blob: 668416cb592765390470791264a89c4a569cc708 [file] [log] [blame]
/*
* Copyright (c) 2015-2021, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <arch.h>
#include <arch_helpers.h>
#include <common/debug.h>
#include <common/interrupt_props.h>
#include <drivers/arm/gicv3.h>
#include <lib/spinlock.h>
#include "gicv3_private.h"
const gicv3_driver_data_t *gicv3_driver_data;
/*
* Spinlock to guard registers needing read-modify-write. APIs protected by this
* spinlock are used either at boot time (when only a single CPU is active), or
* when the system is fully coherent.
*/
static spinlock_t gic_lock;
/*
* Redistributor power operations are weakly bound so that they can be
* overridden
*/
#pragma weak gicv3_rdistif_off
#pragma weak gicv3_rdistif_on
/* Check interrupt ID for SGI/(E)PPI and (E)SPIs */
static bool is_sgi_ppi(unsigned int id);
/*
* Helper macros to save and restore GICR and GICD registers
* corresponding to their numbers to and from the context
*/
#define RESTORE_GICR_REG(base, ctx, name, i) \
gicr_write_##name((base), (i), (ctx)->gicr_##name[(i)])
#define SAVE_GICR_REG(base, ctx, name, i) \
(ctx)->gicr_##name[(i)] = gicr_read_##name((base), (i))
/* Helper macros to save and restore GICD registers to and from the context */
#define RESTORE_GICD_REGS(base, ctx, intr_num, reg, REG) \
do { \
for (unsigned int int_id = MIN_SPI_ID; int_id < (intr_num);\
int_id += (1U << REG##R_SHIFT)) { \
gicd_write_##reg((base), int_id, \
(ctx)->gicd_##reg[(int_id - MIN_SPI_ID) >> \
REG##R_SHIFT]); \
} \
} while (false)
#define SAVE_GICD_REGS(base, ctx, intr_num, reg, REG) \
do { \
for (unsigned int int_id = MIN_SPI_ID; int_id < (intr_num);\
int_id += (1U << REG##R_SHIFT)) { \
(ctx)->gicd_##reg[(int_id - MIN_SPI_ID) >> \
REG##R_SHIFT] = gicd_read_##reg((base), int_id); \
} \
} while (false)
#if GIC_EXT_INTID
#define RESTORE_GICD_EREGS(base, ctx, intr_num, reg, REG) \
do { \
for (unsigned int int_id = MIN_ESPI_ID; int_id < (intr_num);\
int_id += (1U << REG##R_SHIFT)) { \
gicd_write_##reg((base), int_id, \
(ctx)->gicd_##reg[(int_id - (MIN_ESPI_ID - \
round_up(TOTAL_SPI_INTR_NUM, 1U << REG##R_SHIFT)))\
>> REG##R_SHIFT]); \
} \
} while (false)
#define SAVE_GICD_EREGS(base, ctx, intr_num, reg, REG) \
do { \
for (unsigned int int_id = MIN_ESPI_ID; int_id < (intr_num);\
int_id += (1U << REG##R_SHIFT)) { \
(ctx)->gicd_##reg[(int_id - (MIN_ESPI_ID - \
round_up(TOTAL_SPI_INTR_NUM, 1U << REG##R_SHIFT)))\
>> REG##R_SHIFT] = gicd_read_##reg((base), int_id);\
} \
} while (false)
#else
#define SAVE_GICD_EREGS(base, ctx, intr_num, reg, REG)
#define RESTORE_GICD_EREGS(base, ctx, intr_num, reg, REG)
#endif /* GIC_EXT_INTID */
/*******************************************************************************
* This function initialises the ARM GICv3 driver in EL3 with provided platform
* inputs.
******************************************************************************/
void __init gicv3_driver_init(const gicv3_driver_data_t *plat_driver_data)
{
unsigned int gic_version;
unsigned int gicv2_compat;
assert(plat_driver_data != NULL);
assert(plat_driver_data->gicd_base != 0U);
assert(plat_driver_data->rdistif_num != 0U);
assert(plat_driver_data->rdistif_base_addrs != NULL);
assert(IS_IN_EL3());
assert((plat_driver_data->interrupt_props_num != 0U) ?
(plat_driver_data->interrupt_props != NULL) : 1);
/* Check for system register support */
#ifndef __aarch64__
assert((read_id_pfr1() &
(ID_PFR1_GIC_MASK << ID_PFR1_GIC_SHIFT)) != 0U);
#else
assert((read_id_aa64pfr0_el1() &
(ID_AA64PFR0_GIC_MASK << ID_AA64PFR0_GIC_SHIFT)) != 0U);
#endif /* !__aarch64__ */
gic_version = gicd_read_pidr2(plat_driver_data->gicd_base);
gic_version >>= PIDR2_ARCH_REV_SHIFT;
gic_version &= PIDR2_ARCH_REV_MASK;
/* Check GIC version */
#if GIC_ENABLE_V4_EXTN
assert(gic_version == ARCH_REV_GICV4);
/* GICv4 supports Direct Virtual LPI injection */
assert((gicd_read_typer(plat_driver_data->gicd_base)
& TYPER_DVIS) != 0);
#else
assert(gic_version == ARCH_REV_GICV3);
#endif
/*
* Find out whether the GIC supports the GICv2 compatibility mode.
* The ARE_S bit resets to 0 if supported
*/
gicv2_compat = gicd_read_ctlr(plat_driver_data->gicd_base);
gicv2_compat >>= CTLR_ARE_S_SHIFT;
gicv2_compat = gicv2_compat & CTLR_ARE_S_MASK;
if (plat_driver_data->gicr_base != 0U) {
/*
* Find the base address of each implemented Redistributor interface.
* The number of interfaces should be equal to the number of CPUs in the
* system. The memory for saving these addresses has to be allocated by
* the platform port
*/
gicv3_rdistif_base_addrs_probe(plat_driver_data->rdistif_base_addrs,
plat_driver_data->rdistif_num,
plat_driver_data->gicr_base,
plat_driver_data->mpidr_to_core_pos);
#if !HW_ASSISTED_COHERENCY
/*
* Flush the rdistif_base_addrs[] contents linked to the GICv3 driver.
*/
flush_dcache_range((uintptr_t)(plat_driver_data->rdistif_base_addrs),
plat_driver_data->rdistif_num *
sizeof(*(plat_driver_data->rdistif_base_addrs)));
#endif
}
gicv3_driver_data = plat_driver_data;
/*
* The GIC driver data is initialized by the primary CPU with caches
* enabled. When the secondary CPU boots up, it initializes the
* GICC/GICR interface with the caches disabled. Hence flush the
* driver data to ensure coherency. This is not required if the
* platform has HW_ASSISTED_COHERENCY enabled.
*/
#if !HW_ASSISTED_COHERENCY
flush_dcache_range((uintptr_t)&gicv3_driver_data,
sizeof(gicv3_driver_data));
flush_dcache_range((uintptr_t)gicv3_driver_data,
sizeof(*gicv3_driver_data));
#endif
INFO("GICv%u with%s legacy support detected.\n", gic_version,
(gicv2_compat == 0U) ? "" : "out");
INFO("ARM GICv%u driver initialized in EL3\n", gic_version);
}
/*******************************************************************************
* This function initialises the GIC distributor interface based upon the data
* provided by the platform while initialising the driver.
******************************************************************************/
void __init gicv3_distif_init(void)
{
unsigned int bitmap;
assert(gicv3_driver_data != NULL);
assert(gicv3_driver_data->gicd_base != 0U);
assert(IS_IN_EL3());
/*
* Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring
* the ARE_S bit. The Distributor might generate a system error
* otherwise.
*/
gicd_clr_ctlr(gicv3_driver_data->gicd_base,
CTLR_ENABLE_G0_BIT |
CTLR_ENABLE_G1S_BIT |
CTLR_ENABLE_G1NS_BIT,
RWP_TRUE);
/* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */
gicd_set_ctlr(gicv3_driver_data->gicd_base,
CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE);
/* Set the default attribute of all (E)SPIs */
gicv3_spis_config_defaults(gicv3_driver_data->gicd_base);
bitmap = gicv3_secure_spis_config_props(
gicv3_driver_data->gicd_base,
gicv3_driver_data->interrupt_props,
gicv3_driver_data->interrupt_props_num);
/* Enable the secure (E)SPIs now that they have been configured */
gicd_set_ctlr(gicv3_driver_data->gicd_base, bitmap, RWP_TRUE);
}
/*******************************************************************************
* This function initialises the GIC Redistributor interface of the calling CPU
* (identified by the 'proc_num' parameter) based upon the data provided by the
* platform while initialising the driver.
******************************************************************************/
void gicv3_rdistif_init(unsigned int proc_num)
{
uintptr_t gicr_base;
unsigned int bitmap;
uint32_t ctlr;
assert(gicv3_driver_data != NULL);
assert(proc_num < gicv3_driver_data->rdistif_num);
assert(gicv3_driver_data->rdistif_base_addrs != NULL);
assert(gicv3_driver_data->gicd_base != 0U);
ctlr = gicd_read_ctlr(gicv3_driver_data->gicd_base);
assert((ctlr & CTLR_ARE_S_BIT) != 0U);
assert(IS_IN_EL3());
/* Power on redistributor */
gicv3_rdistif_on(proc_num);
gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
assert(gicr_base != 0U);
/* Set the default attribute of all SGIs and (E)PPIs */
gicv3_ppi_sgi_config_defaults(gicr_base);
bitmap = gicv3_secure_ppi_sgi_config_props(gicr_base,
gicv3_driver_data->interrupt_props,
gicv3_driver_data->interrupt_props_num);
/* Enable interrupt groups as required, if not already */
if ((ctlr & bitmap) != bitmap) {
gicd_set_ctlr(gicv3_driver_data->gicd_base, bitmap, RWP_TRUE);
}
}
/*******************************************************************************
* Functions to perform power operations on GIC Redistributor
******************************************************************************/
void gicv3_rdistif_off(unsigned int proc_num)
{
}
void gicv3_rdistif_on(unsigned int proc_num)
{
}
/*******************************************************************************
* This function enables the GIC CPU interface of the calling CPU using only
* system register accesses.
******************************************************************************/
void gicv3_cpuif_enable(unsigned int proc_num)
{
uintptr_t gicr_base;
u_register_t scr_el3;
unsigned int icc_sre_el3;
assert(gicv3_driver_data != NULL);
assert(proc_num < gicv3_driver_data->rdistif_num);
assert(gicv3_driver_data->rdistif_base_addrs != NULL);
assert(IS_IN_EL3());
/* Mark the connected core as awake */
gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
gicv3_rdistif_mark_core_awake(gicr_base);
/* Disable the legacy interrupt bypass */
icc_sre_el3 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT;
/*
* Enable system register access for EL3 and allow lower exception
* levels to configure the same for themselves. If the legacy mode is
* not supported, the SRE bit is RAO/WI
*/
icc_sre_el3 |= (ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT);
write_icc_sre_el3(read_icc_sre_el3() | icc_sre_el3);
scr_el3 = read_scr_el3();
/*
* Switch to NS state to write Non secure ICC_SRE_EL1 and
* ICC_SRE_EL2 registers.
*/
write_scr_el3(scr_el3 | SCR_NS_BIT);
isb();
write_icc_sre_el2(read_icc_sre_el2() | icc_sre_el3);
write_icc_sre_el1(ICC_SRE_SRE_BIT);
isb();
/* Switch to secure state. */
write_scr_el3(scr_el3 & (~SCR_NS_BIT));
isb();
/* Write the secure ICC_SRE_EL1 register */
write_icc_sre_el1(ICC_SRE_SRE_BIT);
isb();
/* Program the idle priority in the PMR */
write_icc_pmr_el1(GIC_PRI_MASK);
/* Enable Group0 interrupts */
write_icc_igrpen0_el1(IGRPEN1_EL1_ENABLE_G0_BIT);
/* Enable Group1 Secure interrupts */
write_icc_igrpen1_el3(read_icc_igrpen1_el3() |
IGRPEN1_EL3_ENABLE_G1S_BIT);
isb();
}
/*******************************************************************************
* This function disables the GIC CPU interface of the calling CPU using
* only system register accesses.
******************************************************************************/
void gicv3_cpuif_disable(unsigned int proc_num)
{
uintptr_t gicr_base;
assert(gicv3_driver_data != NULL);
assert(proc_num < gicv3_driver_data->rdistif_num);
assert(gicv3_driver_data->rdistif_base_addrs != NULL);
assert(IS_IN_EL3());
/* Disable legacy interrupt bypass */
write_icc_sre_el3(read_icc_sre_el3() |
(ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT));
/* Disable Group0 interrupts */
write_icc_igrpen0_el1(read_icc_igrpen0_el1() &
~IGRPEN1_EL1_ENABLE_G0_BIT);
/* Disable Group1 Secure and Non-Secure interrupts */
write_icc_igrpen1_el3(read_icc_igrpen1_el3() &
~(IGRPEN1_EL3_ENABLE_G1NS_BIT |
IGRPEN1_EL3_ENABLE_G1S_BIT));
/* Synchronise accesses to group enable registers */
isb();
/* Mark the connected core as asleep */
gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
assert(gicr_base != 0U);
gicv3_rdistif_mark_core_asleep(gicr_base);
}
/*******************************************************************************
* This function returns the id of the highest priority pending interrupt at
* the GIC cpu interface.
******************************************************************************/
unsigned int gicv3_get_pending_interrupt_id(void)
{
unsigned int id;
assert(IS_IN_EL3());
id = (uint32_t)read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
/*
* If the ID is special identifier corresponding to G1S or G1NS
* interrupt, then read the highest pending group 1 interrupt.
*/
if ((id == PENDING_G1S_INTID) || (id == PENDING_G1NS_INTID)) {
return (uint32_t)read_icc_hppir1_el1() & HPPIR1_EL1_INTID_MASK;
}
return id;
}
/*******************************************************************************
* This function returns the type of the highest priority pending interrupt at
* the GIC cpu interface. The return values can be one of the following :
* PENDING_G1S_INTID : The interrupt type is secure Group 1.
* PENDING_G1NS_INTID : The interrupt type is non secure Group 1.
* 0 - 1019 : The interrupt type is secure Group 0.
* GIC_SPURIOUS_INTERRUPT : there is no pending interrupt with
* sufficient priority to be signaled
******************************************************************************/
unsigned int gicv3_get_pending_interrupt_type(void)
{
assert(IS_IN_EL3());
return (uint32_t)read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
}
/*******************************************************************************
* This function returns the type of the interrupt id depending upon the group
* this interrupt has been configured under by the interrupt controller i.e.
* group0 or group1 Secure / Non Secure. The return value can be one of the
* following :
* INTR_GROUP0 : The interrupt type is a Secure Group 0 interrupt
* INTR_GROUP1S : The interrupt type is a Secure Group 1 secure interrupt
* INTR_GROUP1NS: The interrupt type is a Secure Group 1 non secure
* interrupt.
******************************************************************************/
unsigned int gicv3_get_interrupt_type(unsigned int id, unsigned int proc_num)
{
unsigned int igroup, grpmodr;
uintptr_t gicr_base;
assert(IS_IN_EL3());
assert(gicv3_driver_data != NULL);
/* Ensure the parameters are valid */
assert((id < PENDING_G1S_INTID) || (id >= MIN_LPI_ID));
assert(proc_num < gicv3_driver_data->rdistif_num);
/* All LPI interrupts are Group 1 non secure */
if (id >= MIN_LPI_ID) {
return INTR_GROUP1NS;
}
/* Check interrupt ID */
if (is_sgi_ppi(id)) {
/* SGIs: 0-15, PPIs: 16-31, EPPIs: 1056-1119 */
assert(gicv3_driver_data->rdistif_base_addrs != NULL);
gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
igroup = gicr_get_igroupr(gicr_base, id);
grpmodr = gicr_get_igrpmodr(gicr_base, id);
} else {
/* SPIs: 32-1019, ESPIs: 4096-5119 */
assert(gicv3_driver_data->gicd_base != 0U);
igroup = gicd_get_igroupr(gicv3_driver_data->gicd_base, id);
grpmodr = gicd_get_igrpmodr(gicv3_driver_data->gicd_base, id);
}
/*
* If the IGROUP bit is set, then it is a Group 1 Non secure
* interrupt
*/
if (igroup != 0U) {
return INTR_GROUP1NS;
}
/* If the GRPMOD bit is set, then it is a Group 1 Secure interrupt */
if (grpmodr != 0U) {
return INTR_GROUP1S;
}
/* Else it is a Group 0 Secure interrupt */
return INTR_GROUP0;
}
/*****************************************************************************
* Function to save and disable the GIC ITS register context. The power
* management of GIC ITS is implementation-defined and this function doesn't
* save any memory structures required to support ITS. As the sequence to save
* this state is implementation defined, it should be executed in platform
* specific code. Calling this function alone and then powering down the GIC and
* ITS without implementing the aforementioned platform specific code will
* corrupt the ITS state.
*
* This function must be invoked after the GIC CPU interface is disabled.
*****************************************************************************/
void gicv3_its_save_disable(uintptr_t gits_base,
gicv3_its_ctx_t * const its_ctx)
{
unsigned int i;
assert(gicv3_driver_data != NULL);
assert(IS_IN_EL3());
assert(its_ctx != NULL);
assert(gits_base != 0U);
its_ctx->gits_ctlr = gits_read_ctlr(gits_base);
/* Disable the ITS */
gits_write_ctlr(gits_base, its_ctx->gits_ctlr & ~GITS_CTLR_ENABLED_BIT);
/* Wait for quiescent state */
gits_wait_for_quiescent_bit(gits_base);
its_ctx->gits_cbaser = gits_read_cbaser(gits_base);
its_ctx->gits_cwriter = gits_read_cwriter(gits_base);
for (i = 0U; i < ARRAY_SIZE(its_ctx->gits_baser); i++) {
its_ctx->gits_baser[i] = gits_read_baser(gits_base, i);
}
}
/*****************************************************************************
* Function to restore the GIC ITS register context. The power
* management of GIC ITS is implementation defined and this function doesn't
* restore any memory structures required to support ITS. The assumption is
* that these structures are in memory and are retained during system suspend.
*
* This must be invoked before the GIC CPU interface is enabled.
*****************************************************************************/
void gicv3_its_restore(uintptr_t gits_base,
const gicv3_its_ctx_t * const its_ctx)
{
unsigned int i;
assert(gicv3_driver_data != NULL);
assert(IS_IN_EL3());
assert(its_ctx != NULL);
assert(gits_base != 0U);
/* Assert that the GITS is disabled and quiescent */
assert((gits_read_ctlr(gits_base) & GITS_CTLR_ENABLED_BIT) == 0U);
assert((gits_read_ctlr(gits_base) & GITS_CTLR_QUIESCENT_BIT) != 0U);
gits_write_cbaser(gits_base, its_ctx->gits_cbaser);
gits_write_cwriter(gits_base, its_ctx->gits_cwriter);
for (i = 0U; i < ARRAY_SIZE(its_ctx->gits_baser); i++) {
gits_write_baser(gits_base, i, its_ctx->gits_baser[i]);
}
/* Restore the ITS CTLR but leave the ITS disabled */
gits_write_ctlr(gits_base, its_ctx->gits_ctlr & ~GITS_CTLR_ENABLED_BIT);
}
/*****************************************************************************
* Function to save the GIC Redistributor register context. This function
* must be invoked after CPU interface disable and prior to Distributor save.
*****************************************************************************/
void gicv3_rdistif_save(unsigned int proc_num,
gicv3_redist_ctx_t * const rdist_ctx)
{
uintptr_t gicr_base;
unsigned int i, ppi_regs_num, regs_num;
assert(gicv3_driver_data != NULL);
assert(proc_num < gicv3_driver_data->rdistif_num);
assert(gicv3_driver_data->rdistif_base_addrs != NULL);
assert(IS_IN_EL3());
assert(rdist_ctx != NULL);
gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
#if GIC_EXT_INTID
/* Calculate number of PPI registers */
ppi_regs_num = (unsigned int)((gicr_read_typer(gicr_base) >>
TYPER_PPI_NUM_SHIFT) & TYPER_PPI_NUM_MASK) + 1;
/* All other values except PPInum [0-2] are reserved */
if (ppi_regs_num > 3U) {
ppi_regs_num = 1U;
}
#else
ppi_regs_num = 1U;
#endif
/*
* Wait for any write to GICR_CTLR to complete before trying to save any
* state.
*/
gicr_wait_for_pending_write(gicr_base);
rdist_ctx->gicr_ctlr = gicr_read_ctlr(gicr_base);
rdist_ctx->gicr_propbaser = gicr_read_propbaser(gicr_base);
rdist_ctx->gicr_pendbaser = gicr_read_pendbaser(gicr_base);
/* 32 interrupt IDs per register */
for (i = 0U; i < ppi_regs_num; ++i) {
SAVE_GICR_REG(gicr_base, rdist_ctx, igroupr, i);
SAVE_GICR_REG(gicr_base, rdist_ctx, isenabler, i);
SAVE_GICR_REG(gicr_base, rdist_ctx, ispendr, i);
SAVE_GICR_REG(gicr_base, rdist_ctx, isactiver, i);
SAVE_GICR_REG(gicr_base, rdist_ctx, igrpmodr, i);
}
/* 16 interrupt IDs per GICR_ICFGR register */
regs_num = ppi_regs_num << 1;
for (i = 0U; i < regs_num; ++i) {
SAVE_GICR_REG(gicr_base, rdist_ctx, icfgr, i);
}
rdist_ctx->gicr_nsacr = gicr_read_nsacr(gicr_base);
/* 4 interrupt IDs per GICR_IPRIORITYR register */
regs_num = ppi_regs_num << 3;
for (i = 0U; i < regs_num; ++i) {
rdist_ctx->gicr_ipriorityr[i] =
gicr_ipriorityr_read(gicr_base, i);
}
/*
* Call the pre-save hook that implements the IMP DEF sequence that may
* be required on some GIC implementations. As this may need to access
* the Redistributor registers, we pass it proc_num.
*/
gicv3_distif_pre_save(proc_num);
}
/*****************************************************************************
* Function to restore the GIC Redistributor register context. We disable
* LPI and per-cpu interrupts before we start restore of the Redistributor.
* This function must be invoked after Distributor restore but prior to
* CPU interface enable. The pending and active interrupts are restored
* after the interrupts are fully configured and enabled.
*****************************************************************************/
void gicv3_rdistif_init_restore(unsigned int proc_num,
const gicv3_redist_ctx_t * const rdist_ctx)
{
uintptr_t gicr_base;
unsigned int i, ppi_regs_num, regs_num;
assert(gicv3_driver_data != NULL);
assert(proc_num < gicv3_driver_data->rdistif_num);
assert(gicv3_driver_data->rdistif_base_addrs != NULL);
assert(IS_IN_EL3());
assert(rdist_ctx != NULL);
gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
#if GIC_EXT_INTID
/* Calculate number of PPI registers */
ppi_regs_num = (unsigned int)((gicr_read_typer(gicr_base) >>
TYPER_PPI_NUM_SHIFT) & TYPER_PPI_NUM_MASK) + 1;
/* All other values except PPInum [0-2] are reserved */
if (ppi_regs_num > 3U) {
ppi_regs_num = 1U;
}
#else
ppi_regs_num = 1U;
#endif
/* Power on redistributor */
gicv3_rdistif_on(proc_num);
/*
* Call the post-restore hook that implements the IMP DEF sequence that
* may be required on some GIC implementations. As this may need to
* access the Redistributor registers, we pass it proc_num.
*/
gicv3_distif_post_restore(proc_num);
/*
* Disable all SGIs (imp. def.)/(E)PPIs before configuring them.
* This is a more scalable approach as it avoids clearing the enable
* bits in the GICD_CTLR.
*/
for (i = 0U; i < ppi_regs_num; ++i) {
gicr_write_icenabler(gicr_base, i, ~0U);
}
/* Wait for pending writes to GICR_ICENABLER */
gicr_wait_for_pending_write(gicr_base);
/*
* Disable the LPIs to avoid unpredictable behavior when writing to
* GICR_PROPBASER and GICR_PENDBASER.
*/
gicr_write_ctlr(gicr_base,
rdist_ctx->gicr_ctlr & ~(GICR_CTLR_EN_LPIS_BIT));
/* Restore registers' content */
gicr_write_propbaser(gicr_base, rdist_ctx->gicr_propbaser);
gicr_write_pendbaser(gicr_base, rdist_ctx->gicr_pendbaser);
/* 32 interrupt IDs per register */
for (i = 0U; i < ppi_regs_num; ++i) {
RESTORE_GICR_REG(gicr_base, rdist_ctx, igroupr, i);
RESTORE_GICR_REG(gicr_base, rdist_ctx, igrpmodr, i);
}
/* 4 interrupt IDs per GICR_IPRIORITYR register */
regs_num = ppi_regs_num << 3;
for (i = 0U; i < regs_num; ++i) {
gicr_ipriorityr_write(gicr_base, i,
rdist_ctx->gicr_ipriorityr[i]);
}
/* 16 interrupt IDs per GICR_ICFGR register */
regs_num = ppi_regs_num << 1;
for (i = 0U; i < regs_num; ++i) {
RESTORE_GICR_REG(gicr_base, rdist_ctx, icfgr, i);
}
gicr_write_nsacr(gicr_base, rdist_ctx->gicr_nsacr);
/* Restore after group and priorities are set.
* 32 interrupt IDs per register
*/
for (i = 0U; i < ppi_regs_num; ++i) {
RESTORE_GICR_REG(gicr_base, rdist_ctx, ispendr, i);
RESTORE_GICR_REG(gicr_base, rdist_ctx, isactiver, i);
}
/*
* Wait for all writes to the Distributor to complete before enabling
* the SGI and (E)PPIs.
*/
gicr_wait_for_upstream_pending_write(gicr_base);
/* 32 interrupt IDs per GICR_ISENABLER register */
for (i = 0U; i < ppi_regs_num; ++i) {
RESTORE_GICR_REG(gicr_base, rdist_ctx, isenabler, i);
}
/*
* Restore GICR_CTLR.Enable_LPIs bit and wait for pending writes in case
* the first write to GICR_CTLR was still in flight (this write only
* restores GICR_CTLR.Enable_LPIs and no waiting is required for this
* bit).
*/
gicr_write_ctlr(gicr_base, rdist_ctx->gicr_ctlr);
gicr_wait_for_pending_write(gicr_base);
}
/*****************************************************************************
* Function to save the GIC Distributor register context. This function
* must be invoked after CPU interface disable and Redistributor save.
*****************************************************************************/
void gicv3_distif_save(gicv3_dist_ctx_t * const dist_ctx)
{
assert(gicv3_driver_data != NULL);
assert(gicv3_driver_data->gicd_base != 0U);
assert(IS_IN_EL3());
assert(dist_ctx != NULL);
uintptr_t gicd_base = gicv3_driver_data->gicd_base;
unsigned int num_ints = gicv3_get_spi_limit(gicd_base);
#if GIC_EXT_INTID
unsigned int num_eints = gicv3_get_espi_limit(gicd_base);
#endif
/* Wait for pending write to complete */
gicd_wait_for_pending_write(gicd_base);
/* Save the GICD_CTLR */
dist_ctx->gicd_ctlr = gicd_read_ctlr(gicd_base);
/* Save GICD_IGROUPR for INTIDs 32 - 1019 */
SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, igroupr, IGROUP);
/* Save GICD_IGROUPRE for INTIDs 4096 - 5119 */
SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igroupr, IGROUP);
/* Save GICD_ISENABLER for INT_IDs 32 - 1019 */
SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, isenabler, ISENABLE);
/* Save GICD_ISENABLERE for INT_IDs 4096 - 5119 */
SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isenabler, ISENABLE);
/* Save GICD_ISPENDR for INTIDs 32 - 1019 */
SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, ispendr, ISPEND);
/* Save GICD_ISPENDRE for INTIDs 4096 - 5119 */
SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, ispendr, ISPEND);
/* Save GICD_ISACTIVER for INTIDs 32 - 1019 */
SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, isactiver, ISACTIVE);
/* Save GICD_ISACTIVERE for INTIDs 4096 - 5119 */
SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isactiver, ISACTIVE);
/* Save GICD_IPRIORITYR for INTIDs 32 - 1019 */
SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, ipriorityr, IPRIORITY);
/* Save GICD_IPRIORITYRE for INTIDs 4096 - 5119 */
SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, ipriorityr, IPRIORITY);
/* Save GICD_ICFGR for INTIDs 32 - 1019 */
SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, icfgr, ICFG);
/* Save GICD_ICFGRE for INTIDs 4096 - 5119 */
SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, icfgr, ICFG);
/* Save GICD_IGRPMODR for INTIDs 32 - 1019 */
SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, igrpmodr, IGRPMOD);
/* Save GICD_IGRPMODRE for INTIDs 4096 - 5119 */
SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igrpmodr, IGRPMOD);
/* Save GICD_NSACR for INTIDs 32 - 1019 */
SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, nsacr, NSAC);
/* Save GICD_NSACRE for INTIDs 4096 - 5119 */
SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, nsacr, NSAC);
/* Save GICD_IROUTER for INTIDs 32 - 1019 */
SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, irouter, IROUTE);
/* Save GICD_IROUTERE for INTIDs 4096 - 5119 */
SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, irouter, IROUTE);
/*
* GICD_ITARGETSR<n> and GICD_SPENDSGIR<n> are RAZ/WI when
* GICD_CTLR.ARE_(S|NS) bits are set which is the case for our GICv3
* driver.
*/
}
/*****************************************************************************
* Function to restore the GIC Distributor register context. We disable G0, G1S
* and G1NS interrupt groups before we start restore of the Distributor. This
* function must be invoked prior to Redistributor restore and CPU interface
* enable. The pending and active interrupts are restored after the interrupts
* are fully configured and enabled.
*****************************************************************************/
void gicv3_distif_init_restore(const gicv3_dist_ctx_t * const dist_ctx)
{
assert(gicv3_driver_data != NULL);
assert(gicv3_driver_data->gicd_base != 0U);
assert(IS_IN_EL3());
assert(dist_ctx != NULL);
uintptr_t gicd_base = gicv3_driver_data->gicd_base;
/*
* Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring
* the ARE_S bit. The Distributor might generate a system error
* otherwise.
*/
gicd_clr_ctlr(gicd_base,
CTLR_ENABLE_G0_BIT |
CTLR_ENABLE_G1S_BIT |
CTLR_ENABLE_G1NS_BIT,
RWP_TRUE);
/* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */
gicd_set_ctlr(gicd_base, CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE);
unsigned int num_ints = gicv3_get_spi_limit(gicd_base);
#if GIC_EXT_INTID
unsigned int num_eints = gicv3_get_espi_limit(gicd_base);
#endif
/* Restore GICD_IGROUPR for INTIDs 32 - 1019 */
RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, igroupr, IGROUP);
/* Restore GICD_IGROUPRE for INTIDs 4096 - 5119 */
RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igroupr, IGROUP);
/* Restore GICD_IPRIORITYR for INTIDs 32 - 1019 */
RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, ipriorityr, IPRIORITY);
/* Restore GICD_IPRIORITYRE for INTIDs 4096 - 5119 */
RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, ipriorityr, IPRIORITY);
/* Restore GICD_ICFGR for INTIDs 32 - 1019 */
RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, icfgr, ICFG);
/* Restore GICD_ICFGRE for INTIDs 4096 - 5119 */
RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, icfgr, ICFG);
/* Restore GICD_IGRPMODR for INTIDs 32 - 1019 */
RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, igrpmodr, IGRPMOD);
/* Restore GICD_IGRPMODRE for INTIDs 4096 - 5119 */
RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igrpmodr, IGRPMOD);
/* Restore GICD_NSACR for INTIDs 32 - 1019 */
RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, nsacr, NSAC);
/* Restore GICD_NSACRE for INTIDs 4096 - 5119 */
RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, nsacr, NSAC);
/* Restore GICD_IROUTER for INTIDs 32 - 1019 */
RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, irouter, IROUTE);
/* Restore GICD_IROUTERE for INTIDs 4096 - 5119 */
RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, irouter, IROUTE);
/*
* Restore ISENABLER(E), ISPENDR(E) and ISACTIVER(E) after
* the interrupts are configured.
*/
/* Restore GICD_ISENABLER for INT_IDs 32 - 1019 */
RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, isenabler, ISENABLE);
/* Restore GICD_ISENABLERE for INT_IDs 4096 - 5119 */
RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isenabler, ISENABLE);
/* Restore GICD_ISPENDR for INTIDs 32 - 1019 */
RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, ispendr, ISPEND);
/* Restore GICD_ISPENDRE for INTIDs 4096 - 5119 */
RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, ispendr, ISPEND);
/* Restore GICD_ISACTIVER for INTIDs 32 - 1019 */
RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, isactiver, ISACTIVE);
/* Restore GICD_ISACTIVERE for INTIDs 4096 - 5119 */
RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isactiver, ISACTIVE);
/* Restore the GICD_CTLR */
gicd_write_ctlr(gicd_base, dist_ctx->gicd_ctlr);
gicd_wait_for_pending_write(gicd_base);
}
/*******************************************************************************
* This function gets the priority of the interrupt the processor is currently
* servicing.
******************************************************************************/
unsigned int gicv3_get_running_priority(void)
{
return (unsigned int)read_icc_rpr_el1();
}
/*******************************************************************************
* This function checks if the interrupt identified by id is active (whether the
* state is either active, or active and pending). The proc_num is used if the
* interrupt is SGI or (E)PPI and programs the corresponding Redistributor
* interface.
******************************************************************************/
unsigned int gicv3_get_interrupt_active(unsigned int id, unsigned int proc_num)
{
assert(gicv3_driver_data != NULL);
assert(gicv3_driver_data->gicd_base != 0U);
assert(proc_num < gicv3_driver_data->rdistif_num);
assert(gicv3_driver_data->rdistif_base_addrs != NULL);
/* Check interrupt ID */
if (is_sgi_ppi(id)) {
/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
return gicr_get_isactiver(
gicv3_driver_data->rdistif_base_addrs[proc_num], id);
}
/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
return gicd_get_isactiver(gicv3_driver_data->gicd_base, id);
}
/*******************************************************************************
* This function enables the interrupt identified by id. The proc_num
* is used if the interrupt is SGI or PPI, and programs the corresponding
* Redistributor interface.
******************************************************************************/
void gicv3_enable_interrupt(unsigned int id, unsigned int proc_num)
{
assert(gicv3_driver_data != NULL);
assert(gicv3_driver_data->gicd_base != 0U);
assert(proc_num < gicv3_driver_data->rdistif_num);
assert(gicv3_driver_data->rdistif_base_addrs != NULL);
/*
* Ensure that any shared variable updates depending on out of band
* interrupt trigger are observed before enabling interrupt.
*/
dsbishst();
/* Check interrupt ID */
if (is_sgi_ppi(id)) {
/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
gicr_set_isenabler(
gicv3_driver_data->rdistif_base_addrs[proc_num], id);
} else {
/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
gicd_set_isenabler(gicv3_driver_data->gicd_base, id);
}
}
/*******************************************************************************
* This function disables the interrupt identified by id. The proc_num
* is used if the interrupt is SGI or PPI, and programs the corresponding
* Redistributor interface.
******************************************************************************/
void gicv3_disable_interrupt(unsigned int id, unsigned int proc_num)
{
assert(gicv3_driver_data != NULL);
assert(gicv3_driver_data->gicd_base != 0U);
assert(proc_num < gicv3_driver_data->rdistif_num);
assert(gicv3_driver_data->rdistif_base_addrs != NULL);
/*
* Disable interrupt, and ensure that any shared variable updates
* depending on out of band interrupt trigger are observed afterwards.
*/
/* Check interrupt ID */
if (is_sgi_ppi(id)) {
/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
gicr_set_icenabler(
gicv3_driver_data->rdistif_base_addrs[proc_num], id);
/* Write to clear enable requires waiting for pending writes */
gicr_wait_for_pending_write(
gicv3_driver_data->rdistif_base_addrs[proc_num]);
} else {
/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
gicd_set_icenabler(gicv3_driver_data->gicd_base, id);
/* Write to clear enable requires waiting for pending writes */
gicd_wait_for_pending_write(gicv3_driver_data->gicd_base);
}
dsbishst();
}
/*******************************************************************************
* This function sets the interrupt priority as supplied for the given interrupt
* id.
******************************************************************************/
void gicv3_set_interrupt_priority(unsigned int id, unsigned int proc_num,
unsigned int priority)
{
uintptr_t gicr_base;
assert(gicv3_driver_data != NULL);
assert(gicv3_driver_data->gicd_base != 0U);
assert(proc_num < gicv3_driver_data->rdistif_num);
assert(gicv3_driver_data->rdistif_base_addrs != NULL);
/* Check interrupt ID */
if (is_sgi_ppi(id)) {
/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
gicr_set_ipriorityr(gicr_base, id, priority);
} else {
/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
gicd_set_ipriorityr(gicv3_driver_data->gicd_base, id, priority);
}
}
/*******************************************************************************
* This function assigns group for the interrupt identified by id. The proc_num
* is used if the interrupt is SGI or (E)PPI, and programs the corresponding
* Redistributor interface. The group can be any of GICV3_INTR_GROUP*
******************************************************************************/
void gicv3_set_interrupt_type(unsigned int id, unsigned int proc_num,
unsigned int type)
{
bool igroup = false, grpmod = false;
uintptr_t gicr_base;
assert(gicv3_driver_data != NULL);
assert(gicv3_driver_data->gicd_base != 0U);
assert(proc_num < gicv3_driver_data->rdistif_num);
assert(gicv3_driver_data->rdistif_base_addrs != NULL);
switch (type) {
case INTR_GROUP1S:
igroup = false;
grpmod = true;
break;
case INTR_GROUP0:
igroup = false;
grpmod = false;
break;
case INTR_GROUP1NS:
igroup = true;
grpmod = false;
break;
default:
assert(false);
break;
}
/* Check interrupt ID */
if (is_sgi_ppi(id)) {
/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
igroup ? gicr_set_igroupr(gicr_base, id) :
gicr_clr_igroupr(gicr_base, id);
grpmod ? gicr_set_igrpmodr(gicr_base, id) :
gicr_clr_igrpmodr(gicr_base, id);
} else {
/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
/* Serialize read-modify-write to Distributor registers */
spin_lock(&gic_lock);
igroup ? gicd_set_igroupr(gicv3_driver_data->gicd_base, id) :
gicd_clr_igroupr(gicv3_driver_data->gicd_base, id);
grpmod ? gicd_set_igrpmodr(gicv3_driver_data->gicd_base, id) :
gicd_clr_igrpmodr(gicv3_driver_data->gicd_base, id);
spin_unlock(&gic_lock);
}
}
/*******************************************************************************
* This function raises the specified Secure Group 0 SGI.
*
* The target parameter must be a valid MPIDR in the system.
******************************************************************************/
void gicv3_raise_secure_g0_sgi(unsigned int sgi_num, u_register_t target)
{
unsigned int tgt, aff3, aff2, aff1, aff0;
uint64_t sgi_val;
/* Verify interrupt number is in the SGI range */
assert((sgi_num >= MIN_SGI_ID) && (sgi_num < MIN_PPI_ID));
/* Extract affinity fields from target */
aff0 = MPIDR_AFFLVL0_VAL(target);
aff1 = MPIDR_AFFLVL1_VAL(target);
aff2 = MPIDR_AFFLVL2_VAL(target);
aff3 = MPIDR_AFFLVL3_VAL(target);
/*
* Make target list from affinity 0, and ensure GICv3 SGI can target
* this PE.
*/
assert(aff0 < GICV3_MAX_SGI_TARGETS);
tgt = BIT_32(aff0);
/* Raise SGI to PE specified by its affinity */
sgi_val = GICV3_SGIR_VALUE(aff3, aff2, aff1, sgi_num, SGIR_IRM_TO_AFF,
tgt);
/*
* Ensure that any shared variable updates depending on out of band
* interrupt trigger are observed before raising SGI.
*/
dsbishst();
write_icc_sgi0r_el1(sgi_val);
isb();
}
/*******************************************************************************
* This function sets the interrupt routing for the given (E)SPI interrupt id.
* The interrupt routing is specified in routing mode and mpidr.
*
* The routing mode can be either of:
* - GICV3_IRM_ANY
* - GICV3_IRM_PE
*
* The mpidr is the affinity of the PE to which the interrupt will be routed,
* and is ignored for routing mode GICV3_IRM_ANY.
******************************************************************************/
void gicv3_set_spi_routing(unsigned int id, unsigned int irm, u_register_t mpidr)
{
unsigned long long aff;
uint64_t router;
assert(gicv3_driver_data != NULL);
assert(gicv3_driver_data->gicd_base != 0U);
assert((irm == GICV3_IRM_ANY) || (irm == GICV3_IRM_PE));
assert(IS_SPI(id));
aff = gicd_irouter_val_from_mpidr(mpidr, irm);
gicd_write_irouter(gicv3_driver_data->gicd_base, id, aff);
/*
* In implementations that do not require 1 of N distribution of SPIs,
* IRM might be RAZ/WI. Read back and verify IRM bit.
*/
if (irm == GICV3_IRM_ANY) {
router = gicd_read_irouter(gicv3_driver_data->gicd_base, id);
if (((router >> IROUTER_IRM_SHIFT) & IROUTER_IRM_MASK) == 0U) {
ERROR("GICv3 implementation doesn't support routing ANY\n");
panic();
}
}
}
/*******************************************************************************
* This function clears the pending status of an interrupt identified by id.
* The proc_num is used if the interrupt is SGI or (E)PPI, and programs the
* corresponding Redistributor interface.
******************************************************************************/
void gicv3_clear_interrupt_pending(unsigned int id, unsigned int proc_num)
{
assert(gicv3_driver_data != NULL);
assert(gicv3_driver_data->gicd_base != 0U);
assert(proc_num < gicv3_driver_data->rdistif_num);
assert(gicv3_driver_data->rdistif_base_addrs != NULL);
/*
* Clear pending interrupt, and ensure that any shared variable updates
* depending on out of band interrupt trigger are observed afterwards.
*/
/* Check interrupt ID */
if (is_sgi_ppi(id)) {
/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
gicr_set_icpendr(
gicv3_driver_data->rdistif_base_addrs[proc_num], id);
} else {
/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
gicd_set_icpendr(gicv3_driver_data->gicd_base, id);
}
dsbishst();
}
/*******************************************************************************
* This function sets the pending status of an interrupt identified by id.
* The proc_num is used if the interrupt is SGI or PPI and programs the
* corresponding Redistributor interface.
******************************************************************************/
void gicv3_set_interrupt_pending(unsigned int id, unsigned int proc_num)
{
assert(gicv3_driver_data != NULL);
assert(gicv3_driver_data->gicd_base != 0U);
assert(proc_num < gicv3_driver_data->rdistif_num);
assert(gicv3_driver_data->rdistif_base_addrs != NULL);
/*
* Ensure that any shared variable updates depending on out of band
* interrupt trigger are observed before setting interrupt pending.
*/
dsbishst();
/* Check interrupt ID */
if (is_sgi_ppi(id)) {
/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
gicr_set_ispendr(
gicv3_driver_data->rdistif_base_addrs[proc_num], id);
} else {
/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
gicd_set_ispendr(gicv3_driver_data->gicd_base, id);
}
}
/*******************************************************************************
* This function sets the PMR register with the supplied value. Returns the
* original PMR.
******************************************************************************/
unsigned int gicv3_set_pmr(unsigned int mask)
{
unsigned int old_mask;
old_mask = (unsigned int)read_icc_pmr_el1();
/*
* Order memory updates w.r.t. PMR write, and ensure they're visible
* before potential out of band interrupt trigger because of PMR update.
* PMR system register writes are self-synchronizing, so no ISB required
* thereafter.
*/
dsbishst();
write_icc_pmr_el1(mask);
return old_mask;
}
/*******************************************************************************
* This function delegates the responsibility of discovering the corresponding
* Redistributor frames to each CPU itself. It is a modified version of
* gicv3_rdistif_base_addrs_probe() and is executed by each CPU in the platform
* unlike the previous way in which only the Primary CPU did the discovery of
* all the Redistributor frames for every CPU. It also handles the scenario in
* which the frames of various CPUs are not contiguous in physical memory.
******************************************************************************/
int gicv3_rdistif_probe(const uintptr_t gicr_frame)
{
u_register_t mpidr, mpidr_self;
unsigned int proc_num;
uint64_t typer_val;
uintptr_t rdistif_base;
bool gicr_frame_found = false;
assert(gicv3_driver_data->gicr_base == 0U);
/* Ensure this function is called with Data Cache enabled */
#ifndef __aarch64__
assert((read_sctlr() & SCTLR_C_BIT) != 0U);
#else
assert((read_sctlr_el3() & SCTLR_C_BIT) != 0U);
#endif /* !__aarch64__ */
mpidr_self = read_mpidr_el1() & MPIDR_AFFINITY_MASK;
rdistif_base = gicr_frame;
do {
typer_val = gicr_read_typer(rdistif_base);
mpidr = mpidr_from_gicr_typer(typer_val);
if (gicv3_driver_data->mpidr_to_core_pos != NULL) {
proc_num = gicv3_driver_data->mpidr_to_core_pos(mpidr);
} else {
proc_num = (unsigned int)(typer_val >>
TYPER_PROC_NUM_SHIFT) & TYPER_PROC_NUM_MASK;
}
if (mpidr == mpidr_self) {
/* The base address doesn't need to be initialized on
* every warm boot.
*/
if (gicv3_driver_data->rdistif_base_addrs[proc_num]
!= 0U) {
return 0;
}
gicv3_driver_data->rdistif_base_addrs[proc_num] =
rdistif_base;
gicr_frame_found = true;
break;
}
rdistif_base += (uintptr_t)(ULL(1) << GICR_PCPUBASE_SHIFT);
} while ((typer_val & TYPER_LAST_BIT) == 0U);
if (!gicr_frame_found) {
return -1;
}
/*
* Flush the driver data to ensure coherency. This is
* not required if platform has HW_ASSISTED_COHERENCY
* enabled.
*/
#if !HW_ASSISTED_COHERENCY
/*
* Flush the rdistif_base_addrs[] contents linked to the GICv3 driver.
*/
flush_dcache_range((uintptr_t)&(gicv3_driver_data->rdistif_base_addrs[proc_num]),
sizeof(*(gicv3_driver_data->rdistif_base_addrs)));
#endif
return 0; /* Found matching GICR frame */
}
/******************************************************************************
* This function checks the interrupt ID and returns true for SGIs and (E)PPIs
* and false for (E)SPIs IDs.
*****************************************************************************/
static bool is_sgi_ppi(unsigned int id)
{
/* SGIs: 0-15, PPIs: 16-31, EPPIs: 1056-1119 */
if (IS_SGI_PPI(id)) {
return true;
}
/* SPIs: 32-1019, ESPIs: 4096-5119 */
if (IS_SPI(id)) {
return false;
}
assert(false);
panic();
}