| /* |
| * Copyright (c) 2015-2018, ARM Limited and Contributors. All rights reserved. |
| * |
| * SPDX-License-Identifier: BSD-3-Clause |
| */ |
| |
| #include <arch.h> |
| #include <arch_helpers.h> |
| #include <assert.h> |
| #include <debug.h> |
| #include <gic_common.h> |
| #include <interrupt_props.h> |
| #include "../common/gic_common_private.h" |
| #include "gicv3_private.h" |
| |
| /* |
| * Accessor to read the GIC Distributor IGRPMODR corresponding to the |
| * interrupt `id`, 32 interrupt IDs at a time. |
| */ |
| unsigned int gicd_read_igrpmodr(uintptr_t base, unsigned int id) |
| { |
| unsigned n = id >> IGRPMODR_SHIFT; |
| return mmio_read_32(base + GICD_IGRPMODR + (n << 2)); |
| } |
| |
| /* |
| * Accessor to write the GIC Distributor IGRPMODR corresponding to the |
| * interrupt `id`, 32 interrupt IDs at a time. |
| */ |
| void gicd_write_igrpmodr(uintptr_t base, unsigned int id, unsigned int val) |
| { |
| unsigned n = id >> IGRPMODR_SHIFT; |
| mmio_write_32(base + GICD_IGRPMODR + (n << 2), val); |
| } |
| |
| /* |
| * Accessor to get the bit corresponding to interrupt ID |
| * in GIC Distributor IGRPMODR. |
| */ |
| unsigned int gicd_get_igrpmodr(uintptr_t base, unsigned int id) |
| { |
| unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1); |
| unsigned int reg_val = gicd_read_igrpmodr(base, id); |
| |
| return (reg_val >> bit_num) & 0x1; |
| } |
| |
| /* |
| * Accessor to set the bit corresponding to interrupt ID |
| * in GIC Distributor IGRPMODR. |
| */ |
| void gicd_set_igrpmodr(uintptr_t base, unsigned int id) |
| { |
| unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1); |
| unsigned int reg_val = gicd_read_igrpmodr(base, id); |
| |
| gicd_write_igrpmodr(base, id, reg_val | (1 << bit_num)); |
| } |
| |
| /* |
| * Accessor to clear the bit corresponding to interrupt ID |
| * in GIC Distributor IGRPMODR. |
| */ |
| void gicd_clr_igrpmodr(uintptr_t base, unsigned int id) |
| { |
| unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1); |
| unsigned int reg_val = gicd_read_igrpmodr(base, id); |
| |
| gicd_write_igrpmodr(base, id, reg_val & ~(1 << bit_num)); |
| } |
| |
| /* |
| * Accessor to read the GIC Re-distributor IPRIORITYR corresponding to the |
| * interrupt `id`, 4 interrupts IDs at a time. |
| */ |
| unsigned int gicr_read_ipriorityr(uintptr_t base, unsigned int id) |
| { |
| unsigned n = id >> IPRIORITYR_SHIFT; |
| return mmio_read_32(base + GICR_IPRIORITYR + (n << 2)); |
| } |
| |
| /* |
| * Accessor to write the GIC Re-distributor IPRIORITYR corresponding to the |
| * interrupt `id`, 4 interrupts IDs at a time. |
| */ |
| void gicr_write_ipriorityr(uintptr_t base, unsigned int id, unsigned int val) |
| { |
| unsigned n = id >> IPRIORITYR_SHIFT; |
| mmio_write_32(base + GICR_IPRIORITYR + (n << 2), val); |
| } |
| |
| /* |
| * Accessor to get the bit corresponding to interrupt ID |
| * from GIC Re-distributor IGROUPR0. |
| */ |
| unsigned int gicr_get_igroupr0(uintptr_t base, unsigned int id) |
| { |
| unsigned bit_num = id & ((1 << IGROUPR_SHIFT) - 1); |
| unsigned int reg_val = gicr_read_igroupr0(base); |
| |
| return (reg_val >> bit_num) & 0x1; |
| } |
| |
| /* |
| * Accessor to set the bit corresponding to interrupt ID |
| * in GIC Re-distributor IGROUPR0. |
| */ |
| void gicr_set_igroupr0(uintptr_t base, unsigned int id) |
| { |
| unsigned bit_num = id & ((1 << IGROUPR_SHIFT) - 1); |
| unsigned int reg_val = gicr_read_igroupr0(base); |
| |
| gicr_write_igroupr0(base, reg_val | (1 << bit_num)); |
| } |
| |
| /* |
| * Accessor to clear the bit corresponding to interrupt ID |
| * in GIC Re-distributor IGROUPR0. |
| */ |
| void gicr_clr_igroupr0(uintptr_t base, unsigned int id) |
| { |
| unsigned bit_num = id & ((1 << IGROUPR_SHIFT) - 1); |
| unsigned int reg_val = gicr_read_igroupr0(base); |
| |
| gicr_write_igroupr0(base, reg_val & ~(1 << bit_num)); |
| } |
| |
| /* |
| * Accessor to get the bit corresponding to interrupt ID |
| * from GIC Re-distributor IGRPMODR0. |
| */ |
| unsigned int gicr_get_igrpmodr0(uintptr_t base, unsigned int id) |
| { |
| unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1); |
| unsigned int reg_val = gicr_read_igrpmodr0(base); |
| |
| return (reg_val >> bit_num) & 0x1; |
| } |
| |
| /* |
| * Accessor to set the bit corresponding to interrupt ID |
| * in GIC Re-distributor IGRPMODR0. |
| */ |
| void gicr_set_igrpmodr0(uintptr_t base, unsigned int id) |
| { |
| unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1); |
| unsigned int reg_val = gicr_read_igrpmodr0(base); |
| |
| gicr_write_igrpmodr0(base, reg_val | (1 << bit_num)); |
| } |
| |
| /* |
| * Accessor to clear the bit corresponding to interrupt ID |
| * in GIC Re-distributor IGRPMODR0. |
| */ |
| void gicr_clr_igrpmodr0(uintptr_t base, unsigned int id) |
| { |
| unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1); |
| unsigned int reg_val = gicr_read_igrpmodr0(base); |
| |
| gicr_write_igrpmodr0(base, reg_val & ~(1 << bit_num)); |
| } |
| |
| /* |
| * Accessor to set the bit corresponding to interrupt ID |
| * in GIC Re-distributor ISENABLER0. |
| */ |
| void gicr_set_isenabler0(uintptr_t base, unsigned int id) |
| { |
| unsigned bit_num = id & ((1 << ISENABLER_SHIFT) - 1); |
| |
| gicr_write_isenabler0(base, (1 << bit_num)); |
| } |
| |
| /* |
| * Accessor to set the bit corresponding to interrupt ID in GIC Re-distributor |
| * ICENABLER0. |
| */ |
| void gicr_set_icenabler0(uintptr_t base, unsigned int id) |
| { |
| unsigned bit_num = id & ((1 << ICENABLER_SHIFT) - 1); |
| |
| gicr_write_icenabler0(base, (1 << bit_num)); |
| } |
| |
| /* |
| * Accessor to set the bit corresponding to interrupt ID in GIC Re-distributor |
| * ISACTIVER0. |
| */ |
| unsigned int gicr_get_isactiver0(uintptr_t base, unsigned int id) |
| { |
| unsigned bit_num = id & ((1 << ISACTIVER_SHIFT) - 1); |
| unsigned int reg_val = gicr_read_isactiver0(base); |
| |
| return (reg_val >> bit_num) & 0x1; |
| } |
| |
| /* |
| * Accessor to clear the bit corresponding to interrupt ID in GIC Re-distributor |
| * ICPENDRR0. |
| */ |
| void gicr_set_icpendr0(uintptr_t base, unsigned int id) |
| { |
| unsigned bit_num = id & ((1 << ICPENDR_SHIFT) - 1); |
| |
| gicr_write_icpendr0(base, (1 << bit_num)); |
| } |
| |
| /* |
| * Accessor to set the bit corresponding to interrupt ID in GIC Re-distributor |
| * ISPENDR0. |
| */ |
| void gicr_set_ispendr0(uintptr_t base, unsigned int id) |
| { |
| unsigned bit_num = id & ((1 << ISPENDR_SHIFT) - 1); |
| |
| gicr_write_ispendr0(base, (1 << bit_num)); |
| } |
| |
| /* |
| * Accessor to set the byte corresponding to interrupt ID |
| * in GIC Re-distributor IPRIORITYR. |
| */ |
| void gicr_set_ipriorityr(uintptr_t base, unsigned int id, unsigned int pri) |
| { |
| mmio_write_8(base + GICR_IPRIORITYR + id, pri & GIC_PRI_MASK); |
| } |
| |
| /* |
| * Accessor to set the bit fields corresponding to interrupt ID |
| * in GIC Re-distributor ICFGR0. |
| */ |
| void gicr_set_icfgr0(uintptr_t base, unsigned int id, unsigned int cfg) |
| { |
| /* Interrupt configuration is a 2-bit field */ |
| unsigned int bit_num = id & ((1 << ICFGR_SHIFT) - 1); |
| unsigned int bit_shift = bit_num << 1; |
| |
| uint32_t reg_val = gicr_read_icfgr0(base); |
| |
| /* Clear the field, and insert required configuration */ |
| reg_val &= ~(GIC_CFG_MASK << bit_shift); |
| reg_val |= ((cfg & GIC_CFG_MASK) << bit_shift); |
| |
| gicr_write_icfgr0(base, reg_val); |
| } |
| |
| /* |
| * Accessor to set the bit fields corresponding to interrupt ID |
| * in GIC Re-distributor ICFGR1. |
| */ |
| void gicr_set_icfgr1(uintptr_t base, unsigned int id, unsigned int cfg) |
| { |
| /* Interrupt configuration is a 2-bit field */ |
| unsigned int bit_num = id & ((1 << ICFGR_SHIFT) - 1); |
| unsigned int bit_shift = bit_num << 1; |
| |
| uint32_t reg_val = gicr_read_icfgr1(base); |
| |
| /* Clear the field, and insert required configuration */ |
| reg_val &= ~(GIC_CFG_MASK << bit_shift); |
| reg_val |= ((cfg & GIC_CFG_MASK) << bit_shift); |
| |
| gicr_write_icfgr1(base, reg_val); |
| } |
| |
| /****************************************************************************** |
| * This function marks the core as awake in the re-distributor and |
| * ensures that the interface is active. |
| *****************************************************************************/ |
| void gicv3_rdistif_mark_core_awake(uintptr_t gicr_base) |
| { |
| /* |
| * The WAKER_PS_BIT should be changed to 0 |
| * only when WAKER_CA_BIT is 1. |
| */ |
| assert(gicr_read_waker(gicr_base) & WAKER_CA_BIT); |
| |
| /* Mark the connected core as awake */ |
| gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) & ~WAKER_PS_BIT); |
| |
| /* Wait till the WAKER_CA_BIT changes to 0 */ |
| while (gicr_read_waker(gicr_base) & WAKER_CA_BIT) |
| ; |
| } |
| |
| |
| /****************************************************************************** |
| * This function marks the core as asleep in the re-distributor and ensures |
| * that the interface is quiescent. |
| *****************************************************************************/ |
| void gicv3_rdistif_mark_core_asleep(uintptr_t gicr_base) |
| { |
| /* Mark the connected core as asleep */ |
| gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) | WAKER_PS_BIT); |
| |
| /* Wait till the WAKER_CA_BIT changes to 1 */ |
| while (!(gicr_read_waker(gicr_base) & WAKER_CA_BIT)) |
| ; |
| } |
| |
| |
| /******************************************************************************* |
| * This function probes the Redistributor frames when the driver is initialised |
| * and saves their base addresses. These base addresses are used later to |
| * initialise each Redistributor interface. |
| ******************************************************************************/ |
| void gicv3_rdistif_base_addrs_probe(uintptr_t *rdistif_base_addrs, |
| unsigned int rdistif_num, |
| uintptr_t gicr_base, |
| mpidr_hash_fn mpidr_to_core_pos) |
| { |
| u_register_t mpidr; |
| unsigned int proc_num; |
| unsigned long long typer_val; |
| uintptr_t rdistif_base = gicr_base; |
| |
| assert(rdistif_base_addrs); |
| |
| /* |
| * Iterate over the Redistributor frames. Store the base address of each |
| * frame in the platform provided array. Use the "Processor Number" |
| * field to index into the array if the platform has not provided a hash |
| * function to convert an MPIDR (obtained from the "Affinity Value" |
| * field into a linear index. |
| */ |
| do { |
| typer_val = gicr_read_typer(rdistif_base); |
| if (mpidr_to_core_pos) { |
| mpidr = mpidr_from_gicr_typer(typer_val); |
| proc_num = mpidr_to_core_pos(mpidr); |
| } else { |
| proc_num = (typer_val >> TYPER_PROC_NUM_SHIFT) & |
| TYPER_PROC_NUM_MASK; |
| } |
| assert(proc_num < rdistif_num); |
| rdistif_base_addrs[proc_num] = rdistif_base; |
| rdistif_base += (1 << GICR_PCPUBASE_SHIFT); |
| } while (!(typer_val & TYPER_LAST_BIT)); |
| } |
| |
| /******************************************************************************* |
| * Helper function to configure the default attributes of SPIs. |
| ******************************************************************************/ |
| void gicv3_spis_configure_defaults(uintptr_t gicd_base) |
| { |
| unsigned int index, num_ints; |
| |
| num_ints = gicd_read_typer(gicd_base); |
| num_ints &= TYPER_IT_LINES_NO_MASK; |
| num_ints = (num_ints + 1) << 5; |
| |
| /* |
| * Treat all SPIs as G1NS by default. The number of interrupts is |
| * calculated as 32 * (IT_LINES + 1). We do 32 at a time. |
| */ |
| for (index = MIN_SPI_ID; index < num_ints; index += 32) |
| gicd_write_igroupr(gicd_base, index, ~0U); |
| |
| /* Setup the default SPI priorities doing four at a time */ |
| for (index = MIN_SPI_ID; index < num_ints; index += 4) |
| gicd_write_ipriorityr(gicd_base, |
| index, |
| GICD_IPRIORITYR_DEF_VAL); |
| |
| /* |
| * Treat all SPIs as level triggered by default, write 16 at |
| * a time |
| */ |
| for (index = MIN_SPI_ID; index < num_ints; index += 16) |
| gicd_write_icfgr(gicd_base, index, 0); |
| } |
| |
| #if !ERROR_DEPRECATED |
| /******************************************************************************* |
| * Helper function to configure secure G0 and G1S SPIs. |
| ******************************************************************************/ |
| void gicv3_secure_spis_configure(uintptr_t gicd_base, |
| unsigned int num_ints, |
| const unsigned int *sec_intr_list, |
| unsigned int int_grp) |
| { |
| unsigned int index, irq_num; |
| unsigned long long gic_affinity_val; |
| |
| assert((int_grp == INTR_GROUP1S) || (int_grp == INTR_GROUP0)); |
| /* If `num_ints` is not 0, ensure that `sec_intr_list` is not NULL */ |
| assert(num_ints ? (uintptr_t)sec_intr_list : 1); |
| |
| for (index = 0; index < num_ints; index++) { |
| irq_num = sec_intr_list[index]; |
| if (irq_num >= MIN_SPI_ID) { |
| |
| /* Configure this interrupt as a secure interrupt */ |
| gicd_clr_igroupr(gicd_base, irq_num); |
| |
| /* Configure this interrupt as G0 or a G1S interrupt */ |
| if (int_grp == INTR_GROUP1S) |
| gicd_set_igrpmodr(gicd_base, irq_num); |
| else |
| gicd_clr_igrpmodr(gicd_base, irq_num); |
| |
| /* Set the priority of this interrupt */ |
| gicd_set_ipriorityr(gicd_base, |
| irq_num, |
| GIC_HIGHEST_SEC_PRIORITY); |
| |
| /* Target SPIs to the primary CPU */ |
| gic_affinity_val = |
| gicd_irouter_val_from_mpidr(read_mpidr(), 0); |
| gicd_write_irouter(gicd_base, |
| irq_num, |
| gic_affinity_val); |
| |
| /* Enable this interrupt */ |
| gicd_set_isenabler(gicd_base, irq_num); |
| } |
| } |
| |
| } |
| #endif |
| |
| /******************************************************************************* |
| * Helper function to configure properties of secure SPIs |
| ******************************************************************************/ |
| unsigned int gicv3_secure_spis_configure_props(uintptr_t gicd_base, |
| const interrupt_prop_t *interrupt_props, |
| unsigned int interrupt_props_num) |
| { |
| unsigned int i; |
| const interrupt_prop_t *current_prop; |
| unsigned long long gic_affinity_val; |
| unsigned int ctlr_enable = 0; |
| |
| /* Make sure there's a valid property array */ |
| assert(interrupt_props_num > 0 ? interrupt_props != NULL : 1); |
| |
| for (i = 0; i < interrupt_props_num; i++) { |
| current_prop = &interrupt_props[i]; |
| |
| if (current_prop->intr_num < MIN_SPI_ID) |
| continue; |
| |
| /* Configure this interrupt as a secure interrupt */ |
| gicd_clr_igroupr(gicd_base, current_prop->intr_num); |
| |
| /* Configure this interrupt as G0 or a G1S interrupt */ |
| assert((current_prop->intr_grp == INTR_GROUP0) || |
| (current_prop->intr_grp == INTR_GROUP1S)); |
| if (current_prop->intr_grp == INTR_GROUP1S) { |
| gicd_set_igrpmodr(gicd_base, current_prop->intr_num); |
| ctlr_enable |= CTLR_ENABLE_G1S_BIT; |
| } else { |
| gicd_clr_igrpmodr(gicd_base, current_prop->intr_num); |
| ctlr_enable |= CTLR_ENABLE_G0_BIT; |
| } |
| |
| /* Set interrupt configuration */ |
| gicd_set_icfgr(gicd_base, current_prop->intr_num, |
| current_prop->intr_cfg); |
| |
| /* Set the priority of this interrupt */ |
| gicd_set_ipriorityr(gicd_base, current_prop->intr_num, |
| current_prop->intr_pri); |
| |
| /* Target SPIs to the primary CPU */ |
| gic_affinity_val = gicd_irouter_val_from_mpidr(read_mpidr(), 0); |
| gicd_write_irouter(gicd_base, current_prop->intr_num, |
| gic_affinity_val); |
| |
| /* Enable this interrupt */ |
| gicd_set_isenabler(gicd_base, current_prop->intr_num); |
| } |
| |
| return ctlr_enable; |
| } |
| |
| /******************************************************************************* |
| * Helper function to configure the default attributes of SPIs. |
| ******************************************************************************/ |
| void gicv3_ppi_sgi_configure_defaults(uintptr_t gicr_base) |
| { |
| unsigned int index; |
| |
| /* |
| * Disable all SGIs (imp. def.)/PPIs before configuring them. This is a |
| * more scalable approach as it avoids clearing the enable bits in the |
| * GICD_CTLR |
| */ |
| gicr_write_icenabler0(gicr_base, ~0); |
| gicr_wait_for_pending_write(gicr_base); |
| |
| /* Treat all SGIs/PPIs as G1NS by default. */ |
| gicr_write_igroupr0(gicr_base, ~0U); |
| |
| /* Setup the default PPI/SGI priorities doing four at a time */ |
| for (index = 0; index < MIN_SPI_ID; index += 4) |
| gicr_write_ipriorityr(gicr_base, |
| index, |
| GICD_IPRIORITYR_DEF_VAL); |
| |
| /* Configure all PPIs as level triggered by default */ |
| gicr_write_icfgr1(gicr_base, 0); |
| } |
| |
| #if !ERROR_DEPRECATED |
| /******************************************************************************* |
| * Helper function to configure secure G0 and G1S SPIs. |
| ******************************************************************************/ |
| void gicv3_secure_ppi_sgi_configure(uintptr_t gicr_base, |
| unsigned int num_ints, |
| const unsigned int *sec_intr_list, |
| unsigned int int_grp) |
| { |
| unsigned int index, irq_num; |
| |
| assert((int_grp == INTR_GROUP1S) || (int_grp == INTR_GROUP0)); |
| /* If `num_ints` is not 0, ensure that `sec_intr_list` is not NULL */ |
| assert(num_ints ? (uintptr_t)sec_intr_list : 1); |
| |
| for (index = 0; index < num_ints; index++) { |
| irq_num = sec_intr_list[index]; |
| if (irq_num < MIN_SPI_ID) { |
| |
| /* Configure this interrupt as a secure interrupt */ |
| gicr_clr_igroupr0(gicr_base, irq_num); |
| |
| /* Configure this interrupt as G0 or a G1S interrupt */ |
| if (int_grp == INTR_GROUP1S) |
| gicr_set_igrpmodr0(gicr_base, irq_num); |
| else |
| gicr_clr_igrpmodr0(gicr_base, irq_num); |
| |
| /* Set the priority of this interrupt */ |
| gicr_set_ipriorityr(gicr_base, |
| irq_num, |
| GIC_HIGHEST_SEC_PRIORITY); |
| |
| /* Enable this interrupt */ |
| gicr_set_isenabler0(gicr_base, irq_num); |
| } |
| } |
| } |
| #endif |
| |
| /******************************************************************************* |
| * Helper function to configure properties of secure G0 and G1S PPIs and SGIs. |
| ******************************************************************************/ |
| unsigned int gicv3_secure_ppi_sgi_configure_props(uintptr_t gicr_base, |
| const interrupt_prop_t *interrupt_props, |
| unsigned int interrupt_props_num) |
| { |
| unsigned int i; |
| const interrupt_prop_t *current_prop; |
| unsigned int ctlr_enable = 0; |
| |
| /* Make sure there's a valid property array */ |
| assert(interrupt_props_num > 0 ? interrupt_props != NULL : 1); |
| |
| for (i = 0; i < interrupt_props_num; i++) { |
| current_prop = &interrupt_props[i]; |
| |
| if (current_prop->intr_num >= MIN_SPI_ID) |
| continue; |
| |
| /* Configure this interrupt as a secure interrupt */ |
| gicr_clr_igroupr0(gicr_base, current_prop->intr_num); |
| |
| /* Configure this interrupt as G0 or a G1S interrupt */ |
| assert((current_prop->intr_grp == INTR_GROUP0) || |
| (current_prop->intr_grp == INTR_GROUP1S)); |
| if (current_prop->intr_grp == INTR_GROUP1S) { |
| gicr_set_igrpmodr0(gicr_base, current_prop->intr_num); |
| ctlr_enable |= CTLR_ENABLE_G1S_BIT; |
| } else { |
| gicr_clr_igrpmodr0(gicr_base, current_prop->intr_num); |
| ctlr_enable |= CTLR_ENABLE_G0_BIT; |
| } |
| |
| /* Set the priority of this interrupt */ |
| gicr_set_ipriorityr(gicr_base, current_prop->intr_num, |
| current_prop->intr_pri); |
| |
| /* |
| * Set interrupt configuration for PPIs. Configuration for SGIs |
| * are ignored. |
| */ |
| if ((current_prop->intr_num >= MIN_PPI_ID) && |
| (current_prop->intr_num < MIN_SPI_ID)) { |
| gicr_set_icfgr1(gicr_base, current_prop->intr_num, |
| current_prop->intr_cfg); |
| } |
| |
| /* Enable this interrupt */ |
| gicr_set_isenabler0(gicr_base, current_prop->intr_num); |
| } |
| |
| return ctlr_enable; |
| } |