blob: 0ca18adc335f68ce38791287342f305647248517 [file] [log] [blame]
/*
* Copyright (c) 2017-2019, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <errno.h>
#include <platform_def.h>
#include <arch_helpers.h>
#include <common/debug.h>
#include <lib/mmio.h>
#include <lib/xlat_tables/xlat_tables_v2.h>
#include <plat/common/platform.h>
#include <sunxi_def.h>
#include <sunxi_mmap.h>
#include <sunxi_private.h>
static const mmap_region_t sunxi_mmap[PLATFORM_MMAP_REGIONS + 1] = {
MAP_REGION_FLAT(SUNXI_SRAM_BASE, SUNXI_SRAM_SIZE,
MT_RW_DATA | MT_SECURE),
MAP_REGION_FLAT(SUNXI_SCP_BASE, SUNXI_SCP_SIZE,
MT_DEVICE | MT_RW | MT_SECURE | MT_EXECUTE_NEVER),
MAP_REGION_FLAT(SUNXI_DEV_BASE, SUNXI_DEV_SIZE,
MT_DEVICE | MT_RW | MT_SECURE | MT_EXECUTE_NEVER),
MAP_REGION(SUNXI_DRAM_BASE, SUNXI_DRAM_VIRT_BASE, SUNXI_DRAM_SEC_SIZE,
MT_RW_DATA | MT_SECURE),
MAP_REGION(PLAT_SUNXI_NS_IMAGE_OFFSET,
SUNXI_DRAM_VIRT_BASE + SUNXI_DRAM_SEC_SIZE,
SUNXI_DRAM_MAP_SIZE,
MT_RO_DATA | MT_NS),
{},
};
unsigned int plat_get_syscnt_freq2(void)
{
return SUNXI_OSC24M_CLK_IN_HZ;
}
uintptr_t plat_get_ns_image_entrypoint(void)
{
#ifdef PRELOADED_BL33_BASE
return PRELOADED_BL33_BASE;
#else
return PLAT_SUNXI_NS_IMAGE_OFFSET;
#endif
}
void sunxi_configure_mmu_el3(int flags)
{
mmap_add_region(BL_CODE_BASE, BL_CODE_BASE,
BL_CODE_END - BL_CODE_BASE,
MT_CODE | MT_SECURE);
mmap_add_region(BL_RO_DATA_BASE, BL_RO_DATA_BASE,
BL_RO_DATA_END - BL_RO_DATA_BASE,
MT_RO_DATA | MT_SECURE);
mmap_add_region(BL_COHERENT_RAM_BASE, BL_COHERENT_RAM_BASE,
BL_COHERENT_RAM_END - BL_COHERENT_RAM_BASE,
MT_DEVICE | MT_RW | MT_SECURE | MT_EXECUTE_NEVER);
mmap_add(sunxi_mmap);
init_xlat_tables();
enable_mmu_el3(0);
}
#define SRAM_VER_REG (SUNXI_SYSCON_BASE + 0x24)
uint16_t sunxi_read_soc_id(void)
{
uint32_t reg = mmio_read_32(SRAM_VER_REG);
/* Set bit 15 to prepare for the SOCID read. */
mmio_write_32(SRAM_VER_REG, reg | BIT(15));
reg = mmio_read_32(SRAM_VER_REG);
/* deactivate the SOCID access again */
mmio_write_32(SRAM_VER_REG, reg & ~BIT(15));
return reg >> 16;
}
/*
* Configure a given pin to the GPIO-OUT function and sets its level.
* The port is given as a capital letter, the pin is the number within
* this port group.
* So to set pin PC7 to high, use: sunxi_set_gpio_out('C', 7, true);
*/
void sunxi_set_gpio_out(char port, int pin, bool level_high)
{
uintptr_t port_base;
if (port < 'A' || port > 'L')
return;
if (port == 'L')
port_base = SUNXI_R_PIO_BASE;
else
port_base = SUNXI_PIO_BASE + (port - 'A') * 0x24;
/* Set the new level first before configuring the pin. */
if (level_high)
mmio_setbits_32(port_base + 0x10, BIT(pin));
else
mmio_clrbits_32(port_base + 0x10, BIT(pin));
/* configure pin as GPIO out (4(3) bits per pin, 1: GPIO out */
mmio_clrsetbits_32(port_base + (pin / 8) * 4,
0x7 << ((pin % 8) * 4),
0x1 << ((pin % 8) * 4));
}
int sunxi_init_platform_r_twi(uint16_t socid, bool use_rsb)
{
uint32_t pin_func = 0x77;
uint32_t device_bit;
unsigned int reset_offset = 0xb0;
switch (socid) {
case SUNXI_SOC_H5:
if (use_rsb)
return -ENODEV;
pin_func = 0x22;
device_bit = BIT(6);
break;
case SUNXI_SOC_H6:
if (use_rsb)
return -ENODEV;
pin_func = 0x33;
device_bit = BIT(16);
reset_offset = 0x19c;
break;
case SUNXI_SOC_A64:
pin_func = use_rsb ? 0x22 : 0x33;
device_bit = use_rsb ? BIT(3) : BIT(6);
break;
default:
INFO("R_I2C/RSB on Allwinner 0x%x SoC not supported\n", socid);
return -ENODEV;
}
/* un-gate R_PIO clock */
if (socid != SUNXI_SOC_H6)
mmio_setbits_32(SUNXI_R_PRCM_BASE + 0x28, BIT(0));
/* switch pins PL0 and PL1 to the desired function */
mmio_clrsetbits_32(SUNXI_R_PIO_BASE + 0x00, 0xffU, pin_func);
/* level 2 drive strength */
mmio_clrsetbits_32(SUNXI_R_PIO_BASE + 0x14, 0x0fU, 0xaU);
/* set both pins to pull-up */
mmio_clrsetbits_32(SUNXI_R_PIO_BASE + 0x1c, 0x0fU, 0x5U);
/* un-gate clock */
if (socid != SUNXI_SOC_H6)
mmio_setbits_32(SUNXI_R_PRCM_BASE + 0x28, device_bit);
else
mmio_setbits_32(SUNXI_R_PRCM_BASE + 0x19c, device_bit | BIT(0));
/* assert, then de-assert reset of I2C/RSB controller */
mmio_clrbits_32(SUNXI_R_PRCM_BASE + reset_offset, device_bit);
mmio_setbits_32(SUNXI_R_PRCM_BASE + reset_offset, device_bit);
return 0;
}
/* This lock synchronises access to the arisc management processor. */
DEFINE_BAKERY_LOCK(arisc_lock);
/*
* Tell the "arisc" SCP core (an OpenRISC core) to execute some code.
* We don't have any service running there, so we place some OpenRISC code
* in SRAM, put the address of that into the reset vector and release the
* arisc reset line. The SCP will execute that code and pull the line up again.
*/
void sunxi_execute_arisc_code(uint32_t *code, size_t size, uint16_t param)
{
uintptr_t arisc_reset_vec = SUNXI_SRAM_A2_BASE + 0x100;
do {
bakery_lock_get(&arisc_lock);
/* Wait until the arisc is in reset state. */
if (!(mmio_read_32(SUNXI_R_CPUCFG_BASE) & BIT(0)))
break;
bakery_lock_release(&arisc_lock);
} while (1);
/* Patch up the code to feed in an input parameter. */
code[0] = (code[0] & ~0xffff) | param;
clean_dcache_range((uintptr_t)code, size);
/*
* The OpenRISC unconditional branch has opcode 0, the branch offset
* is in the lower 26 bits, containing the distance to the target,
* in instruction granularity (32 bits).
*/
mmio_write_32(arisc_reset_vec, ((uintptr_t)code - arisc_reset_vec) / 4);
clean_dcache_range(arisc_reset_vec, 4);
/* De-assert the arisc reset line to let it run. */
mmio_setbits_32(SUNXI_R_CPUCFG_BASE, BIT(0));
/*
* We release the lock here, although the arisc is still busy.
* But as long as it runs, the reset line is high, so other users
* won't leave the loop above.
* Once it has finished, the code is supposed to clear the reset line,
* to signal this to other users.
*/
bakery_lock_release(&arisc_lock);
}