| /* |
| * Copyright (c) 2016-2021, ARM Limited and Contributors. All rights reserved. |
| * |
| * SPDX-License-Identifier: BSD-3-Clause |
| */ |
| |
| #include <arch.h> |
| #include <asm_macros.S> |
| #include <common/bl_common.h> |
| #include <common/runtime_svc.h> |
| #include <context.h> |
| #include <el3_common_macros.S> |
| #include <lib/el3_runtime/cpu_data.h> |
| #include <lib/pmf/aarch32/pmf_asm_macros.S> |
| #include <lib/runtime_instr.h> |
| #include <lib/xlat_tables/xlat_tables_defs.h> |
| #include <smccc_helpers.h> |
| #include <smccc_macros.S> |
| |
| .globl sp_min_vector_table |
| .globl sp_min_entrypoint |
| .globl sp_min_warm_entrypoint |
| .globl sp_min_handle_smc |
| .globl sp_min_handle_fiq |
| |
| #define FIXUP_SIZE ((BL32_LIMIT) - (BL32_BASE)) |
| |
| .macro route_fiq_to_sp_min reg |
| /* ----------------------------------------------------- |
| * FIQs are secure interrupts trapped by Monitor and non |
| * secure is not allowed to mask the FIQs. |
| * ----------------------------------------------------- |
| */ |
| ldcopr \reg, SCR |
| orr \reg, \reg, #SCR_FIQ_BIT |
| bic \reg, \reg, #SCR_FW_BIT |
| stcopr \reg, SCR |
| .endm |
| |
| .macro clrex_on_monitor_entry |
| #if (ARM_ARCH_MAJOR == 7) |
| /* |
| * ARMv7 architectures need to clear the exclusive access when |
| * entering Monitor mode. |
| */ |
| clrex |
| #endif |
| .endm |
| |
| vector_base sp_min_vector_table |
| b sp_min_entrypoint |
| b plat_panic_handler /* Undef */ |
| b sp_min_handle_smc /* Syscall */ |
| b plat_panic_handler /* Prefetch abort */ |
| b plat_panic_handler /* Data abort */ |
| b plat_panic_handler /* Reserved */ |
| b plat_panic_handler /* IRQ */ |
| b sp_min_handle_fiq /* FIQ */ |
| |
| |
| /* |
| * The Cold boot/Reset entrypoint for SP_MIN |
| */ |
| func sp_min_entrypoint |
| #if !RESET_TO_SP_MIN |
| /* --------------------------------------------------------------- |
| * Preceding bootloader has populated r0 with a pointer to a |
| * 'bl_params_t' structure & r1 with a pointer to platform |
| * specific structure |
| * --------------------------------------------------------------- |
| */ |
| mov r9, r0 |
| mov r10, r1 |
| mov r11, r2 |
| mov r12, r3 |
| |
| /* --------------------------------------------------------------------- |
| * For !RESET_TO_SP_MIN systems, only the primary CPU ever reaches |
| * sp_min_entrypoint() during the cold boot flow, so the cold/warm boot |
| * and primary/secondary CPU logic should not be executed in this case. |
| * |
| * Also, assume that the previous bootloader has already initialised the |
| * SCTLR, including the CPU endianness, and has initialised the memory. |
| * --------------------------------------------------------------------- |
| */ |
| el3_entrypoint_common \ |
| _init_sctlr=0 \ |
| _warm_boot_mailbox=0 \ |
| _secondary_cold_boot=0 \ |
| _init_memory=0 \ |
| _init_c_runtime=1 \ |
| _exception_vectors=sp_min_vector_table \ |
| _pie_fixup_size=FIXUP_SIZE |
| |
| /* --------------------------------------------------------------------- |
| * Relay the previous bootloader's arguments to the platform layer |
| * --------------------------------------------------------------------- |
| */ |
| #else |
| /* --------------------------------------------------------------------- |
| * For RESET_TO_SP_MIN systems which have a programmable reset address, |
| * sp_min_entrypoint() is executed only on the cold boot path so we can |
| * skip the warm boot mailbox mechanism. |
| * --------------------------------------------------------------------- |
| */ |
| el3_entrypoint_common \ |
| _init_sctlr=1 \ |
| _warm_boot_mailbox=!PROGRAMMABLE_RESET_ADDRESS \ |
| _secondary_cold_boot=!COLD_BOOT_SINGLE_CPU \ |
| _init_memory=1 \ |
| _init_c_runtime=1 \ |
| _exception_vectors=sp_min_vector_table \ |
| _pie_fixup_size=FIXUP_SIZE |
| |
| /* --------------------------------------------------------------------- |
| * For RESET_TO_SP_MIN systems, BL32 (SP_MIN) is the first bootloader |
| * to run so there's no argument to relay from a previous bootloader. |
| * Zero the arguments passed to the platform layer to reflect that. |
| * --------------------------------------------------------------------- |
| */ |
| mov r9, #0 |
| mov r10, #0 |
| mov r11, #0 |
| mov r12, #0 |
| |
| #endif /* RESET_TO_SP_MIN */ |
| |
| #if SP_MIN_WITH_SECURE_FIQ |
| route_fiq_to_sp_min r4 |
| #endif |
| |
| mov r0, r9 |
| mov r1, r10 |
| mov r2, r11 |
| mov r3, r12 |
| bl sp_min_early_platform_setup2 |
| bl sp_min_plat_arch_setup |
| |
| /* Jump to the main function */ |
| bl sp_min_main |
| |
| /* ------------------------------------------------------------- |
| * Clean the .data & .bss sections to main memory. This ensures |
| * that any global data which was initialised by the primary CPU |
| * is visible to secondary CPUs before they enable their data |
| * caches and participate in coherency. |
| * ------------------------------------------------------------- |
| */ |
| ldr r0, =__DATA_START__ |
| ldr r1, =__DATA_END__ |
| sub r1, r1, r0 |
| bl clean_dcache_range |
| |
| ldr r0, =__BSS_START__ |
| ldr r1, =__BSS_END__ |
| sub r1, r1, r0 |
| bl clean_dcache_range |
| |
| bl smc_get_next_ctx |
| |
| /* r0 points to `smc_ctx_t` */ |
| /* The PSCI cpu_context registers have been copied to `smc_ctx_t` */ |
| b sp_min_exit |
| endfunc sp_min_entrypoint |
| |
| |
| /* |
| * SMC handling function for SP_MIN. |
| */ |
| func sp_min_handle_smc |
| /* On SMC entry, `sp` points to `smc_ctx_t`. Save `lr`. */ |
| str lr, [sp, #SMC_CTX_LR_MON] |
| |
| #if ENABLE_RUNTIME_INSTRUMENTATION |
| /* |
| * Read the timestamp value and store it on top of the C runtime stack. |
| * The value will be saved to the per-cpu data once the C stack is |
| * available, as a valid stack is needed to call _cpu_data() |
| */ |
| strd r0, r1, [sp, #SMC_CTX_GPREG_R0] |
| ldcopr16 r0, r1, CNTPCT_64 |
| ldr lr, [sp, #SMC_CTX_SP_MON] |
| strd r0, r1, [lr, #-8]! |
| str lr, [sp, #SMC_CTX_SP_MON] |
| ldrd r0, r1, [sp, #SMC_CTX_GPREG_R0] |
| #endif |
| |
| smccc_save_gp_mode_regs |
| |
| clrex_on_monitor_entry |
| |
| /* |
| * `sp` still points to `smc_ctx_t`. Save it to a register |
| * and restore the C runtime stack pointer to `sp`. |
| */ |
| mov r2, sp /* handle */ |
| ldr sp, [r2, #SMC_CTX_SP_MON] |
| |
| #if ENABLE_RUNTIME_INSTRUMENTATION |
| /* Save handle to a callee saved register */ |
| mov r6, r2 |
| |
| /* |
| * Restore the timestamp value and store it in per-cpu data. The value |
| * will be extracted from per-cpu data by the C level SMC handler and |
| * saved to the PMF timestamp region. |
| */ |
| ldrd r4, r5, [sp], #8 |
| bl _cpu_data |
| strd r4, r5, [r0, #CPU_DATA_PMF_TS0_OFFSET] |
| |
| /* Restore handle */ |
| mov r2, r6 |
| #endif |
| |
| ldr r0, [r2, #SMC_CTX_SCR] |
| and r3, r0, #SCR_NS_BIT /* flags */ |
| |
| /* Switch to Secure Mode*/ |
| bic r0, #SCR_NS_BIT |
| stcopr r0, SCR |
| isb |
| |
| ldr r0, [r2, #SMC_CTX_GPREG_R0] /* smc_fid */ |
| /* Check whether an SMC64 is issued */ |
| tst r0, #(FUNCID_CC_MASK << FUNCID_CC_SHIFT) |
| beq 1f |
| /* SMC32 is not detected. Return error back to caller */ |
| mov r0, #SMC_UNK |
| str r0, [r2, #SMC_CTX_GPREG_R0] |
| mov r0, r2 |
| b sp_min_exit |
| 1: |
| /* SMC32 is detected */ |
| mov r1, #0 /* cookie */ |
| bl handle_runtime_svc |
| |
| /* `r0` points to `smc_ctx_t` */ |
| b sp_min_exit |
| endfunc sp_min_handle_smc |
| |
| /* |
| * Secure Interrupts handling function for SP_MIN. |
| */ |
| func sp_min_handle_fiq |
| #if !SP_MIN_WITH_SECURE_FIQ |
| b plat_panic_handler |
| #else |
| /* FIQ has a +4 offset for lr compared to preferred return address */ |
| sub lr, lr, #4 |
| /* On SMC entry, `sp` points to `smc_ctx_t`. Save `lr`. */ |
| str lr, [sp, #SMC_CTX_LR_MON] |
| |
| smccc_save_gp_mode_regs |
| |
| clrex_on_monitor_entry |
| |
| /* load run-time stack */ |
| mov r2, sp |
| ldr sp, [r2, #SMC_CTX_SP_MON] |
| |
| /* Switch to Secure Mode */ |
| ldr r0, [r2, #SMC_CTX_SCR] |
| bic r0, #SCR_NS_BIT |
| stcopr r0, SCR |
| isb |
| |
| push {r2, r3} |
| bl sp_min_fiq |
| pop {r0, r3} |
| |
| b sp_min_exit |
| #endif |
| endfunc sp_min_handle_fiq |
| |
| /* |
| * The Warm boot entrypoint for SP_MIN. |
| */ |
| func sp_min_warm_entrypoint |
| #if ENABLE_RUNTIME_INSTRUMENTATION |
| /* |
| * This timestamp update happens with cache off. The next |
| * timestamp collection will need to do cache maintenance prior |
| * to timestamp update. |
| */ |
| pmf_calc_timestamp_addr rt_instr_svc, RT_INSTR_EXIT_HW_LOW_PWR |
| ldcopr16 r2, r3, CNTPCT_64 |
| strd r2, r3, [r0] |
| #endif |
| /* |
| * On the warm boot path, most of the EL3 initialisations performed by |
| * 'el3_entrypoint_common' must be skipped: |
| * |
| * - Only when the platform bypasses the BL1/BL32 (SP_MIN) entrypoint by |
| * programming the reset address do we need to initialied the SCTLR. |
| * In other cases, we assume this has been taken care by the |
| * entrypoint code. |
| * |
| * - No need to determine the type of boot, we know it is a warm boot. |
| * |
| * - Do not try to distinguish between primary and secondary CPUs, this |
| * notion only exists for a cold boot. |
| * |
| * - No need to initialise the memory or the C runtime environment, |
| * it has been done once and for all on the cold boot path. |
| */ |
| el3_entrypoint_common \ |
| _init_sctlr=PROGRAMMABLE_RESET_ADDRESS \ |
| _warm_boot_mailbox=0 \ |
| _secondary_cold_boot=0 \ |
| _init_memory=0 \ |
| _init_c_runtime=0 \ |
| _exception_vectors=sp_min_vector_table \ |
| _pie_fixup_size=0 |
| |
| /* |
| * We're about to enable MMU and participate in PSCI state coordination. |
| * |
| * The PSCI implementation invokes platform routines that enable CPUs to |
| * participate in coherency. On a system where CPUs are not |
| * cache-coherent without appropriate platform specific programming, |
| * having caches enabled until such time might lead to coherency issues |
| * (resulting from stale data getting speculatively fetched, among |
| * others). Therefore we keep data caches disabled even after enabling |
| * the MMU for such platforms. |
| * |
| * On systems with hardware-assisted coherency, or on single cluster |
| * platforms, such platform specific programming is not required to |
| * enter coherency (as CPUs already are); and there's no reason to have |
| * caches disabled either. |
| */ |
| #if HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY |
| mov r0, #0 |
| #else |
| mov r0, #DISABLE_DCACHE |
| #endif |
| bl bl32_plat_enable_mmu |
| |
| #if SP_MIN_WITH_SECURE_FIQ |
| route_fiq_to_sp_min r0 |
| #endif |
| |
| bl sp_min_warm_boot |
| bl smc_get_next_ctx |
| /* r0 points to `smc_ctx_t` */ |
| /* The PSCI cpu_context registers have been copied to `smc_ctx_t` */ |
| |
| #if ENABLE_RUNTIME_INSTRUMENTATION |
| /* Save smc_ctx_t */ |
| mov r5, r0 |
| |
| pmf_calc_timestamp_addr rt_instr_svc, RT_INSTR_EXIT_PSCI |
| mov r4, r0 |
| |
| /* |
| * Invalidate before updating timestamp to ensure previous timestamp |
| * updates on the same cache line with caches disabled are properly |
| * seen by the same core. Without the cache invalidate, the core might |
| * write into a stale cache line. |
| */ |
| mov r1, #PMF_TS_SIZE |
| bl inv_dcache_range |
| |
| ldcopr16 r0, r1, CNTPCT_64 |
| strd r0, r1, [r4] |
| |
| /* Restore smc_ctx_t */ |
| mov r0, r5 |
| #endif |
| |
| b sp_min_exit |
| endfunc sp_min_warm_entrypoint |
| |
| /* |
| * The function to restore the registers from SMC context and return |
| * to the mode restored to SPSR. |
| * |
| * Arguments : r0 must point to the SMC context to restore from. |
| */ |
| func sp_min_exit |
| monitor_exit |
| endfunc sp_min_exit |