blob: b958fa2e608c8925f08a580f85b02ac004ed6b59 [file] [log] [blame]
/*
* Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of ARM nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <arch.h>
#include <arch_helpers.h>
#include <assert.h>
#include <bl_common.h>
#include <context.h>
#include <context_mgmt.h>
#include <platform.h>
#include <stddef.h>
#include "psci_private.h"
/*******************************************************************************
* Per cpu non-secure contexts used to program the architectural state prior
* return to the normal world.
* TODO: Use the memory allocator to set aside memory for the contexts instead
* of relying on platform defined constants. Using PSCI_NUM_AFFS will be an
* overkill.
******************************************************************************/
static cpu_context_t psci_ns_context[PLATFORM_CORE_COUNT];
/*******************************************************************************
* Routines for retrieving the node corresponding to an affinity level instance
* in the mpidr. The first one uses binary search to find the node corresponding
* to the mpidr (key) at a particular affinity level. The second routine decides
* extents of the binary search at each affinity level.
******************************************************************************/
static int psci_aff_map_get_idx(unsigned long key,
int min_idx,
int max_idx)
{
int mid;
/*
* Terminating condition: If the max and min indices have crossed paths
* during the binary search then the key has not been found.
*/
if (max_idx < min_idx)
return PSCI_E_INVALID_PARAMS;
/*
* Bisect the array around 'mid' and then recurse into the array chunk
* where the key is likely to be found. The mpidrs in each node in the
* 'psci_aff_map' for a given affinity level are stored in an ascending
* order which makes the binary search possible.
*/
mid = min_idx + ((max_idx - min_idx) >> 1); /* Divide by 2 */
if (psci_aff_map[mid].mpidr > key)
return psci_aff_map_get_idx(key, min_idx, mid - 1);
else if (psci_aff_map[mid].mpidr < key)
return psci_aff_map_get_idx(key, mid + 1, max_idx);
else
return mid;
}
aff_map_node_t *psci_get_aff_map_node(unsigned long mpidr, int aff_lvl)
{
int rc;
/* Right shift the mpidr to the required affinity level */
mpidr = mpidr_mask_lower_afflvls(mpidr, aff_lvl);
rc = psci_aff_map_get_idx(mpidr,
psci_aff_limits[aff_lvl].min,
psci_aff_limits[aff_lvl].max);
if (rc >= 0)
return &psci_aff_map[rc];
else
return NULL;
}
/*******************************************************************************
* This function populates an array with nodes corresponding to a given range of
* affinity levels in an mpidr. It returns successfully only when the affinity
* levels are correct, the mpidr is valid i.e. no affinity level is absent from
* the topology tree & the affinity instance at level 0 is not absent.
******************************************************************************/
int psci_get_aff_map_nodes(unsigned long mpidr,
int start_afflvl,
int end_afflvl,
mpidr_aff_map_nodes_t mpidr_nodes)
{
int rc = PSCI_E_INVALID_PARAMS, level;
aff_map_node_t *node;
rc = psci_check_afflvl_range(start_afflvl, end_afflvl);
if (rc != PSCI_E_SUCCESS)
return rc;
for (level = start_afflvl; level <= end_afflvl; level++) {
/*
* Grab the node for each affinity level. No affinity level
* can be missing as that would mean that the topology tree
* is corrupted.
*/
node = psci_get_aff_map_node(mpidr, level);
if (node == NULL) {
rc = PSCI_E_INVALID_PARAMS;
break;
}
/*
* Skip absent affinity levels unless it's afffinity level 0.
* An absent cpu means that the mpidr is invalid. Save the
* pointer to the node for the present affinity level
*/
if (!(node->state & PSCI_AFF_PRESENT)) {
if (level == MPIDR_AFFLVL0) {
rc = PSCI_E_INVALID_PARAMS;
break;
}
mpidr_nodes[level] = NULL;
} else
mpidr_nodes[level] = node;
}
return rc;
}
/*******************************************************************************
* Function which initializes the 'aff_map_node' corresponding to an affinity
* level instance. Each node has a unique mpidr, level and bakery lock. The data
* field is opaque and holds affinity level specific data e.g. for affinity
* level 0 it contains the index into arrays that hold the secure/non-secure
* state for a cpu that's been turned on/off
******************************************************************************/
static void psci_init_aff_map_node(unsigned long mpidr,
int level,
unsigned int idx)
{
unsigned char state;
uint32_t linear_id;
psci_aff_map[idx].mpidr = mpidr;
psci_aff_map[idx].level = level;
bakery_lock_init(&psci_aff_map[idx].lock);
/*
* If an affinity instance is present then mark it as OFF to begin with.
*/
state = plat_get_aff_state(level, mpidr);
psci_aff_map[idx].state = state;
if (level == MPIDR_AFFLVL0) {
/*
* Mark the cpu as OFF. Higher affinity level reference counts
* have already been memset to 0
*/
if (state & PSCI_AFF_PRESENT)
psci_set_state(&psci_aff_map[idx], PSCI_STATE_OFF);
/* Ensure that we have not overflowed the psci_ns_einfo array */
assert(psci_ns_einfo_idx < PSCI_NUM_AFFS);
psci_aff_map[idx].data = psci_ns_einfo_idx;
/* Invalidate the suspend context for the node */
psci_suspend_context[psci_ns_einfo_idx].power_state = PSCI_INVALID_DATA;
psci_ns_einfo_idx++;
/*
* Associate a non-secure context with this affinity
* instance through the context management library.
*/
linear_id = platform_get_core_pos(mpidr);
assert(linear_id < PLATFORM_CORE_COUNT);
cm_set_context(mpidr,
(void *) &psci_ns_context[linear_id],
NON_SECURE);
}
return;
}
/*******************************************************************************
* Core routine used by the Breadth-First-Search algorithm to populate the
* affinity tree. Each level in the tree corresponds to an affinity level. This
* routine's aim is to traverse to the target affinity level and populate nodes
* in the 'psci_aff_map' for all the siblings at that level. It uses the current
* affinity level to keep track of how many levels from the root of the tree
* have been traversed. If the current affinity level != target affinity level,
* then the platform is asked to return the number of children that each
* affinity instance has at the current affinity level. Traversal is then done
* for each child at the next lower level i.e. current affinity level - 1.
*
* CAUTION: This routine assumes that affinity instance ids are allocated in a
* monotonically increasing manner at each affinity level in a mpidr starting
* from 0. If the platform breaks this assumption then this code will have to
* be reworked accordingly.
******************************************************************************/
static unsigned int psci_init_aff_map(unsigned long mpidr,
unsigned int affmap_idx,
int cur_afflvl,
int tgt_afflvl)
{
unsigned int ctr, aff_count;
assert(cur_afflvl >= tgt_afflvl);
/*
* Find the number of siblings at the current affinity level &
* assert if there are none 'cause then we have been invoked with
* an invalid mpidr.
*/
aff_count = plat_get_aff_count(cur_afflvl, mpidr);
assert(aff_count);
if (tgt_afflvl < cur_afflvl) {
for (ctr = 0; ctr < aff_count; ctr++) {
mpidr = mpidr_set_aff_inst(mpidr, ctr, cur_afflvl);
affmap_idx = psci_init_aff_map(mpidr,
affmap_idx,
cur_afflvl - 1,
tgt_afflvl);
}
} else {
for (ctr = 0; ctr < aff_count; ctr++, affmap_idx++) {
mpidr = mpidr_set_aff_inst(mpidr, ctr, cur_afflvl);
psci_init_aff_map_node(mpidr, cur_afflvl, affmap_idx);
}
/* affmap_idx is 1 greater than the max index of cur_afflvl */
psci_aff_limits[cur_afflvl].max = affmap_idx - 1;
}
return affmap_idx;
}
/*******************************************************************************
* This function initializes the topology tree by querying the platform. To do
* so, it's helper routines implement a Breadth-First-Search. At each affinity
* level the platform conveys the number of affinity instances that exist i.e.
* the affinity count. The algorithm populates the psci_aff_map recursively
* using this information. On a platform that implements two clusters of 4 cpus
* each, the populated aff_map_array would look like this:
*
* <- cpus cluster0 -><- cpus cluster1 ->
* ---------------------------------------------------
* | 0 | 1 | 0 | 1 | 2 | 3 | 0 | 1 | 2 | 3 |
* ---------------------------------------------------
* ^ ^
* cluster __| cpu __|
* limit limit
*
* The first 2 entries are of the cluster nodes. The next 4 entries are of cpus
* within cluster 0. The last 4 entries are of cpus within cluster 1.
* The 'psci_aff_limits' array contains the max & min index of each affinity
* level within the 'psci_aff_map' array. This allows restricting search of a
* node at an affinity level between the indices in the limits array.
******************************************************************************/
int32_t psci_setup(void)
{
unsigned long mpidr = read_mpidr();
int afflvl, affmap_idx, max_afflvl;
aff_map_node_t *node;
psci_ns_einfo_idx = 0;
psci_plat_pm_ops = NULL;
/* Find out the maximum affinity level that the platform implements */
max_afflvl = get_max_afflvl();
assert(max_afflvl <= MPIDR_MAX_AFFLVL);
/*
* This call traverses the topology tree with help from the platform and
* populates the affinity map using a breadth-first-search recursively.
* We assume that the platform allocates affinity instance ids from 0
* onwards at each affinity level in the mpidr. FIRST_MPIDR = 0.0.0.0
*/
affmap_idx = 0;
for (afflvl = max_afflvl; afflvl >= MPIDR_AFFLVL0; afflvl--) {
affmap_idx = psci_init_aff_map(FIRST_MPIDR,
affmap_idx,
max_afflvl,
afflvl);
}
/*
* Set the bounds for the affinity counts of each level in the map. Also
* flush out the entire array so that it's visible to subsequent power
* management operations. The 'psci_aff_map' array is allocated in
* coherent memory so does not need flushing. The 'psci_aff_limits'
* array is allocated in normal memory. It will be accessed when the mmu
* is off e.g. after reset. Hence it needs to be flushed.
*/
for (afflvl = MPIDR_AFFLVL0; afflvl < max_afflvl; afflvl++) {
psci_aff_limits[afflvl].min =
psci_aff_limits[afflvl + 1].max + 1;
}
flush_dcache_range((unsigned long) psci_aff_limits,
sizeof(psci_aff_limits));
/*
* Mark the affinity instances in our mpidr as ON. No need to lock as
* this is the primary cpu.
*/
mpidr &= MPIDR_AFFINITY_MASK;
for (afflvl = MPIDR_AFFLVL0; afflvl <= max_afflvl; afflvl++) {
node = psci_get_aff_map_node(mpidr, afflvl);
assert(node);
/* Mark each present node as ON. */
if (node->state & PSCI_AFF_PRESENT)
psci_set_state(node, PSCI_STATE_ON);
}
platform_setup_pm(&psci_plat_pm_ops);
assert(psci_plat_pm_ops);
return 0;
}