blob: 3db47c4fd60df79e415849e5e162da7bd51e7b5c [file] [log] [blame]
/*
* Copyright (C) 2018-2021, STMicroelectronics - All Rights Reserved
*
* SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
*/
#include <errno.h>
#include <stddef.h>
#include <platform_def.h>
#include <arch.h>
#include <arch_helpers.h>
#include <common/debug.h>
#include <drivers/clk.h>
#include <drivers/delay_timer.h>
#include <drivers/st/stm32mp_pmic.h>
#include <drivers/st/stm32mp1_ddr.h>
#include <drivers/st/stm32mp1_ddr_regs.h>
#include <drivers/st/stm32mp1_pwr.h>
#include <drivers/st/stm32mp1_ram.h>
#include <lib/mmio.h>
#include <plat/common/platform.h>
struct reg_desc {
const char *name;
uint16_t offset; /* Offset for base address */
uint8_t par_offset; /* Offset for parameter array */
};
#define INVALID_OFFSET 0xFFU
#define TIMEOUT_US_1S 1000000U
#define DDRCTL_REG(x, y) \
{ \
.name = #x, \
.offset = offsetof(struct stm32mp1_ddrctl, x), \
.par_offset = offsetof(struct y, x) \
}
#define DDRPHY_REG(x, y) \
{ \
.name = #x, \
.offset = offsetof(struct stm32mp1_ddrphy, x), \
.par_offset = offsetof(struct y, x) \
}
#define DDRCTL_REG_REG(x) DDRCTL_REG(x, stm32mp1_ddrctrl_reg)
static const struct reg_desc ddr_reg[] = {
DDRCTL_REG_REG(mstr),
DDRCTL_REG_REG(mrctrl0),
DDRCTL_REG_REG(mrctrl1),
DDRCTL_REG_REG(derateen),
DDRCTL_REG_REG(derateint),
DDRCTL_REG_REG(pwrctl),
DDRCTL_REG_REG(pwrtmg),
DDRCTL_REG_REG(hwlpctl),
DDRCTL_REG_REG(rfshctl0),
DDRCTL_REG_REG(rfshctl3),
DDRCTL_REG_REG(crcparctl0),
DDRCTL_REG_REG(zqctl0),
DDRCTL_REG_REG(dfitmg0),
DDRCTL_REG_REG(dfitmg1),
DDRCTL_REG_REG(dfilpcfg0),
DDRCTL_REG_REG(dfiupd0),
DDRCTL_REG_REG(dfiupd1),
DDRCTL_REG_REG(dfiupd2),
DDRCTL_REG_REG(dfiphymstr),
DDRCTL_REG_REG(odtmap),
DDRCTL_REG_REG(dbg0),
DDRCTL_REG_REG(dbg1),
DDRCTL_REG_REG(dbgcmd),
DDRCTL_REG_REG(poisoncfg),
DDRCTL_REG_REG(pccfg),
};
#define DDRCTL_REG_TIMING(x) DDRCTL_REG(x, stm32mp1_ddrctrl_timing)
static const struct reg_desc ddr_timing[] = {
DDRCTL_REG_TIMING(rfshtmg),
DDRCTL_REG_TIMING(dramtmg0),
DDRCTL_REG_TIMING(dramtmg1),
DDRCTL_REG_TIMING(dramtmg2),
DDRCTL_REG_TIMING(dramtmg3),
DDRCTL_REG_TIMING(dramtmg4),
DDRCTL_REG_TIMING(dramtmg5),
DDRCTL_REG_TIMING(dramtmg6),
DDRCTL_REG_TIMING(dramtmg7),
DDRCTL_REG_TIMING(dramtmg8),
DDRCTL_REG_TIMING(dramtmg14),
DDRCTL_REG_TIMING(odtcfg),
};
#define DDRCTL_REG_MAP(x) DDRCTL_REG(x, stm32mp1_ddrctrl_map)
static const struct reg_desc ddr_map[] = {
DDRCTL_REG_MAP(addrmap1),
DDRCTL_REG_MAP(addrmap2),
DDRCTL_REG_MAP(addrmap3),
DDRCTL_REG_MAP(addrmap4),
DDRCTL_REG_MAP(addrmap5),
DDRCTL_REG_MAP(addrmap6),
DDRCTL_REG_MAP(addrmap9),
DDRCTL_REG_MAP(addrmap10),
DDRCTL_REG_MAP(addrmap11),
};
#define DDRCTL_REG_PERF(x) DDRCTL_REG(x, stm32mp1_ddrctrl_perf)
static const struct reg_desc ddr_perf[] = {
DDRCTL_REG_PERF(sched),
DDRCTL_REG_PERF(sched1),
DDRCTL_REG_PERF(perfhpr1),
DDRCTL_REG_PERF(perflpr1),
DDRCTL_REG_PERF(perfwr1),
DDRCTL_REG_PERF(pcfgr_0),
DDRCTL_REG_PERF(pcfgw_0),
DDRCTL_REG_PERF(pcfgqos0_0),
DDRCTL_REG_PERF(pcfgqos1_0),
DDRCTL_REG_PERF(pcfgwqos0_0),
DDRCTL_REG_PERF(pcfgwqos1_0),
DDRCTL_REG_PERF(pcfgr_1),
DDRCTL_REG_PERF(pcfgw_1),
DDRCTL_REG_PERF(pcfgqos0_1),
DDRCTL_REG_PERF(pcfgqos1_1),
DDRCTL_REG_PERF(pcfgwqos0_1),
DDRCTL_REG_PERF(pcfgwqos1_1),
};
#define DDRPHY_REG_REG(x) DDRPHY_REG(x, stm32mp1_ddrphy_reg)
static const struct reg_desc ddrphy_reg[] = {
DDRPHY_REG_REG(pgcr),
DDRPHY_REG_REG(aciocr),
DDRPHY_REG_REG(dxccr),
DDRPHY_REG_REG(dsgcr),
DDRPHY_REG_REG(dcr),
DDRPHY_REG_REG(odtcr),
DDRPHY_REG_REG(zq0cr1),
DDRPHY_REG_REG(dx0gcr),
DDRPHY_REG_REG(dx1gcr),
DDRPHY_REG_REG(dx2gcr),
DDRPHY_REG_REG(dx3gcr),
};
#define DDRPHY_REG_TIMING(x) DDRPHY_REG(x, stm32mp1_ddrphy_timing)
static const struct reg_desc ddrphy_timing[] = {
DDRPHY_REG_TIMING(ptr0),
DDRPHY_REG_TIMING(ptr1),
DDRPHY_REG_TIMING(ptr2),
DDRPHY_REG_TIMING(dtpr0),
DDRPHY_REG_TIMING(dtpr1),
DDRPHY_REG_TIMING(dtpr2),
DDRPHY_REG_TIMING(mr0),
DDRPHY_REG_TIMING(mr1),
DDRPHY_REG_TIMING(mr2),
DDRPHY_REG_TIMING(mr3),
};
#define DDRPHY_REG_CAL(x) DDRPHY_REG(x, stm32mp1_ddrphy_cal)
static const struct reg_desc ddrphy_cal[] = {
DDRPHY_REG_CAL(dx0dllcr),
DDRPHY_REG_CAL(dx0dqtr),
DDRPHY_REG_CAL(dx0dqstr),
DDRPHY_REG_CAL(dx1dllcr),
DDRPHY_REG_CAL(dx1dqtr),
DDRPHY_REG_CAL(dx1dqstr),
DDRPHY_REG_CAL(dx2dllcr),
DDRPHY_REG_CAL(dx2dqtr),
DDRPHY_REG_CAL(dx2dqstr),
DDRPHY_REG_CAL(dx3dllcr),
DDRPHY_REG_CAL(dx3dqtr),
DDRPHY_REG_CAL(dx3dqstr),
};
#define DDR_REG_DYN(x) \
{ \
.name = #x, \
.offset = offsetof(struct stm32mp1_ddrctl, x), \
.par_offset = INVALID_OFFSET \
}
static const struct reg_desc ddr_dyn[] = {
DDR_REG_DYN(stat),
DDR_REG_DYN(init0),
DDR_REG_DYN(dfimisc),
DDR_REG_DYN(dfistat),
DDR_REG_DYN(swctl),
DDR_REG_DYN(swstat),
DDR_REG_DYN(pctrl_0),
DDR_REG_DYN(pctrl_1),
};
#define DDRPHY_REG_DYN(x) \
{ \
.name = #x, \
.offset = offsetof(struct stm32mp1_ddrphy, x), \
.par_offset = INVALID_OFFSET \
}
static const struct reg_desc ddrphy_dyn[] = {
DDRPHY_REG_DYN(pir),
DDRPHY_REG_DYN(pgsr),
};
enum reg_type {
REG_REG,
REG_TIMING,
REG_PERF,
REG_MAP,
REGPHY_REG,
REGPHY_TIMING,
REGPHY_CAL,
/*
* Dynamic registers => managed in driver or not changed,
* can be dumped in interactive mode.
*/
REG_DYN,
REGPHY_DYN,
REG_TYPE_NB
};
enum base_type {
DDR_BASE,
DDRPHY_BASE,
NONE_BASE
};
struct ddr_reg_info {
const char *name;
const struct reg_desc *desc;
uint8_t size;
enum base_type base;
};
static const struct ddr_reg_info ddr_registers[REG_TYPE_NB] = {
[REG_REG] = {
.name = "static",
.desc = ddr_reg,
.size = ARRAY_SIZE(ddr_reg),
.base = DDR_BASE
},
[REG_TIMING] = {
.name = "timing",
.desc = ddr_timing,
.size = ARRAY_SIZE(ddr_timing),
.base = DDR_BASE
},
[REG_PERF] = {
.name = "perf",
.desc = ddr_perf,
.size = ARRAY_SIZE(ddr_perf),
.base = DDR_BASE
},
[REG_MAP] = {
.name = "map",
.desc = ddr_map,
.size = ARRAY_SIZE(ddr_map),
.base = DDR_BASE
},
[REGPHY_REG] = {
.name = "static",
.desc = ddrphy_reg,
.size = ARRAY_SIZE(ddrphy_reg),
.base = DDRPHY_BASE
},
[REGPHY_TIMING] = {
.name = "timing",
.desc = ddrphy_timing,
.size = ARRAY_SIZE(ddrphy_timing),
.base = DDRPHY_BASE
},
[REGPHY_CAL] = {
.name = "cal",
.desc = ddrphy_cal,
.size = ARRAY_SIZE(ddrphy_cal),
.base = DDRPHY_BASE
},
[REG_DYN] = {
.name = "dyn",
.desc = ddr_dyn,
.size = ARRAY_SIZE(ddr_dyn),
.base = DDR_BASE
},
[REGPHY_DYN] = {
.name = "dyn",
.desc = ddrphy_dyn,
.size = ARRAY_SIZE(ddrphy_dyn),
.base = DDRPHY_BASE
},
};
static uintptr_t get_base_addr(const struct ddr_info *priv, enum base_type base)
{
if (base == DDRPHY_BASE) {
return (uintptr_t)priv->phy;
} else {
return (uintptr_t)priv->ctl;
}
}
static void set_reg(const struct ddr_info *priv,
enum reg_type type,
const void *param)
{
unsigned int i;
unsigned int value;
enum base_type base = ddr_registers[type].base;
uintptr_t base_addr = get_base_addr(priv, base);
const struct reg_desc *desc = ddr_registers[type].desc;
VERBOSE("init %s\n", ddr_registers[type].name);
for (i = 0; i < ddr_registers[type].size; i++) {
uintptr_t ptr = base_addr + desc[i].offset;
if (desc[i].par_offset == INVALID_OFFSET) {
ERROR("invalid parameter offset for %s", desc[i].name);
panic();
} else {
value = *((uint32_t *)((uintptr_t)param +
desc[i].par_offset));
mmio_write_32(ptr, value);
}
}
}
static void stm32mp1_ddrphy_idone_wait(struct stm32mp1_ddrphy *phy)
{
uint32_t pgsr;
int error = 0;
uint64_t timeout = timeout_init_us(TIMEOUT_US_1S);
do {
pgsr = mmio_read_32((uintptr_t)&phy->pgsr);
VERBOSE(" > [0x%lx] pgsr = 0x%x &\n",
(uintptr_t)&phy->pgsr, pgsr);
if (timeout_elapsed(timeout)) {
panic();
}
if ((pgsr & DDRPHYC_PGSR_DTERR) != 0U) {
VERBOSE("DQS Gate Trainig Error\n");
error++;
}
if ((pgsr & DDRPHYC_PGSR_DTIERR) != 0U) {
VERBOSE("DQS Gate Trainig Intermittent Error\n");
error++;
}
if ((pgsr & DDRPHYC_PGSR_DFTERR) != 0U) {
VERBOSE("DQS Drift Error\n");
error++;
}
if ((pgsr & DDRPHYC_PGSR_RVERR) != 0U) {
VERBOSE("Read Valid Training Error\n");
error++;
}
if ((pgsr & DDRPHYC_PGSR_RVEIRR) != 0U) {
VERBOSE("Read Valid Training Intermittent Error\n");
error++;
}
} while (((pgsr & DDRPHYC_PGSR_IDONE) == 0U) && (error == 0));
VERBOSE("\n[0x%lx] pgsr = 0x%x\n",
(uintptr_t)&phy->pgsr, pgsr);
}
static void stm32mp1_ddrphy_init(struct stm32mp1_ddrphy *phy, uint32_t pir)
{
uint32_t pir_init = pir | DDRPHYC_PIR_INIT;
mmio_write_32((uintptr_t)&phy->pir, pir_init);
VERBOSE("[0x%lx] pir = 0x%x -> 0x%x\n",
(uintptr_t)&phy->pir, pir_init,
mmio_read_32((uintptr_t)&phy->pir));
/* Need to wait 10 configuration clock before start polling */
udelay(10);
/* Wait DRAM initialization and Gate Training Evaluation complete */
stm32mp1_ddrphy_idone_wait(phy);
}
/* Start quasi dynamic register update */
static void stm32mp1_start_sw_done(struct stm32mp1_ddrctl *ctl)
{
mmio_clrbits_32((uintptr_t)&ctl->swctl, DDRCTRL_SWCTL_SW_DONE);
VERBOSE("[0x%lx] swctl = 0x%x\n",
(uintptr_t)&ctl->swctl, mmio_read_32((uintptr_t)&ctl->swctl));
}
/* Wait quasi dynamic register update */
static void stm32mp1_wait_sw_done_ack(struct stm32mp1_ddrctl *ctl)
{
uint64_t timeout;
uint32_t swstat;
mmio_setbits_32((uintptr_t)&ctl->swctl, DDRCTRL_SWCTL_SW_DONE);
VERBOSE("[0x%lx] swctl = 0x%x\n",
(uintptr_t)&ctl->swctl, mmio_read_32((uintptr_t)&ctl->swctl));
timeout = timeout_init_us(TIMEOUT_US_1S);
do {
swstat = mmio_read_32((uintptr_t)&ctl->swstat);
VERBOSE("[0x%lx] swstat = 0x%x ",
(uintptr_t)&ctl->swstat, swstat);
if (timeout_elapsed(timeout)) {
panic();
}
} while ((swstat & DDRCTRL_SWSTAT_SW_DONE_ACK) == 0U);
VERBOSE("[0x%lx] swstat = 0x%x\n",
(uintptr_t)&ctl->swstat, swstat);
}
/* Wait quasi dynamic register update */
static void stm32mp1_wait_operating_mode(struct ddr_info *priv, uint32_t mode)
{
uint64_t timeout;
uint32_t stat;
int break_loop = 0;
timeout = timeout_init_us(TIMEOUT_US_1S);
for ( ; ; ) {
uint32_t operating_mode;
uint32_t selref_type;
stat = mmio_read_32((uintptr_t)&priv->ctl->stat);
operating_mode = stat & DDRCTRL_STAT_OPERATING_MODE_MASK;
selref_type = stat & DDRCTRL_STAT_SELFREF_TYPE_MASK;
VERBOSE("[0x%lx] stat = 0x%x\n",
(uintptr_t)&priv->ctl->stat, stat);
if (timeout_elapsed(timeout)) {
panic();
}
if (mode == DDRCTRL_STAT_OPERATING_MODE_SR) {
/*
* Self-refresh due to software
* => checking also STAT.selfref_type.
*/
if ((operating_mode ==
DDRCTRL_STAT_OPERATING_MODE_SR) &&
(selref_type == DDRCTRL_STAT_SELFREF_TYPE_SR)) {
break_loop = 1;
}
} else if (operating_mode == mode) {
break_loop = 1;
} else if ((mode == DDRCTRL_STAT_OPERATING_MODE_NORMAL) &&
(operating_mode == DDRCTRL_STAT_OPERATING_MODE_SR) &&
(selref_type == DDRCTRL_STAT_SELFREF_TYPE_ASR)) {
/* Normal mode: handle also automatic self refresh */
break_loop = 1;
}
if (break_loop == 1) {
break;
}
}
VERBOSE("[0x%lx] stat = 0x%x\n",
(uintptr_t)&priv->ctl->stat, stat);
}
/* Mode Register Writes (MRW or MRS) */
static void stm32mp1_mode_register_write(struct ddr_info *priv, uint8_t addr,
uint32_t data)
{
uint32_t mrctrl0;
VERBOSE("MRS: %d = %x\n", addr, data);
/*
* 1. Poll MRSTAT.mr_wr_busy until it is '0'.
* This checks that there is no outstanding MR transaction.
* No write should be performed to MRCTRL0 and MRCTRL1
* if MRSTAT.mr_wr_busy = 1.
*/
while ((mmio_read_32((uintptr_t)&priv->ctl->mrstat) &
DDRCTRL_MRSTAT_MR_WR_BUSY) != 0U) {
;
}
/*
* 2. Write the MRCTRL0.mr_type, MRCTRL0.mr_addr, MRCTRL0.mr_rank
* and (for MRWs) MRCTRL1.mr_data to define the MR transaction.
*/
mrctrl0 = DDRCTRL_MRCTRL0_MR_TYPE_WRITE |
DDRCTRL_MRCTRL0_MR_RANK_ALL |
(((uint32_t)addr << DDRCTRL_MRCTRL0_MR_ADDR_SHIFT) &
DDRCTRL_MRCTRL0_MR_ADDR_MASK);
mmio_write_32((uintptr_t)&priv->ctl->mrctrl0, mrctrl0);
VERBOSE("[0x%lx] mrctrl0 = 0x%x (0x%x)\n",
(uintptr_t)&priv->ctl->mrctrl0,
mmio_read_32((uintptr_t)&priv->ctl->mrctrl0), mrctrl0);
mmio_write_32((uintptr_t)&priv->ctl->mrctrl1, data);
VERBOSE("[0x%lx] mrctrl1 = 0x%x\n",
(uintptr_t)&priv->ctl->mrctrl1,
mmio_read_32((uintptr_t)&priv->ctl->mrctrl1));
/*
* 3. In a separate APB transaction, write the MRCTRL0.mr_wr to 1. This
* bit is self-clearing, and triggers the MR transaction.
* The uMCTL2 then asserts the MRSTAT.mr_wr_busy while it performs
* the MR transaction to SDRAM, and no further access can be
* initiated until it is deasserted.
*/
mrctrl0 |= DDRCTRL_MRCTRL0_MR_WR;
mmio_write_32((uintptr_t)&priv->ctl->mrctrl0, mrctrl0);
while ((mmio_read_32((uintptr_t)&priv->ctl->mrstat) &
DDRCTRL_MRSTAT_MR_WR_BUSY) != 0U) {
;
}
VERBOSE("[0x%lx] mrctrl0 = 0x%x\n",
(uintptr_t)&priv->ctl->mrctrl0, mrctrl0);
}
/* Switch DDR3 from DLL-on to DLL-off */
static void stm32mp1_ddr3_dll_off(struct ddr_info *priv)
{
uint32_t mr1 = mmio_read_32((uintptr_t)&priv->phy->mr1);
uint32_t mr2 = mmio_read_32((uintptr_t)&priv->phy->mr2);
uint32_t dbgcam;
VERBOSE("mr1: 0x%x\n", mr1);
VERBOSE("mr2: 0x%x\n", mr2);
/*
* 1. Set the DBG1.dis_hif = 1.
* This prevents further reads/writes being received on the HIF.
*/
mmio_setbits_32((uintptr_t)&priv->ctl->dbg1, DDRCTRL_DBG1_DIS_HIF);
VERBOSE("[0x%lx] dbg1 = 0x%x\n",
(uintptr_t)&priv->ctl->dbg1,
mmio_read_32((uintptr_t)&priv->ctl->dbg1));
/*
* 2. Ensure all commands have been flushed from the uMCTL2 by polling
* DBGCAM.wr_data_pipeline_empty = 1,
* DBGCAM.rd_data_pipeline_empty = 1,
* DBGCAM.dbg_wr_q_depth = 0 ,
* DBGCAM.dbg_lpr_q_depth = 0, and
* DBGCAM.dbg_hpr_q_depth = 0.
*/
do {
dbgcam = mmio_read_32((uintptr_t)&priv->ctl->dbgcam);
VERBOSE("[0x%lx] dbgcam = 0x%x\n",
(uintptr_t)&priv->ctl->dbgcam, dbgcam);
} while ((((dbgcam & DDRCTRL_DBGCAM_DATA_PIPELINE_EMPTY) ==
DDRCTRL_DBGCAM_DATA_PIPELINE_EMPTY)) &&
((dbgcam & DDRCTRL_DBGCAM_DBG_Q_DEPTH) == 0U));
/*
* 3. Perform an MRS command (using MRCTRL0 and MRCTRL1 registers)
* to disable RTT_NOM:
* a. DDR3: Write to MR1[9], MR1[6] and MR1[2]
* b. DDR4: Write to MR1[10:8]
*/
mr1 &= ~(BIT(9) | BIT(6) | BIT(2));
stm32mp1_mode_register_write(priv, 1, mr1);
/*
* 4. For DDR4 only: Perform an MRS command
* (using MRCTRL0 and MRCTRL1 registers) to write to MR5[8:6]
* to disable RTT_PARK
*/
/*
* 5. Perform an MRS command (using MRCTRL0 and MRCTRL1 registers)
* to write to MR2[10:9], to disable RTT_WR
* (and therefore disable dynamic ODT).
* This applies for both DDR3 and DDR4.
*/
mr2 &= ~GENMASK(10, 9);
stm32mp1_mode_register_write(priv, 2, mr2);
/*
* 6. Perform an MRS command (using MRCTRL0 and MRCTRL1 registers)
* to disable the DLL. The timing of this MRS is automatically
* handled by the uMCTL2.
* a. DDR3: Write to MR1[0]
* b. DDR4: Write to MR1[0]
*/
mr1 |= BIT(0);
stm32mp1_mode_register_write(priv, 1, mr1);
/*
* 7. Put the SDRAM into self-refresh mode by setting
* PWRCTL.selfref_sw = 1, and polling STAT.operating_mode to ensure
* the DDRC has entered self-refresh.
*/
mmio_setbits_32((uintptr_t)&priv->ctl->pwrctl,
DDRCTRL_PWRCTL_SELFREF_SW);
VERBOSE("[0x%lx] pwrctl = 0x%x\n",
(uintptr_t)&priv->ctl->pwrctl,
mmio_read_32((uintptr_t)&priv->ctl->pwrctl));
/*
* 8. Wait until STAT.operating_mode[1:0]==11 indicating that the
* DWC_ddr_umctl2 core is in self-refresh mode.
* Ensure transition to self-refresh was due to software
* by checking that STAT.selfref_type[1:0]=2.
*/
stm32mp1_wait_operating_mode(priv, DDRCTRL_STAT_OPERATING_MODE_SR);
/*
* 9. Set the MSTR.dll_off_mode = 1.
* warning: MSTR.dll_off_mode is a quasi-dynamic type 2 field
*/
stm32mp1_start_sw_done(priv->ctl);
mmio_setbits_32((uintptr_t)&priv->ctl->mstr, DDRCTRL_MSTR_DLL_OFF_MODE);
VERBOSE("[0x%lx] mstr = 0x%x\n",
(uintptr_t)&priv->ctl->mstr,
mmio_read_32((uintptr_t)&priv->ctl->mstr));
stm32mp1_wait_sw_done_ack(priv->ctl);
/* 10. Change the clock frequency to the desired value. */
/*
* 11. Update any registers which may be required to change for the new
* frequency. This includes static and dynamic registers.
* This includes both uMCTL2 registers and PHY registers.
*/
/* Change Bypass Mode Frequency Range */
if (clk_get_rate(DDRPHYC) < 100000000U) {
mmio_clrbits_32((uintptr_t)&priv->phy->dllgcr,
DDRPHYC_DLLGCR_BPS200);
} else {
mmio_setbits_32((uintptr_t)&priv->phy->dllgcr,
DDRPHYC_DLLGCR_BPS200);
}
mmio_setbits_32((uintptr_t)&priv->phy->acdllcr, DDRPHYC_ACDLLCR_DLLDIS);
mmio_setbits_32((uintptr_t)&priv->phy->dx0dllcr,
DDRPHYC_DXNDLLCR_DLLDIS);
mmio_setbits_32((uintptr_t)&priv->phy->dx1dllcr,
DDRPHYC_DXNDLLCR_DLLDIS);
mmio_setbits_32((uintptr_t)&priv->phy->dx2dllcr,
DDRPHYC_DXNDLLCR_DLLDIS);
mmio_setbits_32((uintptr_t)&priv->phy->dx3dllcr,
DDRPHYC_DXNDLLCR_DLLDIS);
/* 12. Exit the self-refresh state by setting PWRCTL.selfref_sw = 0. */
mmio_clrbits_32((uintptr_t)&priv->ctl->pwrctl,
DDRCTRL_PWRCTL_SELFREF_SW);
stm32mp1_wait_operating_mode(priv, DDRCTRL_STAT_OPERATING_MODE_NORMAL);
/*
* 13. If ZQCTL0.dis_srx_zqcl = 0, the uMCTL2 performs a ZQCL command
* at this point.
*/
/*
* 14. Perform MRS commands as required to re-program timing registers
* in the SDRAM for the new frequency
* (in particular, CL, CWL and WR may need to be changed).
*/
/* 15. Write DBG1.dis_hif = 0 to re-enable reads and writes. */
mmio_clrbits_32((uintptr_t)&priv->ctl->dbg1, DDRCTRL_DBG1_DIS_HIF);
VERBOSE("[0x%lx] dbg1 = 0x%x\n",
(uintptr_t)&priv->ctl->dbg1,
mmio_read_32((uintptr_t)&priv->ctl->dbg1));
}
static void stm32mp1_refresh_disable(struct stm32mp1_ddrctl *ctl)
{
stm32mp1_start_sw_done(ctl);
/* Quasi-dynamic register update*/
mmio_setbits_32((uintptr_t)&ctl->rfshctl3,
DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH);
mmio_clrbits_32((uintptr_t)&ctl->pwrctl, DDRCTRL_PWRCTL_POWERDOWN_EN);
mmio_clrbits_32((uintptr_t)&ctl->dfimisc,
DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN);
stm32mp1_wait_sw_done_ack(ctl);
}
static void stm32mp1_refresh_restore(struct stm32mp1_ddrctl *ctl,
uint32_t rfshctl3, uint32_t pwrctl)
{
stm32mp1_start_sw_done(ctl);
if ((rfshctl3 & DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH) == 0U) {
mmio_clrbits_32((uintptr_t)&ctl->rfshctl3,
DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH);
}
if ((pwrctl & DDRCTRL_PWRCTL_POWERDOWN_EN) != 0U) {
mmio_setbits_32((uintptr_t)&ctl->pwrctl,
DDRCTRL_PWRCTL_POWERDOWN_EN);
}
mmio_setbits_32((uintptr_t)&ctl->dfimisc,
DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN);
stm32mp1_wait_sw_done_ack(ctl);
}
static int board_ddr_power_init(enum ddr_type ddr_type)
{
if (dt_pmic_status() > 0) {
return pmic_ddr_power_init(ddr_type);
}
return 0;
}
void stm32mp1_ddr_init(struct ddr_info *priv,
struct stm32mp1_ddr_config *config)
{
uint32_t pir;
int ret = -EINVAL;
if ((config->c_reg.mstr & DDRCTRL_MSTR_DDR3) != 0U) {
ret = board_ddr_power_init(STM32MP_DDR3);
} else if ((config->c_reg.mstr & DDRCTRL_MSTR_LPDDR2) != 0U) {
ret = board_ddr_power_init(STM32MP_LPDDR2);
} else if ((config->c_reg.mstr & DDRCTRL_MSTR_LPDDR3) != 0U) {
ret = board_ddr_power_init(STM32MP_LPDDR3);
} else {
ERROR("DDR type not supported\n");
}
if (ret != 0) {
panic();
}
VERBOSE("name = %s\n", config->info.name);
VERBOSE("speed = %d kHz\n", config->info.speed);
VERBOSE("size = 0x%x\n", config->info.size);
/* DDR INIT SEQUENCE */
/*
* 1. Program the DWC_ddr_umctl2 registers
* nota: check DFIMISC.dfi_init_complete = 0
*/
/* 1.1 RESETS: presetn, core_ddrc_rstn, aresetn */
mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAPBRST);
mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAXIRST);
mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCORERST);
mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYAPBRST);
mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYRST);
mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYCTLRST);
/* 1.2. start CLOCK */
if (stm32mp1_ddr_clk_enable(priv, config->info.speed) != 0) {
panic();
}
/* 1.3. deassert reset */
/* De-assert PHY rstn and ctl_rstn via DPHYRST and DPHYCTLRST. */
mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYRST);
mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYCTLRST);
/*
* De-assert presetn once the clocks are active
* and stable via DDRCAPBRST bit.
*/
mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAPBRST);
/* 1.4. wait 128 cycles to permit initialization of end logic */
udelay(2);
/* For PCLK = 133MHz => 1 us is enough, 2 to allow lower frequency */
/* 1.5. initialize registers ddr_umctl2 */
/* Stop uMCTL2 before PHY is ready */
mmio_clrbits_32((uintptr_t)&priv->ctl->dfimisc,
DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN);
VERBOSE("[0x%lx] dfimisc = 0x%x\n",
(uintptr_t)&priv->ctl->dfimisc,
mmio_read_32((uintptr_t)&priv->ctl->dfimisc));
set_reg(priv, REG_REG, &config->c_reg);
/* DDR3 = don't set DLLOFF for init mode */
if ((config->c_reg.mstr &
(DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE))
== (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE)) {
VERBOSE("deactivate DLL OFF in mstr\n");
mmio_clrbits_32((uintptr_t)&priv->ctl->mstr,
DDRCTRL_MSTR_DLL_OFF_MODE);
VERBOSE("[0x%lx] mstr = 0x%x\n",
(uintptr_t)&priv->ctl->mstr,
mmio_read_32((uintptr_t)&priv->ctl->mstr));
}
set_reg(priv, REG_TIMING, &config->c_timing);
set_reg(priv, REG_MAP, &config->c_map);
/* Skip CTRL init, SDRAM init is done by PHY PUBL */
mmio_clrsetbits_32((uintptr_t)&priv->ctl->init0,
DDRCTRL_INIT0_SKIP_DRAM_INIT_MASK,
DDRCTRL_INIT0_SKIP_DRAM_INIT_NORMAL);
VERBOSE("[0x%lx] init0 = 0x%x\n",
(uintptr_t)&priv->ctl->init0,
mmio_read_32((uintptr_t)&priv->ctl->init0));
set_reg(priv, REG_PERF, &config->c_perf);
/* 2. deassert reset signal core_ddrc_rstn, aresetn and presetn */
mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCORERST);
mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAXIRST);
mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYAPBRST);
/*
* 3. start PHY init by accessing relevant PUBL registers
* (DXGCR, DCR, PTR*, MR*, DTPR*)
*/
set_reg(priv, REGPHY_REG, &config->p_reg);
set_reg(priv, REGPHY_TIMING, &config->p_timing);
set_reg(priv, REGPHY_CAL, &config->p_cal);
/* DDR3 = don't set DLLOFF for init mode */
if ((config->c_reg.mstr &
(DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE))
== (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE)) {
VERBOSE("deactivate DLL OFF in mr1\n");
mmio_clrbits_32((uintptr_t)&priv->phy->mr1, BIT(0));
VERBOSE("[0x%lx] mr1 = 0x%x\n",
(uintptr_t)&priv->phy->mr1,
mmio_read_32((uintptr_t)&priv->phy->mr1));
}
/*
* 4. Monitor PHY init status by polling PUBL register PGSR.IDONE
* Perform DDR PHY DRAM initialization and Gate Training Evaluation
*/
stm32mp1_ddrphy_idone_wait(priv->phy);
/*
* 5. Indicate to PUBL that controller performs SDRAM initialization
* by setting PIR.INIT and PIR CTLDINIT and pool PGSR.IDONE
* DRAM init is done by PHY, init0.skip_dram.init = 1
*/
pir = DDRPHYC_PIR_DLLSRST | DDRPHYC_PIR_DLLLOCK | DDRPHYC_PIR_ZCAL |
DDRPHYC_PIR_ITMSRST | DDRPHYC_PIR_DRAMINIT | DDRPHYC_PIR_ICPC;
if ((config->c_reg.mstr & DDRCTRL_MSTR_DDR3) != 0U) {
pir |= DDRPHYC_PIR_DRAMRST; /* Only for DDR3 */
}
stm32mp1_ddrphy_init(priv->phy, pir);
/*
* 6. SET DFIMISC.dfi_init_complete_en to 1
* Enable quasi-dynamic register programming.
*/
stm32mp1_start_sw_done(priv->ctl);
mmio_setbits_32((uintptr_t)&priv->ctl->dfimisc,
DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN);
VERBOSE("[0x%lx] dfimisc = 0x%x\n",
(uintptr_t)&priv->ctl->dfimisc,
mmio_read_32((uintptr_t)&priv->ctl->dfimisc));
stm32mp1_wait_sw_done_ack(priv->ctl);
/*
* 7. Wait for DWC_ddr_umctl2 to move to normal operation mode
* by monitoring STAT.operating_mode signal
*/
/* Wait uMCTL2 ready */
stm32mp1_wait_operating_mode(priv, DDRCTRL_STAT_OPERATING_MODE_NORMAL);
/* Switch to DLL OFF mode */
if ((config->c_reg.mstr & DDRCTRL_MSTR_DLL_OFF_MODE) != 0U) {
stm32mp1_ddr3_dll_off(priv);
}
VERBOSE("DDR DQS training : ");
/*
* 8. Disable Auto refresh and power down by setting
* - RFSHCTL3.dis_au_refresh = 1
* - PWRCTL.powerdown_en = 0
* - DFIMISC.dfiinit_complete_en = 0
*/
stm32mp1_refresh_disable(priv->ctl);
/*
* 9. Program PUBL PGCR to enable refresh during training
* and rank to train
* not done => keep the programed value in PGCR
*/
/*
* 10. configure PUBL PIR register to specify which training step
* to run
* Warning : RVTRN is not supported by this PUBL
*/
stm32mp1_ddrphy_init(priv->phy, DDRPHYC_PIR_QSTRN);
/* 11. monitor PUB PGSR.IDONE to poll cpmpletion of training sequence */
stm32mp1_ddrphy_idone_wait(priv->phy);
/*
* 12. set back registers in step 8 to the orginal values if desidered
*/
stm32mp1_refresh_restore(priv->ctl, config->c_reg.rfshctl3,
config->c_reg.pwrctl);
/* Enable uMCTL2 AXI port 0 */
mmio_setbits_32((uintptr_t)&priv->ctl->pctrl_0,
DDRCTRL_PCTRL_N_PORT_EN);
VERBOSE("[0x%lx] pctrl_0 = 0x%x\n",
(uintptr_t)&priv->ctl->pctrl_0,
mmio_read_32((uintptr_t)&priv->ctl->pctrl_0));
/* Enable uMCTL2 AXI port 1 */
mmio_setbits_32((uintptr_t)&priv->ctl->pctrl_1,
DDRCTRL_PCTRL_N_PORT_EN);
VERBOSE("[0x%lx] pctrl_1 = 0x%x\n",
(uintptr_t)&priv->ctl->pctrl_1,
mmio_read_32((uintptr_t)&priv->ctl->pctrl_1));
}