osci = &pdata->osci[OSC_LSE];
clk_oscillator_set_css(priv, _CK_LSE, osci->css);
return 0;
}
static int stm32mp1_come_back_to_hsi(void)
{
int ret;
struct stm32_clk_priv *priv = clk_stm32_get_priv();
/* Come back to HSI */
ret = _clk_stm32_set_parent(priv, _CKMPU, _CK_HSI);
if (ret != 0) {
return ret;
}
ret = _clk_stm32_set_parent(priv, _CKAXI, _CK_HSI);
if (ret != 0) {
return ret;
}
ret = _clk_stm32_set_parent(priv, _CKMLAHB, _CK_HSI);
if (ret != 0) {
return ret;
}
return 0;
}
static int stm32_clk_configure_clk_get_binding_id(struct stm32_clk_priv *priv, uint32_t data)
{
unsigned long binding_id = ((unsigned long)data & CLK_ID_MASK) >> CLK_ID_SHIFT;
return clk_get_index(priv, binding_id);
}
static int stm32_clk_configure_clk(struct stm32_clk_priv *priv, uint32_t data)
{
int sel = (data & CLK_SEL_MASK) >> CLK_SEL_SHIFT;
int enable = (data & CLK_ON_MASK) >> CLK_ON_SHIFT;
int clk_id;
int ret;
clk_id = stm32_clk_configure_clk_get_binding_id(priv, data);
if (clk_id < 0) {
return clk_id;
}
ret = _clk_stm32_set_parent_by_index(priv, clk_id, sel);
if (ret != 0) {
return ret;
}
if (enable != 0) {
clk_stm32_enable_call_ops(priv, clk_id);
} else {
clk_stm32_disable_call_ops(priv, clk_id);
}
return 0;
}
static int stm32_clk_configure_mux(struct stm32_clk_priv *priv, uint32_t data)
{
int mux = (data & MUX_ID_MASK) >> MUX_ID_SHIFT;
int sel = (data & MUX_SEL_MASK) >> MUX_SEL_SHIFT;
return clk_mux_set_parent(priv, mux, sel);
}
static int stm32_clk_dividers_configure(struct stm32_clk_priv *priv)
{
struct stm32_clk_platdata *pdata = priv->pdata;
uint32_t i;
for (i = 0; i < pdata->nclkdiv; i++) {
int div_id, div_n;
int val;
int ret;
val = pdata->clkdiv[i] & CMD_DATA_MASK;
div_id = (val & DIV_ID_MASK) >> DIV_ID_SHIFT;
div_n = (val & DIV_DIVN_MASK) >> DIV_DIVN_SHIFT;
ret = clk_stm32_set_div(priv, div_id, div_n);
if (ret != 0) {
return ret;
}
}
return 0;
}
static int stm32_clk_source_configure(struct stm32_clk_priv *priv)
{
struct stm32_clk_platdata *pdata = priv->pdata;
bool ckper_disabled = false;
int clk_id;
int ret;
uint32_t i;
for (i = 0; i < pdata->nclksrc; i++) {
uint32_t val = pdata->clksrc[i];
uint32_t cmd, cmd_data;
if (val == (uint32_t)CLK_CKPER_DISABLED) {
ckper_disabled = true;
continue;
}
if (val == (uint32_t)CLK_RTC_DISABLED) {
continue;
}
cmd = (val & CMD_MASK) >> CMD_SHIFT;
cmd_data = val & ~CMD_MASK;
switch (cmd) {
case CMD_MUX:
ret = stm32_clk_configure_mux(priv, cmd_data);
break;
case CMD_CLK:
clk_id = stm32_clk_configure_clk_get_binding_id(priv, cmd_data);
if (clk_id == _RTCCK) {
if ((_clk_stm32_is_enabled(priv, _RTCCK) == true)) {
continue;
}
}
ret = stm32_clk_configure_clk(priv, cmd_data);
break;
default:
ret = -EINVAL;
break;
}
if (ret != 0) {
return ret;
}
}
/*
* CKPER is source for some peripheral clocks
* (FMC-NAND / QPSI-NOR) and switching source is allowed
* only if previous clock is still ON
* => deactivate CKPER only after switching clock
*/
if (ckper_disabled) {
ret = stm32_clk_configure_mux(priv, CLK_CKPER_DISABLED);
if (ret != 0) {
return ret;
}
}
return 0;
}
static int stm32_clk_stgen_configure(struct stm32_clk_priv *priv, int id)
{
unsigned long stgen_freq;
stgen_freq = _clk_stm32_get_rate(priv, id);
stm32mp_stgen_config(stgen_freq);
return 0;
}
#define CLK_PLL_CFG(_idx, _clk_id, _type, _reg)\
[(_idx)] = {\
.clk_id = (_clk_id),\
.plltype = (_type),\
.reg_pllxcr = (_reg),\
}
static int clk_stm32_pll_compute_cfgr1(struct stm32_clk_priv *priv,
const struct stm32_clk_pll *pll,
struct stm32_pll_vco *vco,
uint32_t *value)
{
uint32_t divm = vco->div_mn[PLL_CFG_M];
uint32_t divn = vco->div_mn[PLL_CFG_N];
unsigned long prate = 0UL;
unsigned long refclk = 0UL;
prate = _clk_stm32_get_parent_rate(priv, pll->clk_id);
refclk = prate / (divm + 1U);
if ((refclk < (stm32mp1_pll[pll->plltype].refclk_min * 1000000U)) ||
(refclk > (stm32mp1_pll[pll->plltype].refclk_max * 1000000U))) {
return -EINVAL;
}
*value = 0;
if ((pll->plltype == PLL_800) && (refclk >= 8000000U)) {
*value = 1U << RCC_PLLNCFGR1_IFRGE_SHIFT;
}
*value |= (divn << RCC_PLLNCFGR1_DIVN_SHIFT) & RCC_PLLNCFGR1_DIVN_MASK;
*value |= (divm << RCC_PLLNCFGR1_DIVM_SHIFT) & RCC_PLLNCFGR1_DIVM_MASK;
return 0;
}
static uint32_t clk_stm32_pll_compute_cfgr2(struct stm32_pll_output *out)
{
uint32_t value = 0;
value |= (out->output[PLL_CFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) & RCC_PLLNCFGR2_DIVP_MASK;
value |= (out->output[PLL_CFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT) & RCC_PLLNCFGR2_DIVQ_MASK;
value |= (out->output[PLL_CFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) & RCC_PLLNCFGR2_DIVR_MASK;
return value;
}
static void clk_stm32_pll_config_vco(struct stm32_clk_priv *priv,
const struct stm32_clk_pll *pll,
struct stm32_pll_vco *vco)
{
uintptr_t pll_base = priv->base + pll->reg_pllxcr;
uint32_t value = 0;
if (clk_stm32_pll_compute_cfgr1(priv, pll, vco, &value) != 0) {
EARLY_ERROR("Invalid Vref clock !\n");
panic();
}
/* Write N / M / IFREGE fields */
mmio_write_32(pll_base + RCC_OFFSET_PLLXCFGR1, value);
/* Fractional configuration */
mmio_write_32(pll_base + RCC_OFFSET_PLLXFRACR, 0);
/* Frac must be enabled only once its configuration is loaded */
mmio_write_32(pll_base + RCC_OFFSET_PLLXFRACR, vco->frac << RCC_PLLNFRACR_FRACV_SHIFT);
mmio_setbits_32(pll_base + RCC_OFFSET_PLLXFRACR, RCC_PLLNFRACR_FRACLE);
}
static void clk_stm32_pll_config_csg(struct stm32_clk_priv *priv,
const struct stm32_clk_pll *pll,
struct stm32_pll_vco *vco)
{
uintptr_t pll_base = priv->base + pll->reg_pllxcr;
uint32_t mod_per = 0;
uint32_t inc_step = 0;
uint32_t sscg_mode = 0;
uint32_t value = 0;
if (!vco->csg_enabled) {
return;
}
mod_per = vco->csg[PLL_CSG_MOD_PER];
inc_step = vco->csg[PLL_CSG_INC_STEP];
sscg_mode = vco->csg[PLL_CSG_SSCG_MODE];
value |= (mod_per << RCC_PLLNCSGR_MOD_PER_SHIFT) & RCC_PLLNCSGR_MOD_PER_MASK;
value |= (inc_step << RCC_PLLNCSGR_INC_STEP_SHIFT) & RCC_PLLNCSGR_INC_STEP_MASK;
value |= (sscg_mode << RCC_PLLNCSGR_SSCG_MODE_SHIFT) & RCC_PLLNCSGR_SSCG_MODE_MASK;
mmio_write_32(pll_base + RCC_OFFSET_PLLXCSGR, value);
mmio_setbits_32(pll_base + RCC_OFFSET_PLLXCR, RCC_PLLNCR_SSCG_CTRL);
}
static void clk_stm32_pll_config_out(struct stm32_clk_priv *priv, const struct stm32_clk_pll *pll,
struct stm32_pll_output *out)
{
uintptr_t pll_base = priv->base + pll->reg_pllxcr;
uint32_t value = 0;
value = clk_stm32_pll_compute_cfgr2(out);
mmio_write_32(pll_base + RCC_OFFSET_PLLXCFGR2, value);
}
static inline struct stm32_pll_dt_cfg *clk_stm32_pll_get_pdata(int pll_idx)
{
struct stm32_clk_priv *priv = clk_stm32_get_priv();
struct stm32_clk_platdata *pdata = priv->pdata;
return &pdata->pll[pll_idx];
}
/* Define characteristic for PLL1 : PLL_2000 */
#define POST_DIVM_MIN 8000000U
#define POST_DIVM_MAX 16000000U
#define DIVM_MIN 0U
#define DIVM_MAX 63U
#define DIVN_MIN 24U
#define DIVN_MAX 99U
#define DIVP_MIN 0U
#define DIVP_MAX 127U
#define FRAC_MAX 8192U
#define VCO_MIN 992000000U
#define VCO_MAX 2000000000U
static int clk_compute_pll1_settings(uint32_t freq_khz)
{
struct stm32_clk_priv *priv = clk_stm32_get_priv();
struct stm32_pll_dt_cfg *pll1 = clk_stm32_pll_get_pdata(_PLL1);
struct stm32_pll_dt_cfg *pll2 = clk_stm32_pll_get_pdata(_PLL2);
unsigned long long best_diff = ULLONG_MAX;
unsigned int divm;
unsigned long input_freq = 0UL;
uint32_t src = pll2->vco.src;
/* PLL1 share the same clock source than PLL2 */
switch (src) {
case CLK_PLL12_HSI:
input_freq = _clk_stm32_get_rate(priv, _CK_HSI);
break;
case CLK_PLL12_HSE:
input_freq = _clk_stm32_get_rate(priv, _CK_HSE);
break;
default:
break;
}
if (input_freq == 0UL) {
panic();
}
/* Following parameters have always the same value */
pll1->output.output[PLL_CFG_Q] = 0U;
pll1->output.output[PLL_CFG_R] = 0U;
for (divm = (DIVM_MAX + 1U); divm != DIVM_MIN; divm--) {
unsigned long post_divm = input_freq / divm;
unsigned int divp;
if ((post_divm < POST_DIVM_MIN) || (post_divm > POST_DIVM_MAX)) {
continue;
}
for (divp = DIVP_MIN; divp <= DIVP_MAX; divp++) {
unsigned long long output_freq = freq_khz * 1000ULL;
unsigned long long freq;
unsigned long long divn;
unsigned long long frac;
unsigned int i;
freq = output_freq * divm * (divp + 1U);
divn = (freq / input_freq) - 1U;
if ((divn < DIVN_MIN) || (divn > DIVN_MAX)) {
continue;
}
frac = ((freq * FRAC_MAX) / input_freq) - ((divn + 1U) * FRAC_MAX);
/* 2 loops to refine the fractional part */
for (i = 2U; i != 0U; i--) {
unsigned long long diff;
unsigned long long vco;
if (frac > FRAC_MAX) {
break;
}
vco = (post_divm * (divn + 1U)) + ((post_divm * frac) / FRAC_MAX);
if ((vco < (VCO_MIN / 2U)) || (vco > (VCO_MAX / 2U))) {
frac++;
continue;
}
freq = vco / (divp + 1U);
if (output_freq < freq) {
diff = freq - output_freq;
} else {
diff = output_freq - freq;
}
if (diff < best_diff) {
pll1->vco.src = src;
pll1->vco.status = RCC_PLLNCR_DIVPEN | RCC_PLLNCR_PLLON;
pll1->vco.div_mn[PLL_CFG_M] = divm - 1U;
pll1->vco.div_mn[PLL_CFG_N] = (uint32_t)divn;
pll1->vco.frac = (uint32_t)frac;
pll1->output.output[PLL_CFG_P] = divp;
if (diff == 0U) {
return 0;
}
best_diff = diff;
}
frac++;
}
}
}
if (best_diff == ULLONG_MAX) {
return -EINVAL;
}
return 0;
}
static bool _clk_stm32_pll_is_enabled(struct stm32_clk_priv *priv, const struct stm32_clk_pll *pll)
{
uintptr_t pll_base = priv->base + pll->reg_pllxcr;
return ((mmio_read_32(pll_base) & RCC_PLLNCR_PLLON) != 0U);
}
static void _clk_stm32_pll_set_on(struct stm32_clk_priv *priv, const struct stm32_clk_pll *pll)
{
uintptr_t pll_base = priv->base + pll->reg_pllxcr;
/* Preserve RCC_PLLNCR_SSCG_CTRL value */
mmio_clrsetbits_32(pll_base, RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN | RCC_PLLNCR_DIVREN,
RCC_PLLNCR_PLLON);
}
static void _clk_stm32_pll_set_off(struct stm32_clk_priv *priv, const struct stm32_clk_pll *pll)
{
uintptr_t pll_base = priv->base + pll->reg_pllxcr;
/* Stop all output */
mmio_clrbits_32(pll_base, RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN | RCC_PLLNCR_DIVREN);
/* Stop PLL */
mmio_clrbits_32(pll_base, RCC_PLLNCR_PLLON);
}
static int _clk_stm32_pll_wait_ready_on(struct stm32_clk_priv *priv,
const struct stm32_clk_pll *pll)
{
uintptr_t pll_base = priv->base + pll->reg_pllxcr;
uint64_t timeout = timeout_init_us(PLLRDY_TIMEOUT);
/* Wait PLL lock */
while ((mmio_read_32(pll_base) & RCC_PLLNCR_PLLRDY) == 0U) {
if (timeout_elapsed(timeout)) {
ERROR("PLL%d start failed @ 0x%x: 0x%x\n",
pll->clk_id - _CK_PLL1 + 1, pll->reg_pllxcr, mmio_read_32(pll_base));
return -EINVAL;
}
}
return 0;
}
static int _clk_stm32_pll_wait_ready_off(struct stm32_clk_priv *priv,
const struct stm32_clk_pll *pll)
{
uintptr_t pll_base = priv->base + pll->reg_pllxcr;
uint64_t timeout = timeout_init_us(PLLRDY_TIMEOUT);
/* Wait PLL lock */
while ((mmio_read_32(pll_base) & RCC_PLLNCR_PLLRDY) != 0U) {
if (timeout_elapsed(timeout)) {
ERROR("PLL%d stop failed @ 0x%x: 0x%x\n",
pll->clk_id - _CK_PLL1 + 1, pll->reg_pllxcr, mmio_read_32(pll_base));
return -EINVAL;
}
}
return 0;
}
static int _clk_stm32_pll_enable(struct stm32_clk_priv *priv, const struct stm32_clk_pll *pll)
{
if (_clk_stm32_pll_is_enabled(priv, pll)) {
return 0;
}
/* Preserve RCC_PLLNCR_SSCG_CTRL value */
_clk_stm32_pll_set_on(priv, pll);
/* Wait PLL lock */
return _clk_stm32_pll_wait_ready_on(priv, pll);
}
static void _clk_stm32_pll_disable(struct stm32_clk_priv *priv, const struct stm32_clk_pll *pll)
{
if (!_clk_stm32_pll_is_enabled(priv, pll)) {
return;
}
/* Stop all outputs and the PLL */
_clk_stm32_pll_set_off(priv, pll);
/* Wait PLL stopped */
_clk_stm32_pll_wait_ready_off(priv, pll);
}
static int _clk_stm32_pll_init(struct stm32_clk_priv *priv, int pll_idx,
struct stm32_pll_dt_cfg *pll_conf)
{
const struct stm32_clk_pll *pll = clk_st32_pll_data(pll_idx);
uintptr_t pll_base = priv->base + pll->reg_pllxcr;
int ret = 0;
/* Configure PLLs source */
ret = stm32_clk_configure_mux(priv, pll_conf->vco.src);
if (ret != 0) {
return ret;
}
#if STM32MP_USB_PROGRAMMER
if ((pll_idx == _PLL4) && pll4_bootrom) {
clk_stm32_pll_config_out(priv, pll, &pll_conf->output);
mmio_setbits_32(pll_base,
RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN | RCC_PLLNCR_DIVREN);
return 0;
}
#endif
/* Stop the PLL before */
_clk_stm32_pll_disable(priv, pll);
clk_stm32_pll_config_vco(priv, pll, &pll_conf->vco);
clk_stm32_pll_config_out(priv, pll, &pll_conf->output);
clk_stm32_pll_config_csg(priv, pll, &pll_conf->vco);
ret = _clk_stm32_pll_enable(priv, pll);
if (ret != 0) {
return ret;
}
mmio_setbits_32(pll_base, RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN | RCC_PLLNCR_DIVREN);
return 0;
}
static int clk_stm32_pll_init(struct stm32_clk_priv *priv, int pll_idx)
{
struct stm32_pll_dt_cfg *pll_conf = clk_stm32_pll_get_pdata(pll_idx);
if (pll_conf->vco.status != 0U) {
return _clk_stm32_pll_init(priv, pll_idx, pll_conf);
}
return 0;
}
static int stm32_clk_pll_configure(struct stm32_clk_priv *priv)
{
int err = 0;
err = clk_stm32_pll_init(priv, _PLL1);
if (err != 0) {
return err;
}
err = clk_stm32_pll_init(priv, _PLL2);
if (err != 0) {
return err;
}
err = clk_stm32_pll_init(priv, _PLL3);
if (err != 0) {
return err;
}
err = clk_stm32_pll_init(priv, _PLL4);
if (err != 0) {
return err;
}
return 0;
}
static int stm32_clk_oscillators_wait_lse_ready(struct stm32_clk_priv *priv)
{
int ret = 0;
if (_clk_stm32_get_rate(priv, _CK_LSE) != 0U) {
ret = clk_oscillator_wait_ready_on(priv, _CK_LSE);
}
return ret;
}
static void stm32_clk_oscillators_enable(struct stm32_clk_priv *priv)
{
stm32_enable_oscillator_hse(priv);
stm32_enable_oscillator_lse(priv);
_clk_stm32_enable(priv, _CK_LSI);
_clk_stm32_enable(priv, _CK_CSI);
}
static int stm32_clk_hsidiv_configure(struct stm32_clk_priv *priv)
{
return stm32mp1_hsidiv(_clk_stm32_get_rate(priv, _CK_HSI));
}
#if STM32MP_USB_PROGRAMMER
static bool stm32mp1_clk_is_pll4_used_by_bootrom(struct stm32_clk_priv *priv, int usbphy_p)
{
/* Don't initialize PLL4, when used by BOOTROM */
if ((stm32mp_get_boot_itf_selected() ==
BOOT_API_CTX_BOOT_INTERFACE_SEL_SERIAL_USB) &&
(usbphy_p == _PLL4R)) {
return true;
}
return false;
}
static int stm32mp1_clk_check_usb_conflict(struct stm32_clk_priv *priv, int usbphy_p, int usbo_p)
{
int _usbo_p;
int _usbphy_p;
if (!pll4_bootrom) {
return 0;
}
_usbo_p = _clk_stm32_get_parent(priv, _USBO_K);
_usbphy_p = _clk_stm32_get_parent(priv, _USBPHY_K);
if ((_usbo_p != usbo_p) || (_usbphy_p != usbphy_p)) {
return -FDT_ERR_BADVALUE;
}
return 0;
}
#endif
static struct clk_oscillator_data stm32mp13_osc_data[NB_OSCILLATOR] = {
OSCILLATOR(OSC_HSI, _CK_HSI, "clk-hsi", GATE_HSI, GATE_HSI_RDY,
NULL, NULL, NULL),
OSCILLATOR(OSC_LSI, _CK_LSI, "clk-lsi", GATE_LSI, GATE_LSI_RDY,
NULL, NULL, NULL),
OSCILLATOR(OSC_CSI, _CK_CSI, "clk-csi", GATE_CSI, GATE_CSI_RDY,
NULL, NULL, NULL),
OSCILLATOR(OSC_LSE, _CK_LSE, "clk-lse", GATE_LSE, GATE_LSE_RDY,
BYPASS(RCC_BDCR, 1, 3),
CSS(RCC_BDCR, 8),
DRIVE(RCC_BDCR, 4, 2, 2)),
OSCILLATOR(OSC_HSE, _CK_HSE, "clk-hse", GATE_HSE, GATE_HSE_RDY,
BYPASS(RCC_OCENSETR, 10, 7),
CSS(RCC_OCENSETR, 11),
NULL),
OSCILLATOR(OSC_I2SCKIN, _I2SCKIN, "i2s_ckin", NO_GATE, NO_GATE,
NULL, NULL, NULL),
};
static const char *clk_stm32_get_oscillator_name(enum stm32_osc id)
{
if (id < NB_OSCILLATOR) {
return stm32mp13_osc_data[id].name;
}
return NULL;
}
#define CLK_PLL_CFG(_idx, _clk_id, _type, _reg)\
[(_idx)] = {\
.clk_id = (_clk_id),\
.plltype = (_type),\
.reg_pllxcr = (_reg),\
}
static const struct stm32_clk_pll stm32_mp13_clk_pll[_PLL_NB] = {
CLK_PLL_CFG(_PLL1, _CK_PLL1, PLL_2000, RCC_PLL1CR),
CLK_PLL_CFG(_PLL2, _CK_PLL2, PLL_1600, RCC_PLL2CR),
CLK_PLL_CFG(_PLL3, _CK_PLL3, PLL_800, RCC_PLL3CR),
CLK_PLL_CFG(_PLL4, _CK_PLL4, PLL_800, RCC_PLL4CR),
};
static const struct stm32_clk_pll *clk_st32_pll_data(unsigned int idx)
{
return &stm32_mp13_clk_pll[idx];
}
struct stm32_pll_cfg {
uint8_t pll_id;
};
static unsigned long clk_stm32_pll_recalc_rate(struct stm32_clk_priv *priv, int id,
unsigned long prate)
{
const struct clk_stm32 *clk = _clk_get(priv, id);
struct stm32_pll_cfg *pll_cfg = clk->clock_cfg;
const struct stm32_clk_pll *pll = clk_st32_pll_data(pll_cfg->pll_id);
uintptr_t pll_base = priv->base + pll->reg_pllxcr;
uint32_t cfgr1, fracr, divm, divn;
unsigned long fvco;
cfgr1 = mmio_read_32(pll_base + RCC_OFFSET_PLLXCFGR1);
fracr = mmio_read_32(pll_base + RCC_OFFSET_PLLXFRACR);
divm = (cfgr1 & (RCC_PLLNCFGR1_DIVM_MASK)) >> RCC_PLLNCFGR1_DIVM_SHIFT;
divn = cfgr1 & RCC_PLLNCFGR1_DIVN_MASK;
/*
* With FRACV :
* Fvco = Fck_ref * ((DIVN + 1) + FRACV / 2^13) / (DIVM + 1)
* Without FRACV
* Fvco = Fck_ref * ((DIVN + 1) / (DIVM + 1)
*/
if ((fracr & RCC_PLLNFRACR_FRACLE) != 0U) {
uint32_t fracv = (fracr & RCC_PLLNFRACR_FRACV_MASK) >>
RCC_PLLNFRACR_FRACV_SHIFT;
unsigned long long numerator, denominator;
numerator = (((unsigned long long)divn + 1U) << 13) + fracv;
numerator = prate * numerator;
denominator = ((unsigned long long)divm + 1U) << 13;
fvco = (unsigned long)(numerator / denominator);
} else {
fvco = (unsigned long)(prate * (divn + 1U) / (divm + 1U));
}
return fvco;
};
static bool clk_stm32_pll_is_enabled(struct stm32_clk_priv *priv, int id)
{
const struct clk_stm32 *clk = _clk_get(priv, id);
struct stm32_pll_cfg *pll_cfg = clk->clock_cfg;
const struct stm32_clk_pll *pll = clk_st32_pll_data(pll_cfg->pll_id);
return _clk_stm32_pll_is_enabled(priv, pll);
}
static int clk_stm32_pll_enable(struct stm32_clk_priv *priv, int id)
{
const struct clk_stm32 *clk = _clk_get(priv, id);
struct stm32_pll_cfg *pll_cfg = clk->clock_cfg;
const struct stm32_clk_pll *pll = clk_st32_pll_data(pll_cfg->pll_id);
return _clk_stm32_pll_enable(priv, pll);
}
static void clk_stm32_pll_disable(struct stm32_clk_priv *priv, int id)
{
const struct clk_stm32 *clk = _clk_get(priv, id);
struct stm32_pll_cfg *pll_cfg = clk->clock_cfg;
const struct stm32_clk_pll *pll = clk_st32_pll_data(pll_cfg->pll_id);
_clk_stm32_pll_disable(priv, pll);
}
static const struct stm32_clk_ops clk_stm32_pll_ops = {
.recalc_rate = clk_stm32_pll_recalc_rate,
.enable = clk_stm32_pll_enable,
.disable = clk_stm32_pll_disable,
.is_enabled = clk_stm32_pll_is_enabled,
};
#define CLK_PLL(idx, _idx, _parent, _gate, _pll_id, _flags)[idx] = {\
.binding = _idx,\
.parent = _parent,\
.flags = (_flags),\
.clock_cfg = &(struct stm32_pll_cfg) {\
.pll_id = _pll_id,\
},\
.ops = STM32_PLL_OPS,\
}
struct clk_stm32_composite_cfg {
uint8_t gate_id;
uint8_t div_id;
};
static unsigned long clk_stm32_composite_recalc_rate(struct stm32_clk_priv *priv,
int idx, unsigned long prate)
{
const struct clk_stm32 *clk = _clk_get(priv, idx);
struct clk_stm32_composite_cfg *composite_cfg = clk->clock_cfg;
return _clk_stm32_divider_recalc(priv, composite_cfg->div_id, prate);
};
static bool clk_stm32_composite_gate_is_enabled(struct stm32_clk_priv *priv, int idx)
{
const struct clk_stm32 *clk = _clk_get(priv, idx);
struct clk_stm32_composite_cfg *composite_cfg = clk->clock_cfg;
return _clk_stm32_gate_is_enabled(priv, composite_cfg->gate_id);
}
static int clk_stm32_composite_gate_enable(struct stm32_clk_priv *priv, int idx)
{
const struct clk_stm32 *clk = _clk_get(priv, idx);
struct clk_stm32_composite_cfg *composite_cfg = clk->clock_cfg;
return _clk_stm32_gate_enable(priv, composite_cfg->gate_id);
}
static void clk_stm32_composite_gate_disable(struct stm32_clk_priv *priv, int idx)
{
const struct clk_stm32 *clk = _clk_get(priv, idx);
struct clk_stm32_composite_cfg *composite_cfg = clk->clock_cfg;
_clk_stm32_gate_disable(priv, composite_cfg->gate_id);
}
static const struct stm32_clk_ops clk_stm32_composite_ops = {
.recalc_rate = clk_stm32_composite_recalc_rate,
.is_enabled = clk_stm32_composite_gate_is_enabled,
.enable = clk_stm32_composite_gate_enable,
.disable = clk_stm32_composite_gate_disable,
};
#define STM32_COMPOSITE(idx, _binding, _parent, _flags, _gate_id,\
_div_id)[idx] = {\
.binding = (_binding),\
.parent = (_parent),\
.flags = (_flags),\
.clock_cfg = &(struct clk_stm32_composite_cfg) {\
.gate_id = (_gate_id),\
.div_id = (_div_id),\
},\
.ops = STM32_COMPOSITE_OPS,\
}
enum {
STM32_PLL_OPS = STM32_LAST_OPS,
STM32_COMPOSITE_OPS,
MP13_LAST_OPS
};
static const struct stm32_clk_ops *ops_array_mp13[MP13_LAST_OPS] = {
[NO_OPS] = NULL,
[FIXED_FACTOR_OPS] = &clk_fixed_factor_ops,
[GATE_OPS] = &clk_gate_ops,
[STM32_MUX_OPS] = &clk_mux_ops,
[STM32_DIVIDER_OPS] = &clk_stm32_divider_ops,
[STM32_GATE_OPS] = &clk_stm32_gate_ops,
[STM32_TIMER_OPS] = &clk_timer_ops,
[STM32_FIXED_RATE_OPS] = &clk_stm32_fixed_rate_ops,
[STM32_OSC_OPS] = &clk_stm32_osc_ops,
[STM32_OSC_NOGATE_OPS] = &clk_stm32_osc_nogate_ops,
[STM32_PLL_OPS] = &clk_stm32_pll_ops,
[STM32_COMPOSITE_OPS] = &clk_stm32_composite_ops
};
static const struct clk_stm32 stm32mp13_clk[CK_LAST] = {
/* ROOT CLOCKS */
CLK_FIXED_RATE(_CK_OFF, _NO_ID, 0),
CLK_OSC(_CK_HSE, CK_HSE, CLK_IS_ROOT, OSC_HSE),
CLK_OSC(_CK_HSI, CK_HSI, CLK_IS_ROOT, OSC_HSI),
CLK_OSC(_CK_CSI, CK_CSI, CLK_IS_ROOT, OSC_CSI),
CLK_OSC(_CK_LSI, CK_LSI, CLK_IS_ROOT, OSC_LSI),
CLK_OSC(_CK_LSE, CK_LSE, CLK_IS_ROOT, OSC_LSE),
CLK_OSC_FIXED(_I2SCKIN, _NO_ID, CLK_IS_ROOT, OSC_I2SCKIN),
CLK_FIXED_RATE(_USB_PHY_48, _NO_ID, USB_PHY_48_MHZ),
STM32_DIV(_HSE_DIV, _NO_ID, _CK_HSE, 0, DIV_RTC),
FIXED_FACTOR(_HSE_DIV2, CK_HSE_DIV2, _CK_HSE, 1, 2),
FIXED_FACTOR(_CSI_DIV122, _NO_ID, _CK_CSI, 1, 122),
CLK_PLL(_CK_PLL1, PLL1, MUX(MUX_PLL12), GATE_PLL1, _PLL1, 0),
CLK_PLL(_CK_PLL2, PLL2, MUX(MUX_PLL12), GATE_PLL2, _PLL2, 0),
CLK_PLL(_CK_PLL3, PLL3, MUX(MUX_PLL3), GATE_PLL3, _PLL3, 0),
CLK_PLL(_CK_PLL4, PLL4, MUX(MUX_PLL4), GATE_PLL4, _PLL4, 0),
STM32_COMPOSITE(_PLL1P, PLL1_P, _CK_PLL1, CLK_IS_CRITICAL, GATE_PLL1_DIVP, DIV_PLL1DIVP),
STM32_DIV(_PLL1P_DIV, _NO_ID, _CK_PLL1, 0, DIV_MPU),
STM32_COMPOSITE(_PLL2P, PLL2_P, _CK_PLL2, CLK_IS_CRITICAL, GATE_PLL2_DIVP, DIV_PLL2DIVP),
STM32_COMPOSITE(_PLL2Q, PLL2_Q, _CK_PLL2, 0, GATE_PLL2_DIVQ, DIV_PLL2DIVQ),
STM32_COMPOSITE(_PLL2R, PLL2_R, _CK_PLL2, CLK_IS_CRITICAL, GATE_PLL2_DIVR, DIV_PLL2DIVR),
STM32_COMPOSITE(_PLL3P, PLL3_P, _CK_PLL3, 0, GATE_PLL3_DIVP, DIV_PLL3DIVP),
STM32_COMPOSITE(_PLL3Q, PLL3_Q, _CK_PLL3, 0, GATE_PLL3_DIVQ, DIV_PLL3DIVQ),
STM32_COMPOSITE(_PLL3R, PLL3_R, _CK_PLL3, 0, GATE_PLL3_DIVR, DIV_PLL3DIVR),
STM32_COMPOSITE(_PLL4P, PLL4_P, _CK_PLL4, 0, GATE_PLL4_DIVP, DIV_PLL4DIVP),
STM32_COMPOSITE(_PLL4Q, PLL4_Q, _CK_PLL4, 0, GATE_PLL4_DIVQ, DIV_PLL4DIVQ),
STM32_COMPOSITE(_PLL4R, PLL4_R, _CK_PLL4, 0, GATE_PLL4_DIVR, DIV_PLL4DIVR),
STM32_MUX(_CKMPU, CK_MPU, MUX_MPU, 0),
STM32_DIV(_CKAXI, CK_AXI, MUX(MUX_AXI), 0, DIV_AXI),
STM32_DIV(_CKMLAHB, CK_MLAHB, MUX(MUX_MLAHB), CLK_IS_CRITICAL, DIV_MLAHB),
STM32_MUX(_CKPER, CK_PER, MUX(MUX_CKPER), 0),
STM32_DIV(_PCLK1, PCLK1, _CKMLAHB, 0, DIV_APB1),
STM32_DIV(_PCLK2, PCLK2, _CKMLAHB, 0, DIV_APB2),
STM32_DIV(_PCLK3, PCLK3, _CKMLAHB, 0, DIV_APB3),
STM32_DIV(_PCLK4, PCLK4, _CKAXI, 0, DIV_APB4),
STM32_DIV(_PCLK5, PCLK5, _CKAXI, 0, DIV_APB5),
STM32_DIV(_PCLK6, PCLK6, _CKMLAHB, 0, DIV_APB6),
CK_TIMER(_CKTIMG1, CK_TIMG1, _PCLK1, 0, RCC_APB1DIVR, RCC_TIMG1PRER),
CK_TIMER(_CKTIMG2, CK_TIMG2, _PCLK2, 0, RCC_APB2DIVR, RCC_TIMG2PRER),
CK_TIMER(_CKTIMG3, CK_TIMG3, _PCLK6, 0, RCC_APB6DIVR, RCC_TIMG3PRER),
/* END ROOT CLOCKS */
STM32_GATE(_DDRC1, DDRC1, _CKAXI, CLK_IS_CRITICAL, GATE_DDRC1),
STM32_GATE(_DDRC1LP, DDRC1LP, _CKAXI, CLK_IS_CRITICAL, GATE_DDRC1LP),
STM32_GATE(_DDRPHYC, DDRPHYC, _PLL2R, CLK_IS_CRITICAL, GATE_DDRPHYC),
STM32_GATE(_DDRPHYCLP, DDRPHYCLP, _PLL2R, CLK_IS_CRITICAL, GATE_DDRPHYCLP),
STM32_GATE(_DDRCAPB, DDRCAPB, _PCLK4, CLK_IS_CRITICAL, GATE_DDRCAPB),
STM32_GATE(_DDRCAPBLP, DDRCAPBLP, _PCLK4, CLK_IS_CRITICAL, GATE_DDRCAPBLP),
STM32_GATE(_AXIDCG, AXIDCG, _CKAXI, CLK_IS_CRITICAL, GATE_AXIDCG),
STM32_GATE(_DDRPHYCAPB, DDRPHYCAPB, _PCLK4, CLK_IS_CRITICAL, GATE_DDRPHYCAPB),
STM32_GATE(_DDRPHYCAPBLP, DDRPHYCAPBLP, _PCLK4, CLK_IS_CRITICAL, GATE_DDRPHYCAPBLP),
STM32_GATE(_SYSCFG, SYSCFG, _PCLK3, 0, GATE_SYSCFG),
STM32_GATE(_DDRPERFM, DDRPERFM, _PCLK4, 0, GATE_DDRPERFM),
STM32_GATE(_IWDG2APB, IWDG2, _PCLK4, 0, GATE_IWDG2APB),
STM32_GATE(_USBPHY_K, USBPHY_K, MUX(MUX_USBPHY), 0, GATE_USBPHY),
STM32_GATE(_USBO_K, USBO_K, MUX(MUX_USBO), 0, GATE_USBO),
STM32_GATE(_RTCAPB, RTCAPB, _PCLK5, CLK_IS_CRITICAL, GATE_RTCAPB),
STM32_GATE(_TZC, TZC, _PCLK5, CLK_IS_CRITICAL, GATE_TZC),
STM32_GATE(_ETZPC, TZPC, _PCLK5, CLK_IS_CRITICAL, GATE_ETZPC),
STM32_GATE(_IWDG1APB, IWDG1, _PCLK5, 0, GATE_IWDG1APB),
STM32_GATE(_BSEC, BSEC, _PCLK5, CLK_IS_CRITICAL, GATE_BSEC),
STM32_GATE(_STGENC, STGEN_K, MUX(MUX_STGEN), CLK_IS_CRITICAL, GATE_STGENC),
STM32_GATE(_USART1_K, USART1_K, MUX(MUX_UART1), 0, GATE_USART1),
STM32_GATE(_USART2_K, USART2_K, MUX(MUX_UART2), 0, GATE_USART2),
STM32_GATE(_I2C3_K, I2C3_K, MUX(MUX_I2C3), 0, GATE_I2C3),
STM32_GATE(_I2C4_K, I2C4_K, MUX(MUX_I2C4), 0, GATE_I2C4),
STM32_GATE(_I2C5_K, I2C5_K, MUX(MUX_I2C5), 0, GATE_I2C5),
STM32_GATE(_TIM12, TIM12_K, _CKTIMG3, 0, GATE_TIM12),
STM32_GATE(_TIM15, TIM15_K, _CKTIMG3, 0, GATE_TIM15),
STM32_GATE(_RTCCK, RTC, MUX(MUX_RTC), 0, GATE_RTCCK),
STM32_GATE(_GPIOA, GPIOA, _CKMLAHB, 0, GATE_GPIOA),
STM32_GATE(_GPIOB, GPIOB, _CKMLAHB, 0, GATE_GPIOB),
STM32_GATE(_GPIOC, GPIOC, _CKMLAHB, 0, GATE_GPIOC),
STM32_GATE(_GPIOD, GPIOD, _CKMLAHB, 0, GATE_GPIOD),
STM32_GATE(_GPIOE, GPIOE, _CKMLAHB, 0, GATE_GPIOE),
STM32_GATE(_GPIOF, GPIOF, _CKMLAHB, 0, GATE_GPIOF),
STM32_GATE(_GPIOG, GPIOG, _CKMLAHB, 0, GATE_GPIOG),
STM32_GATE(_GPIOH, GPIOH, _CKMLAHB, 0, GATE_GPIOH),
STM32_GATE(_GPIOI, GPIOI, _CKMLAHB, 0, GATE_GPIOI),
STM32_GATE(_PKA, PKA, _CKAXI, 0, GATE_PKA),
STM32_GATE(_SAES_K, SAES_K, MUX(MUX_SAES), 0, GATE_SAES),
STM32_GATE(_CRYP1, CRYP1, _PCLK5, 0, GATE_CRYP1),
STM32_GATE(_HASH1, HASH1, _PCLK5, 0, GATE_HASH1),
STM32_GATE(_RNG1_K, RNG1_K, MUX(MUX_RNG1), 0, GATE_RNG1),
STM32_GATE(_BKPSRAM, BKPSRAM, _PCLK5, CLK_IS_CRITICAL, GATE_BKPSRAM),
STM32_GATE(_SDMMC1_K, SDMMC1_K, MUX(MUX_SDMMC1), 0, GATE_SDMMC1),
STM32_GATE(_SDMMC2_K, SDMMC2_K, MUX(MUX_SDMMC2), 0, GATE_SDMMC2),
STM32_GATE(_DBGCK, CK_DBG, _CKAXI, 0, GATE_DBGCK),
STM32_GATE(_USART3_K, USART3_K, MUX(MUX_UART35), 0, GATE_USART3),
STM32_GATE(_UART4_K, UART4_K, MUX(MUX_UART4), 0, GATE_UART4),
STM32_GATE(_UART5_K, UART5_K, MUX(MUX_UART35), 0, GATE_UART5),
STM32_GATE(_UART7_K, UART7_K, MUX(MUX_UART78), 0, GATE_UART7),
STM32_GATE(_UART8_K, UART8_K, MUX(MUX_UART78), 0, GATE_UART8),
STM32_GATE(_USART6_K, USART6_K, MUX(MUX_UART6), 0, GATE_USART6),
STM32_GATE(_MCE, MCE, _CKAXI, CLK_IS_CRITICAL, GATE_MCE),
STM32_GATE(_FMC_K, FMC_K, MUX(MUX_FMC), 0, GATE_FMC),
STM32_GATE(_QSPI_K, QSPI_K, MUX(MUX_QSPI), 0, GATE_QSPI),
STM32_COMPOSITE(_MCO1_K, CK_MCO1, MUX(MUX_MCO1), 0, GATE_MCO1, DIV_MCO1),
STM32_COMPOSITE(_MCO2_K, CK_MCO2, MUX(MUX_MCO2), 0, GATE_MCO2, DIV_MCO2),
STM32_COMPOSITE(_TRACECK, CK_TRACE, _CKAXI, 0, GATE_TRACECK, DIV_TRACE),
};
static struct stm32_pll_dt_cfg mp13_pll[_PLL_NB];
static struct stm32_osci_dt_cfg mp13_osci[NB_OSCILLATOR];
static uint32_t mp13_clksrc[MUX_MAX];
static uint32_t mp13_clkdiv[DIV_MAX];
static struct stm32_clk_platdata stm32mp13_clock_pdata = {
.osci = mp13_osci,
.nosci = NB_OSCILLATOR,
.pll = mp13_pll,
.npll = _PLL_NB,
.clksrc = mp13_clksrc,
.nclksrc = MUX_MAX,
.clkdiv = mp13_clkdiv,
.nclkdiv = DIV_MAX,
};
static struct stm32_clk_priv stm32mp13_clock_data = {
.base = RCC_BASE,
.num = ARRAY_SIZE(stm32mp13_clk),
.clks = stm32mp13_clk,
.parents = parent_mp13,
.nb_parents = ARRAY_SIZE(parent_mp13),
.gates = gates_mp13,
.nb_gates = ARRAY_SIZE(gates_mp13),
.div = dividers_mp13,
.nb_div = ARRAY_SIZE(dividers_mp13),
.osci_data = stm32mp13_osc_data,
.nb_osci_data = ARRAY_SIZE(stm32mp13_osc_data),
.gate_refcounts = refcounts_mp13,
.pdata = &stm32mp13_clock_pdata,
.ops_array = ops_array_mp13,
};
static int stm32mp1_init_clock_tree(void)
{
struct stm32_clk_priv *priv = clk_stm32_get_priv();
int ret;
#if STM32MP_USB_PROGRAMMER
int usbphy_p = _clk_stm32_get_parent(priv, _USBPHY_K);
int usbo_p = _clk_stm32_get_parent(priv, _USBO_K);
/* Don't initialize PLL4, when used by BOOTROM */
pll4_bootrom = stm32mp1_clk_is_pll4_used_by_bootrom(priv, usbphy_p);
#endif
/*
* Switch ON oscillators found in device-tree.
* Note: HSI already ON after BootROM stage.
*/
stm32_clk_oscillators_enable(priv);
/* Come back to HSI */
ret = stm32mp1_come_back_to_hsi();
if (ret != 0) {
return ret;
}
ret = stm32_clk_hsidiv_configure(priv);
if (ret != 0) {
return ret;
}
ret = stm32_clk_stgen_configure(priv, _STGENC);
if (ret != 0) {
panic();
}
ret = stm32_clk_dividers_configure(priv);
if (ret != 0) {
panic();
}
ret = stm32_clk_pll_configure(priv);
if (ret != 0) {
panic();
}
/* Wait LSE ready before to use it */
ret = stm32_clk_oscillators_wait_lse_ready(priv);
if (ret != 0) {
panic();
}
/* Configure with expected clock source */
ret = stm32_clk_source_configure(priv);
if (ret != 0) {
panic();
}
/* Configure LSE css after RTC source configuration */
ret = stm32_clk_oscillators_lse_set_css(priv);
if (ret != 0) {
panic();
}
#if STM32MP_USB_PROGRAMMER
ret = stm32mp1_clk_check_usb_conflict(priv, usbphy_p, usbo_p);
if (ret != 0) {
return ret;
}
#endif
/* reconfigure STGEN with DT config */
ret = stm32_clk_stgen_configure(priv, _STGENC);
if (ret != 0) {
panic();
}
/* Software Self-Refresh mode (SSR) during DDR initilialization */
mmio_clrsetbits_32(priv->base + RCC_DDRITFCR,
RCC_DDRITFCR_DDRCKMOD_MASK,
RCC_DDRITFCR_DDRCKMOD_SSR <<
RCC_DDRITFCR_DDRCKMOD_SHIFT);
return 0;
}
static int clk_stm32_parse_oscillator_fdt(void *fdt, int node, const char *name,
struct stm32_osci_dt_cfg *osci)
{
int subnode = 0;
/* default value oscillator not found, freq=0 */
osci->freq = 0;
fdt_for_each_subnode(subnode, fdt, node) {
const char *cchar = NULL;
const fdt32_t *cuint = NULL;
int ret = 0;
cchar = fdt_get_name(fdt, subnode, &ret);
if (cchar == NULL) {
return ret;
}
if (strncmp(cchar, name, (size_t)ret) ||
fdt_get_status(subnode) == DT_DISABLED) {
continue;
}
cuint = fdt_getprop(fdt, subnode, "clock-frequency", &ret);
if (cuint == NULL) {
return ret;
}
osci->freq = fdt32_to_cpu(*cuint);
if (fdt_getprop(fdt, subnode, "st,bypass", NULL) != NULL) {
osci->bypass = true;
}
if (fdt_getprop(fdt, subnode, "st,digbypass", NULL) != NULL) {
osci->digbyp = true;
}
if (fdt_getprop(fdt, subnode, "st,css", NULL) != NULL) {
osci->css = true;
}
osci->drive = fdt_read_uint32_default(fdt, subnode, "st,drive", LSEDRV_MEDIUM_HIGH);
return 0;
}
return 0;
}
static int stm32_clk_parse_fdt_all_oscillator(void *fdt, struct stm32_clk_platdata *pdata)
{
int fdt_err = 0;
uint32_t i = 0;
int node = 0;
node = fdt_path_offset(fdt, "/clocks");
if (node < 0) {
return -FDT_ERR_NOTFOUND;
}
for (i = 0; i < pdata->nosci; i++) {
const char *name = NULL;
name = clk_stm32_get_oscillator_name((enum stm32_osc)i);
if (name == NULL) {
continue;
}
fdt_err = clk_stm32_parse_oscillator_fdt(fdt, node, name, &pdata->osci[i]);
if (fdt_err < 0) {
panic();
}
}
return 0;
}
#define RCC_PLL_NAME_SIZE 12
static int clk_stm32_load_vco_config(void *fdt, int subnode, struct stm32_pll_vco *vco)
{
int err = 0;
err = fdt_read_uint32_array(fdt, subnode, "divmn", (int)PLL_DIV_MN_NB, vco->div_mn);
if (err != 0) {
return err;
}
err = fdt_read_uint32_array(fdt, subnode, "csg", (int)PLL_CSG_NB, vco->csg);
vco->csg_enabled = (err == 0);
if (err == -FDT_ERR_NOTFOUND) {
err = 0;
}
if (err != 0) {
return err;
}
vco->status = RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN | RCC_PLLNCR_DIVREN | RCC_PLLNCR_PLLON;
vco->frac = fdt_read_uint32_default(fdt, subnode, "frac", 0);
vco->src = fdt_read_uint32_default(fdt, subnode, "src", UINT32_MAX);
return 0;
}
static int clk_stm32_load_output_config(void *fdt, int subnode, struct stm32_pll_output *output)
{
int err = 0;
err = fdt_read_uint32_array(fdt, subnode, "st,pll_div_pqr", (int)PLL_DIV_PQR_NB,
output->output);
if (err != 0) {
return err;
}
return 0;
}
static int clk_stm32_parse_pll_fdt(void *fdt, int subnode, struct stm32_pll_dt_cfg *pll)
{
const fdt32_t *cuint = NULL;
int subnode_pll = 0;
int subnode_vco = 0;
int err = 0;
cuint = fdt_getprop(fdt, subnode, "st,pll", NULL);
if (!cuint) {
return -FDT_ERR_NOTFOUND;
}
subnode_pll = fdt_node_offset_by_phandle(fdt, fdt32_to_cpu(*cuint));
if (subnode_pll < 0) {
return -FDT_ERR_NOTFOUND;
}
cuint = fdt_getprop(fdt, subnode_pll, "st,pll_vco", NULL);
if (!cuint) {
return -FDT_ERR_NOTFOUND;
}
subnode_vco = fdt_node_offset_by_phandle(fdt, fdt32_to_cpu(*cuint));
if (subnode_vco < 0) {
return -FDT_ERR_NOTFOUND;
}
err = clk_stm32_load_vco_config(fdt, subnode_vco, &pll->vco);
if (err != 0) {
return err;
}
err = clk_stm32_load_output_config(fdt, subnode_pll, &pll->output);
if (err != 0) {
return err;
}
return 0;
}
static int stm32_clk_parse_fdt_all_pll(void *fdt, int node, struct stm32_clk_platdata *pdata)
{
size_t i = 0U;
/* PLL1 is not configurable with device tree */
for (i = _PLL2; i < pdata->npll; i++) {
struct stm32_pll_dt_cfg *pll = &pdata->pll[i];
char name[RCC_PLL_NAME_SIZE];
int subnode = 0;
int err = 0;
snprintf(name, sizeof(name), "st,pll@%u", i);
subnode = fdt_subnode_offset(fdt, node, name);
if (!fdt_check_node(subnode)) {
continue;
}
err = clk_stm32_parse_pll_fdt(fdt, subnode, pll);
if (err != 0) {
panic();
}
}
return 0;
}
static int stm32_clk_parse_fdt(struct stm32_clk_platdata *pdata)
{
void *fdt = NULL;
int node;
uint32_t err;
if (fdt_get_address(&fdt) == 0) {
return -ENOENT;
}
node = fdt_node_offset_by_compatible(fdt, -1, DT_RCC_CLK_COMPAT);
if (node < 0) {
panic();
}
err = stm32_clk_parse_fdt_all_oscillator(fdt, pdata);
if (err != 0) {
return err;
}
err = stm32_clk_parse_fdt_all_pll(fdt, node, pdata);
if (err != 0) {
return err;
}
err = stm32_clk_parse_fdt_by_name(fdt, node, "st,clkdiv", pdata->clkdiv, &pdata->nclkdiv);
if (err != 0) {
return err;
}
err = stm32_clk_parse_fdt_by_name(fdt, node, "st,clksrc", pdata->clksrc, &pdata->nclksrc);
if (err != 0) {
return err;
}
return 0;
}
void stm32mp1_clk_rcc_regs_lock(void)
{
clk_stm32_rcc_regs_lock();
}
void stm32mp1_clk_rcc_regs_unlock(void)
{
clk_stm32_rcc_regs_unlock();
}
int stm32mp1_clk_init(void)
{
int ret;
/* compute the PLL1 settings, not read in device tree */
ret = clk_compute_pll1_settings(PLL1_NOMINAL_FREQ_IN_KHZ);
if (ret != 0) {
return ret;
}
ret = stm32mp1_init_clock_tree();
if (ret != 0) {
return ret;
}
clk_stm32_enable_critical_clocks();
return 0;
}
int stm32mp1_clk_probe(void)
{
uintptr_t base = RCC_BASE;
int ret;
ret = stm32_clk_parse_fdt(&stm32mp13_clock_pdata);
if (ret != 0) {
return ret;
}
ret = clk_stm32_init(&stm32mp13_clock_data, base);
return ret;
}