| /* |
| * Copyright (c) 2015-2018, Renesas Electronics Corporation. All rights reserved. |
| * |
| * SPDX-License-Identifier: BSD-3-Clause |
| */ |
| |
| #include <mmio.h> |
| #include <debug.h> |
| #include <utils_def.h> |
| #include "cpg_registers.h" |
| #include "avs_driver.h" |
| #include "rcar_def.h" |
| #include "rcar_private.h" |
| |
| #if (AVS_SETTING_ENABLE == 1) |
| #if PMIC_ROHM_BD9571 |
| /* Read PMIC register for debug. 1:enable / 0:disable */ |
| #define AVS_READ_PMIC_REG_ENABLE 0 |
| /* The re-try number of times of the AVS setting. */ |
| #define AVS_RETRY_NUM (1U) |
| #endif /* PMIC_ROHM_BD9571 */ |
| |
| /* Base address of Adaptive Voltage Scaling module registers*/ |
| #define AVS_BASE (0xE60A0000U) |
| /* Adaptive Dynamic Voltage ADJust Parameter2 registers */ |
| #define ADVADJP2 (AVS_BASE + 0x013CU) |
| |
| /* Mask VOLCOND bit in ADVADJP2 registers */ |
| #define ADVADJP2_VOLCOND_MASK (0x000001FFU) /* VOLCOND[8:0] */ |
| |
| #if PMIC_ROHM_BD9571 |
| /* I2C for DVFS bit in CPG registers for module standby and software reset*/ |
| #define CPG_SYS_DVFS_BIT (0x04000000U) |
| #endif /* PMIC_ROHM_BD9571 */ |
| /* ADVFS Module bit in CPG registers for module standby and software reset*/ |
| #define CPG_SYS_ADVFS_BIT (0x02000000U) |
| |
| #if PMIC_ROHM_BD9571 |
| /* Base address of IICDVFS registers*/ |
| #define IIC_DVFS_BASE (0xE60B0000U) |
| /* IIC bus data register */ |
| #define IIC_ICDR (IIC_DVFS_BASE + 0x0000U) |
| /* IIC bus control register */ |
| #define IIC_ICCR (IIC_DVFS_BASE + 0x0004U) |
| /* IIC bus status register */ |
| #define IIC_ICSR (IIC_DVFS_BASE + 0x0008U) |
| /* IIC interrupt control register */ |
| #define IIC_ICIC (IIC_DVFS_BASE + 0x000CU) |
| /* IIC clock control register low */ |
| #define IIC_ICCL (IIC_DVFS_BASE + 0x0010U) |
| /* IIC clock control register high */ |
| #define IIC_ICCH (IIC_DVFS_BASE + 0x0014U) |
| |
| /* Bit in ICSR register */ |
| #define ICSR_BUSY (0x10U) |
| #define ICSR_AL (0x08U) |
| #define ICSR_TACK (0x04U) |
| #define ICSR_WAIT (0x02U) |
| #define ICSR_DTE (0x01U) |
| |
| /* Bit in ICIC register */ |
| #define ICIC_TACKE (0x04U) |
| #define ICIC_WAITE (0x02U) |
| #define ICIC_DTEE (0x01U) |
| |
| /* I2C bus interface enable */ |
| #define ICCR_ENABLE (0x80U) |
| /* Start condition */ |
| #define ICCR_START (0x94U) |
| /* Stop condition */ |
| #define ICCR_STOP (0x90U) |
| /* Restart condition with change to receive mode change */ |
| #define ICCR_START_RECV (0x81U) |
| /* Stop condition for receive mode */ |
| #define ICCR_STOP_RECV (0xC0U) |
| |
| /* Low-level period of SCL */ |
| #define ICCL_FREQ_8p33M (0x07U) /* for CP Phy 8.3333MHz */ |
| #define ICCL_FREQ_10M (0x09U) /* for CP Phy 10MHz */ |
| #define ICCL_FREQ_12p5M (0x0BU) /* for CP Phy 12.5MHz */ |
| #define ICCL_FREQ_16p66M (0x0EU) /* for CP Phy 16.6666MHz */ |
| /* High-level period of SCL */ |
| #define ICCH_FREQ_8p33M (0x01U) /* for CP Phy 8.3333MHz */ |
| #define ICCH_FREQ_10M (0x02U) /* for CP Phy 10MHz */ |
| #define ICCH_FREQ_12p5M (0x03U) /* for CP Phy 12.5MHz */ |
| #define ICCH_FREQ_16p66M (0x05U) /* for CP Phy 16.6666MHz */ |
| |
| /* PMIC */ |
| #define PMIC_W_SLAVE_ADDRESS (0x60U) /* ROHM BD9571 slave address + (W) */ |
| #define PMIC_R_SLAVE_ADDRESS (0x61U) /* ROHM BD9571 slave address + (R) */ |
| #define PMIC_DVFS_SETVID (0x54U) /* ROHM BD9571 DVFS SetVID register */ |
| #endif /* PMIC_ROHM_BD9571 */ |
| |
| /* Individual information */ |
| #define EFUSE_AVS0 (0U) |
| #define EFUSE_AVS_NUM ARRAY_SIZE(init_vol_tbl) |
| |
| typedef struct { |
| uint32_t avs; /* AVS code */ |
| uint8_t vol; /* Voltage */ |
| } initial_voltage_t; |
| |
| static const initial_voltage_t init_vol_tbl[] = { |
| /* AVS code, RHOM BD9571 DVFS SetVID register */ |
| {0x00U, 0x53U}, /* AVS0, 0.83V */ |
| {0x01U, 0x52U}, /* AVS1, 0.82V */ |
| {0x02U, 0x51U}, /* AVS2, 0.81V */ |
| {0x04U, 0x50U}, /* AVS3, 0.80V */ |
| {0x08U, 0x4FU}, /* AVS4, 0.79V */ |
| {0x10U, 0x4EU}, /* AVS5, 0.78V */ |
| {0x20U, 0x4DU}, /* AVS6, 0.77V */ |
| {0x40U, 0x4CU} /* AVS7, 0.76V */ |
| }; |
| |
| #if PMIC_ROHM_BD9571 |
| /* Kind of AVS settings status */ |
| typedef enum { |
| avs_status_none = 0, |
| avs_status_init, |
| avs_status_start_condition, |
| avs_status_set_slave_addr, |
| avs_status_write_reg_addr, |
| avs_status_write_reg_data, |
| avs_status_stop_condition, |
| avs_status_end, |
| avs_status_complete, |
| avs_status_al_start, |
| avs_status_al_transfer, |
| avs_status_nack, |
| avs_status_error_stop, |
| ave_status_error_end |
| } avs_status_t; |
| |
| /* Kind of AVS error */ |
| typedef enum { |
| avs_error_none = 0, |
| avs_error_al, |
| avs_error_nack |
| } avs_error_t; |
| |
| static avs_status_t avs_status; |
| static uint32_t avs_retry; |
| #endif /* PMIC_ROHM_BD9571 */ |
| static uint32_t efuse_avs = EFUSE_AVS0; |
| |
| #if PMIC_ROHM_BD9571 |
| /* prototype */ |
| static avs_error_t avs_check_error(void); |
| static void avs_set_iic_clock(void); |
| #if AVS_READ_PMIC_REG_ENABLE == 1 |
| static uint8_t avs_read_pmic_reg(uint8_t addr); |
| static void avs_poll(uint8_t bit_pos, uint8_t val); |
| #endif |
| #endif /* PMIC_ROHM_BD9571 */ |
| #endif /* (AVS_SETTING_ENABLE==1) */ |
| |
| /* |
| * Initialize to enable the AVS setting. |
| */ |
| void rcar_avs_init(void) |
| { |
| #if (AVS_SETTING_ENABLE == 1) |
| uint32_t val; |
| |
| #if PMIC_ROHM_BD9571 |
| /* Initialize AVS status */ |
| avs_status = avs_status_init; |
| #endif /* PMIC_ROHM_BD9571 */ |
| |
| /* Enable clock supply to ADVFS. */ |
| mstpcr_write(CPG_SMSTPCR9, CPG_MSTPSR9, CPG_SYS_ADVFS_BIT); |
| |
| /* Read AVS code (Initial values are derived from eFuse) */ |
| val = mmio_read_32(ADVADJP2) & ADVADJP2_VOLCOND_MASK; |
| |
| for (efuse_avs = 0U; efuse_avs < EFUSE_AVS_NUM; efuse_avs++) { |
| if (val == init_vol_tbl[efuse_avs].avs) |
| break; |
| } |
| |
| if (efuse_avs >= EFUSE_AVS_NUM) |
| efuse_avs = EFUSE_AVS0; /* Not applicable */ |
| #if PMIC_ROHM_BD9571 |
| /* Enable clock supply to DVFS. */ |
| mstpcr_write(CPG_SMSTPCR9, CPG_MSTPSR9, CPG_SYS_DVFS_BIT); |
| |
| /* Disable I2C module and All internal registers initialized. */ |
| mmio_write_8(IIC_ICCR, 0x00U); |
| while ((mmio_read_8(IIC_ICCR) & ICCR_ENABLE) != 0U) { |
| /* Disable I2C module and All internal registers initialized. */ |
| mmio_write_8(IIC_ICCR, 0x00U); |
| } |
| |
| /* Set next status */ |
| avs_status = avs_status_start_condition; |
| |
| #endif /* PMIC_ROHM_BD9571 */ |
| #endif /* (AVS_SETTING_ENABLE==1) */ |
| } |
| |
| /* |
| * Set the value of register corresponding to the voltage |
| * by transfer of I2C to PIMC. |
| */ |
| void rcar_avs_setting(void) |
| { |
| #if (AVS_SETTING_ENABLE == 1) |
| #if PMIC_ROHM_BD9571 |
| avs_error_t err; |
| |
| switch (avs_status) { |
| case avs_status_start_condition: |
| /* Set ICCR.ICE=1 to activate the I2C module. */ |
| mmio_write_8(IIC_ICCR, mmio_read_8(IIC_ICCR) | ICCR_ENABLE); |
| /* Set frequency of 400kHz */ |
| avs_set_iic_clock(); |
| /* Set ICIC.TACKE=1, ICIC.WAITE=1, ICIC.DTEE=1 to */ |
| /* enable interrupt control. */ |
| mmio_write_8(IIC_ICIC, mmio_read_8(IIC_ICIC) |
| | ICIC_TACKE | ICIC_WAITE | ICIC_DTEE); |
| /* Write H'94 in ICCR to issue start condition */ |
| mmio_write_8(IIC_ICCR, ICCR_START); |
| /* Set next status */ |
| avs_status = avs_status_set_slave_addr; |
| break; |
| case avs_status_set_slave_addr: |
| /* Check error. */ |
| err = avs_check_error(); |
| if (err == avs_error_al) { |
| /* Recovery sequence of just after start. */ |
| avs_status = avs_status_al_start; |
| } else if (err == avs_error_nack) { |
| /* Recovery sequence of detected NACK */ |
| avs_status = avs_status_nack; |
| } else { |
| /* Was data transmission enabled ? */ |
| if ((mmio_read_8(IIC_ICSR) & ICSR_DTE) == ICSR_DTE) { |
| /* Clear ICIC.DTEE to disable a DTE interrupt */ |
| mmio_write_8(IIC_ICIC, mmio_read_8(IIC_ICIC) |
| & (uint8_t) (~ICIC_DTEE)); |
| /* Send PMIC slave address + (W) */ |
| mmio_write_8(IIC_ICDR, PMIC_W_SLAVE_ADDRESS); |
| /* Set next status */ |
| avs_status = avs_status_write_reg_addr; |
| } |
| } |
| break; |
| case avs_status_write_reg_addr: |
| /* Check error. */ |
| err = avs_check_error(); |
| if (err == avs_error_al) { |
| /* Recovery sequence of during data transfer. */ |
| avs_status = avs_status_al_transfer; |
| } else if (err == avs_error_nack) { |
| /* Recovery sequence of detected NACK */ |
| avs_status = avs_status_nack; |
| } else { |
| /* If wait state after data transmission. */ |
| if ((mmio_read_8(IIC_ICSR) & ICSR_WAIT) == ICSR_WAIT) { |
| /* Write PMIC DVFS_SetVID address */ |
| mmio_write_8(IIC_ICDR, PMIC_DVFS_SETVID); |
| /* Clear ICSR.WAIT to exit from wait state. */ |
| mmio_write_8(IIC_ICSR, mmio_read_8(IIC_ICSR) |
| & (uint8_t) (~ICSR_WAIT)); |
| /* Set next status */ |
| avs_status = avs_status_write_reg_data; |
| } |
| } |
| break; |
| case avs_status_write_reg_data: |
| /* Check error. */ |
| err = avs_check_error(); |
| if (err == avs_error_al) { |
| /* Recovery sequence of during data transfer. */ |
| avs_status = avs_status_al_transfer; |
| } else if (err == avs_error_nack) { |
| /* Recovery sequence of detected NACK */ |
| avs_status = avs_status_nack; |
| } else { |
| /* If wait state after data transmission. */ |
| if ((mmio_read_8(IIC_ICSR) & ICSR_WAIT) == ICSR_WAIT) { |
| /* Dose efuse_avs exceed the number of */ |
| /* the tables? */ |
| if (efuse_avs >= EFUSE_AVS_NUM) { |
| ERROR("AVS number of eFuse is out " |
| "of a range. number=%u\n", |
| efuse_avs); |
| /* Infinite loop */ |
| panic(); |
| } |
| /* Write PMIC DVFS_SetVID value */ |
| mmio_write_8(IIC_ICDR, |
| init_vol_tbl[efuse_avs].vol); |
| /* Clear ICSR.WAIT to exit from wait state. */ |
| mmio_write_8(IIC_ICSR, mmio_read_8(IIC_ICSR) |
| & (uint8_t) (~ICSR_WAIT)); |
| /* Set next status */ |
| avs_status = avs_status_stop_condition; |
| } |
| } |
| break; |
| case avs_status_stop_condition: |
| err = avs_check_error(); |
| if (err == avs_error_al) { |
| /* Recovery sequence of during data transfer. */ |
| avs_status = avs_status_al_transfer; |
| } else if (err == avs_error_nack) { |
| /* Recovery sequence of detected NACK */ |
| avs_status = avs_status_nack; |
| } else { |
| /* If wait state after data transmission. */ |
| if ((mmio_read_8(IIC_ICSR) & ICSR_WAIT) == ICSR_WAIT) { |
| /* Write H'90 in ICCR to issue stop condition */ |
| mmio_write_8(IIC_ICCR, ICCR_STOP); |
| /* Clear ICSR.WAIT to exit from wait state. */ |
| mmio_write_8(IIC_ICSR, mmio_read_8(IIC_ICSR) |
| & (uint8_t) (~ICSR_WAIT)); |
| /* Set next status */ |
| avs_status = avs_status_end; |
| } |
| } |
| break; |
| case avs_status_end: |
| /* Is this module not busy?. */ |
| if ((mmio_read_8(IIC_ICSR) & ICSR_BUSY) == 0U) { |
| /* Set ICCR=H'00 to disable the I2C module. */ |
| mmio_write_8(IIC_ICCR, 0x00U); |
| /* Set next status */ |
| avs_status = avs_status_complete; |
| } |
| break; |
| case avs_status_al_start: |
| /* Clear ICSR.AL bit */ |
| mmio_write_8(IIC_ICSR, (mmio_read_8(IIC_ICSR) |
| & (uint8_t) (~ICSR_AL))); |
| /* Transmit a clock pulse */ |
| mmio_write_8(IIC_ICDR, init_vol_tbl[EFUSE_AVS0].vol); |
| /* Set next status */ |
| avs_status = avs_status_error_stop; |
| break; |
| case avs_status_al_transfer: |
| /* Clear ICSR.AL bit */ |
| mmio_write_8(IIC_ICSR, (mmio_read_8(IIC_ICSR) |
| & (uint8_t) (~ICSR_AL))); |
| /* Set next status */ |
| avs_status = avs_status_error_stop; |
| break; |
| case avs_status_nack: |
| /* Write H'90 in ICCR to issue stop condition */ |
| mmio_write_8(IIC_ICCR, ICCR_STOP); |
| /* Disable a WAIT and DTEE interrupt. */ |
| mmio_write_8(IIC_ICIC, mmio_read_8(IIC_ICIC) |
| & (uint8_t) (~(ICIC_WAITE | ICIC_DTEE))); |
| /* Clear ICSR.TACK bit */ |
| mmio_write_8(IIC_ICSR, mmio_read_8(IIC_ICSR) |
| & (uint8_t) (~ICSR_TACK)); |
| /* Set next status */ |
| avs_status = ave_status_error_end; |
| break; |
| case avs_status_error_stop: |
| /* If wait state after data transmission. */ |
| if ((mmio_read_8(IIC_ICSR) & ICSR_WAIT) == ICSR_WAIT) { |
| /* Write H'90 in ICCR to issue stop condition */ |
| mmio_write_8(IIC_ICCR, ICCR_STOP); |
| /* Clear ICSR.WAIT to exit from wait state. */ |
| mmio_write_8(IIC_ICSR, mmio_read_8(IIC_ICSR) |
| & (uint8_t) (~ICSR_WAIT)); |
| /* Set next status */ |
| avs_status = ave_status_error_end; |
| } |
| break; |
| case ave_status_error_end: |
| /* Is this module not busy?. */ |
| if ((mmio_read_8(IIC_ICSR) & ICSR_BUSY) == 0U) { |
| /* Set ICCR=H'00 to disable the I2C module. */ |
| mmio_write_8(IIC_ICCR, 0x00U); |
| /* Increment the re-try number of times. */ |
| avs_retry++; |
| /* Set start a re-try to status. */ |
| avs_status = avs_status_start_condition; |
| } |
| break; |
| case avs_status_complete: |
| /* After "avs_status" became the "avs_status_complete", */ |
| /* "avs_setting()" function may be called. */ |
| break; |
| default: |
| /* This case is not possible. */ |
| ERROR("AVS setting is in invalid status. status=%u\n", |
| avs_status); |
| /* Infinite loop */ |
| panic(); |
| break; |
| } |
| #endif /* PMIC_ROHM_BD9571 */ |
| #endif /* (AVS_SETTING_ENABLE==1) */ |
| } |
| |
| /* |
| * Finish the AVS setting. |
| */ |
| void rcar_avs_end(void) |
| { |
| #if (AVS_SETTING_ENABLE == 1) |
| uint32_t mstp; |
| |
| #if PMIC_ROHM_BD9571 |
| /* While status is not completion, be repeated. */ |
| while (avs_status != avs_status_complete) |
| rcar_avs_setting(); |
| |
| NOTICE("AVS setting succeeded. DVFS_SetVID=0x%x\n", |
| init_vol_tbl[efuse_avs].vol); |
| |
| #if AVS_READ_PMIC_REG_ENABLE == 1 |
| { |
| uint8_t addr = PMIC_DVFS_SETVID; |
| uint8_t value = avs_read_pmic_reg(addr); |
| NOTICE("Read PMIC register. address=0x%x value=0x%x \n", |
| addr, value); |
| } |
| #endif |
| |
| /* Bit of the module which wants to disable clock supply. */ |
| mstp = CPG_SYS_DVFS_BIT; |
| /* Disables the supply of clock signal to a module. */ |
| cpg_write(CPG_SMSTPCR9, mmio_read_32(CPG_SMSTPCR9) | mstp); |
| #endif /* PMIC_ROHM_BD9571 */ |
| |
| /* Bit of the module which wants to disable clock supply. */ |
| mstp = CPG_SYS_ADVFS_BIT; |
| /* Disables the supply of clock signal to a module. */ |
| cpg_write(CPG_SMSTPCR9, mmio_read_32(CPG_SMSTPCR9) | mstp); |
| |
| #endif /* (AVS_SETTING_ENABLE==1) */ |
| } |
| |
| #if (AVS_SETTING_ENABLE == 1) |
| #if PMIC_ROHM_BD9571 |
| /* |
| * Check error and judge re-try. |
| */ |
| static avs_error_t avs_check_error(void) |
| { |
| avs_error_t ret; |
| |
| if ((mmio_read_8(IIC_ICSR) & ICSR_AL) == ICSR_AL) { |
| NOTICE("Loss of arbitration is detected. " |
| "AVS status=%d Retry=%u\n", avs_status, avs_retry); |
| /* Check of retry number of times */ |
| if (avs_retry >= AVS_RETRY_NUM) { |
| ERROR("AVS setting failed in retry. max=%u\n", |
| AVS_RETRY_NUM); |
| /* Infinite loop */ |
| panic(); |
| } |
| /* Set the error detected to error status. */ |
| ret = avs_error_al; |
| } else if ((mmio_read_8(IIC_ICSR) & ICSR_TACK) == ICSR_TACK) { |
| NOTICE("Non-acknowledge is detected. " |
| "AVS status=%d Retry=%u\n", avs_status, avs_retry); |
| /* Check of retry number of times */ |
| if (avs_retry >= AVS_RETRY_NUM) { |
| ERROR("AVS setting failed in retry. max=%u\n", |
| AVS_RETRY_NUM); |
| /* Infinite loop */ |
| panic(); |
| } |
| /* Set the error detected to error status. */ |
| ret = avs_error_nack; |
| } else { |
| /* Not error. */ |
| ret = avs_error_none; |
| } |
| return ret; |
| } |
| |
| /* |
| * Set I2C for DVFS clock. |
| */ |
| static void avs_set_iic_clock(void) |
| { |
| uint32_t md_pin; |
| |
| /* Read Mode pin register. */ |
| md_pin = mmio_read_32(RCAR_MODEMR) & CHECK_MD13_MD14; |
| /* Set the module clock (CP phy) for the IIC-DVFS. */ |
| /* CP phy is EXTAL / 2. */ |
| switch (md_pin) { |
| case MD14_MD13_TYPE_0: /* EXTAL = 16.6666MHz */ |
| mmio_write_8(IIC_ICCL, ICCL_FREQ_8p33M); |
| mmio_write_8(IIC_ICCH, ICCH_FREQ_8p33M); |
| break; |
| case MD14_MD13_TYPE_1: /* EXTAL = 20MHz */ |
| mmio_write_8(IIC_ICCL, ICCL_FREQ_10M); |
| mmio_write_8(IIC_ICCH, ICCH_FREQ_10M); |
| break; |
| case MD14_MD13_TYPE_2: /* EXTAL = 25MHz (H3/M3) */ |
| mmio_write_8(IIC_ICCL, ICCL_FREQ_12p5M); |
| mmio_write_8(IIC_ICCH, ICCH_FREQ_12p5M); |
| break; |
| case MD14_MD13_TYPE_3: /* EXTAL = 33.3333MHz */ |
| mmio_write_8(IIC_ICCL, ICCL_FREQ_16p66M); |
| mmio_write_8(IIC_ICCH, ICCH_FREQ_16p66M); |
| break; |
| default: /* This case is not possible. */ |
| /* CP Phy frequency is to be set for the 16.66MHz */ |
| mmio_write_8(IIC_ICCL, ICCL_FREQ_16p66M); |
| mmio_write_8(IIC_ICCH, ICCH_FREQ_16p66M); |
| break; |
| } |
| } |
| |
| #if AVS_READ_PMIC_REG_ENABLE == 1 |
| /* |
| * Read the value of the register of PMIC. |
| */ |
| static uint8_t avs_read_pmic_reg(uint8_t addr) |
| { |
| uint8_t reg; |
| |
| /* Set ICCR.ICE=1 to activate the I2C module. */ |
| mmio_write_8(IIC_ICCR, mmio_read_8(IIC_ICCR) | ICCR_ENABLE); |
| |
| /* Set frequency of 400kHz */ |
| avs_set_iic_clock(); |
| |
| /* Set ICIC.WAITE=1, ICIC.DTEE=1 to enable data transmission */ |
| /* interrupt and wait interrupt. */ |
| mmio_write_8(IIC_ICIC, mmio_read_8(IIC_ICIC) | ICIC_WAITE | ICIC_DTEE); |
| |
| /* Write H'94 in ICCR to issue start condition */ |
| mmio_write_8(IIC_ICCR, ICCR_START); |
| |
| /* Wait for a until ICSR.DTE becomes 1. */ |
| avs_poll(ICSR_DTE, 1U); |
| |
| /* Clear ICIC.DTEE to disable a DTE interrupt. */ |
| mmio_write_8(IIC_ICIC, mmio_read_8(IIC_ICIC) & (uint8_t) (~ICIC_DTEE)); |
| /* Send slave address of PMIC */ |
| mmio_write_8(IIC_ICDR, PMIC_W_SLAVE_ADDRESS); |
| |
| /* Wait for a until ICSR.WAIT becomes 1. */ |
| avs_poll(ICSR_WAIT, 1U); |
| |
| /* write PMIC address */ |
| mmio_write_8(IIC_ICDR, addr); |
| /* Clear ICSR.WAIT to exit from WAIT status. */ |
| mmio_write_8(IIC_ICSR, mmio_read_8(IIC_ICSR) & (uint8_t) (~ICSR_WAIT)); |
| |
| /* Wait for a until ICSR.WAIT becomes 1. */ |
| avs_poll(ICSR_WAIT, 1U); |
| |
| /* Write H'94 in ICCR to issue restart condition */ |
| mmio_write_8(IIC_ICCR, ICCR_START); |
| /* Clear ICSR.WAIT to exit from WAIT status. */ |
| mmio_write_8(IIC_ICSR, mmio_read_8(IIC_ICSR) & (uint8_t) (~ICSR_WAIT)); |
| /* Set ICIC.DTEE=1 to enable data transmission interrupt. */ |
| mmio_write_8(IIC_ICIC, mmio_read_8(IIC_ICIC) | ICIC_DTEE); |
| |
| /* Wait for a until ICSR.DTE becomes 1. */ |
| avs_poll(ICSR_DTE, 1U); |
| |
| /* Clear ICIC.DTEE to disable a DTE interrupt. */ |
| mmio_write_8(IIC_ICIC, mmio_read_8(IIC_ICIC) & (uint8_t) (~ICIC_DTEE)); |
| /* Send slave address of PMIC */ |
| mmio_write_8(IIC_ICDR, PMIC_R_SLAVE_ADDRESS); |
| |
| /* Wait for a until ICSR.WAIT becomes 1. */ |
| avs_poll(ICSR_WAIT, 1U); |
| |
| /* Write H'81 to ICCR to issue the repeated START condition */ |
| /* for changing the transmission mode to the receive mode. */ |
| mmio_write_8(IIC_ICCR, ICCR_START_RECV); |
| /* Clear ICSR.WAIT to exit from WAIT status. */ |
| mmio_write_8(IIC_ICSR, mmio_read_8(IIC_ICSR) & (uint8_t) (~ICSR_WAIT)); |
| |
| /* Wait for a until ICSR.WAIT becomes 1. */ |
| avs_poll(ICSR_WAIT, 1U); |
| |
| /* Set ICCR to H'C0 for the STOP condition */ |
| mmio_write_8(IIC_ICCR, ICCR_STOP_RECV); |
| /* Clear ICSR.WAIT to exit from WAIT status. */ |
| mmio_write_8(IIC_ICSR, mmio_read_8(IIC_ICSR) & (uint8_t) (~ICSR_WAIT)); |
| /* Set ICIC.DTEE=1 to enable data transmission interrupt. */ |
| mmio_write_8(IIC_ICIC, mmio_read_8(IIC_ICIC) | ICIC_DTEE); |
| |
| /* Wait for a until ICSR.DTE becomes 1. */ |
| avs_poll(ICSR_DTE, 1U); |
| |
| /* Receive DVFS SetVID register */ |
| /* Clear ICIC.DTEE to disable a DTE interrupt. */ |
| mmio_write_8(IIC_ICIC, mmio_read_8(IIC_ICIC) & (uint8_t) (~ICIC_DTEE)); |
| /* Receive DVFS SetVID register */ |
| reg = mmio_read_8(IIC_ICDR); |
| |
| /* Wait until ICSR.BUSY is cleared. */ |
| avs_poll(ICSR_BUSY, 0U); |
| |
| /* Set ICCR=H'00 to disable the I2C module. */ |
| mmio_write_8(IIC_ICCR, 0x00U); |
| |
| return reg; |
| } |
| |
| /* |
| * Wait processing by the polling. |
| */ |
| static void avs_poll(uint8_t bit_pos, uint8_t val) |
| { |
| uint8_t bit_val = 0U; |
| |
| if (val != 0U) |
| bit_val = bit_pos; |
| |
| while (1) { |
| if ((mmio_read_8(IIC_ICSR) & bit_pos) == bit_val) |
| break; |
| } |
| } |
| #endif /* AVS_READ_PMIC_REG_ENABLE */ |
| #endif /* PMIC_ROHM_BD9571 */ |
| #endif /* (AVS_SETTING_ENABLE==1) */ |