| /* |
| * Copyright (c) 2015-2024, Arm Limited and Contributors. All rights reserved. |
| * |
| * SPDX-License-Identifier: BSD-3-Clause |
| */ |
| |
| #include <assert.h> |
| |
| #include <platform_def.h> |
| |
| #include <arch_helpers.h> |
| #include <common/debug.h> |
| #include <drivers/console.h> |
| #include <lib/mmio.h> |
| #include <lib/psci/psci.h> |
| #include <plat/common/platform.h> |
| |
| #include <rpi_hw.h> |
| |
| #ifdef RPI_HAVE_GIC |
| #include <drivers/arm/gicv2.h> |
| #endif |
| |
| /* Registers on top of RPI3_PM_BASE. */ |
| #define RPI3_PM_RSTC_OFFSET ULL(0x0000001C) |
| #define RPI3_PM_RSTS_OFFSET ULL(0x00000020) |
| #define RPI3_PM_WDOG_OFFSET ULL(0x00000024) |
| /* Watchdog constants */ |
| #define RPI3_PM_PASSWORD U(0x5A000000) |
| #define RPI3_PM_RSTC_WRCFG_MASK U(0x00000030) |
| #define RPI3_PM_RSTC_WRCFG_FULL_RESET U(0x00000020) |
| /* |
| * The RSTS register is used by the VideoCore firmware when booting the |
| * Raspberry Pi to know which partition to boot from. The partition value is |
| * formed by bits 0, 2, 4, 6, 8 and 10. Partition 63 is used by said firmware |
| * to indicate halt. |
| */ |
| #define RPI3_PM_RSTS_WRCFG_HALT U(0x00000555) |
| |
| /* Make composite power state parameter till power level 0 */ |
| #if PSCI_EXTENDED_STATE_ID |
| |
| #define rpi3_make_pwrstate_lvl0(lvl0_state, pwr_lvl, type) \ |
| (((lvl0_state) << PSTATE_ID_SHIFT) | \ |
| ((type) << PSTATE_TYPE_SHIFT)) |
| |
| #else |
| |
| #define rpi3_make_pwrstate_lvl0(lvl0_state, pwr_lvl, type) \ |
| (((lvl0_state) << PSTATE_ID_SHIFT) | \ |
| ((pwr_lvl) << PSTATE_PWR_LVL_SHIFT) | \ |
| ((type) << PSTATE_TYPE_SHIFT)) |
| |
| #endif /* PSCI_EXTENDED_STATE_ID */ |
| |
| #define rpi3_make_pwrstate_lvl1(lvl1_state, lvl0_state, pwr_lvl, type) \ |
| (((lvl1_state) << PLAT_LOCAL_PSTATE_WIDTH) | \ |
| rpi3_make_pwrstate_lvl0(lvl0_state, pwr_lvl, type)) |
| |
| /* |
| * The table storing the valid idle power states. Ensure that the |
| * array entries are populated in ascending order of state-id to |
| * enable us to use binary search during power state validation. |
| * The table must be terminated by a NULL entry. |
| */ |
| static const unsigned int rpi3_pm_idle_states[] = { |
| /* State-id - 0x01 */ |
| rpi3_make_pwrstate_lvl1(PLAT_LOCAL_STATE_RUN, PLAT_LOCAL_STATE_RET, |
| MPIDR_AFFLVL0, PSTATE_TYPE_STANDBY), |
| /* State-id - 0x02 */ |
| rpi3_make_pwrstate_lvl1(PLAT_LOCAL_STATE_RUN, PLAT_LOCAL_STATE_OFF, |
| MPIDR_AFFLVL0, PSTATE_TYPE_POWERDOWN), |
| /* State-id - 0x22 */ |
| rpi3_make_pwrstate_lvl1(PLAT_LOCAL_STATE_OFF, PLAT_LOCAL_STATE_OFF, |
| MPIDR_AFFLVL1, PSTATE_TYPE_POWERDOWN), |
| 0, |
| }; |
| |
| /******************************************************************************* |
| * Platform handler called to check the validity of the power state |
| * parameter. The power state parameter has to be a composite power state. |
| ******************************************************************************/ |
| static int rpi3_validate_power_state(unsigned int power_state, |
| psci_power_state_t *req_state) |
| { |
| unsigned int state_id; |
| int i; |
| |
| assert(req_state != 0); |
| |
| /* |
| * Currently we are using a linear search for finding the matching |
| * entry in the idle power state array. This can be made a binary |
| * search if the number of entries justify the additional complexity. |
| */ |
| for (i = 0; rpi3_pm_idle_states[i] != 0; i++) { |
| if (power_state == rpi3_pm_idle_states[i]) { |
| break; |
| } |
| } |
| |
| /* Return error if entry not found in the idle state array */ |
| if (!rpi3_pm_idle_states[i]) { |
| return PSCI_E_INVALID_PARAMS; |
| } |
| |
| i = 0; |
| state_id = psci_get_pstate_id(power_state); |
| |
| /* Parse the State ID and populate the state info parameter */ |
| while (state_id) { |
| req_state->pwr_domain_state[i++] = state_id & |
| PLAT_LOCAL_PSTATE_MASK; |
| state_id >>= PLAT_LOCAL_PSTATE_WIDTH; |
| } |
| |
| return PSCI_E_SUCCESS; |
| } |
| |
| /******************************************************************************* |
| * Platform handler called when a CPU is about to enter standby. |
| ******************************************************************************/ |
| static void rpi3_cpu_standby(plat_local_state_t cpu_state) |
| { |
| assert(cpu_state == PLAT_LOCAL_STATE_RET); |
| |
| /* |
| * Enter standby state. |
| * dsb is good practice before using wfi to enter low power states |
| */ |
| dsb(); |
| wfi(); |
| } |
| |
| static void rpi3_pwr_domain_off(const psci_power_state_t *target_state) |
| { |
| #ifdef RPI_HAVE_GIC |
| gicv2_cpuif_disable(); |
| #endif |
| } |
| |
| /******************************************************************************* |
| * Platform handler called when a power domain is about to be turned on. The |
| * mpidr determines the CPU to be turned on. |
| ******************************************************************************/ |
| static int rpi3_pwr_domain_on(u_register_t mpidr) |
| { |
| int rc = PSCI_E_SUCCESS; |
| unsigned int pos = plat_core_pos_by_mpidr(mpidr); |
| uintptr_t hold_base = PLAT_RPI3_TM_HOLD_BASE; |
| |
| assert(pos < PLATFORM_CORE_COUNT); |
| |
| hold_base += pos * PLAT_RPI3_TM_HOLD_ENTRY_SIZE; |
| |
| mmio_write_64(hold_base, PLAT_RPI3_TM_HOLD_STATE_GO); |
| /* No cache maintenance here, hold_base is mapped as device memory. */ |
| |
| /* Make sure that the write has completed */ |
| dsb(); |
| isb(); |
| |
| sev(); |
| |
| return rc; |
| } |
| |
| /******************************************************************************* |
| * Platform handler called when a power domain has just been powered on after |
| * being turned off earlier. The target_state encodes the low power state that |
| * each level has woken up from. |
| ******************************************************************************/ |
| static void rpi3_pwr_domain_on_finish(const psci_power_state_t *target_state) |
| { |
| assert(target_state->pwr_domain_state[MPIDR_AFFLVL0] == |
| PLAT_LOCAL_STATE_OFF); |
| |
| #ifdef RPI_HAVE_GIC |
| gicv2_pcpu_distif_init(); |
| gicv2_cpuif_enable(); |
| #endif |
| } |
| |
| static void __dead2 rpi3_pwr_down_wfi( |
| const psci_power_state_t *target_state) |
| { |
| uintptr_t hold_base = PLAT_RPI3_TM_HOLD_BASE; |
| unsigned int pos = plat_my_core_pos(); |
| |
| if (pos == 0) { |
| /* |
| * The secondaries will always be in a wait |
| * for warm boot on reset, but the BSP needs |
| * to be able to distinguish between waiting |
| * for warm boot (e.g. after psci_off, waiting |
| * for psci_on) and a cold boot. |
| */ |
| mmio_write_64(hold_base, PLAT_RPI3_TM_HOLD_STATE_BSP_OFF); |
| /* No cache maintenance here, we run with caches off already. */ |
| dsb(); |
| isb(); |
| } |
| |
| write_rmr_el3(RMR_EL3_RR_BIT | RMR_EL3_AA64_BIT); |
| |
| while (1) { |
| wfi(); |
| } |
| } |
| |
| /******************************************************************************* |
| * Platform handlers for system reset and system off. |
| ******************************************************************************/ |
| |
| /* 10 ticks (Watchdog timer = Timer clock / 16) */ |
| #define RESET_TIMEOUT U(10) |
| |
| static void __dead2 rpi3_watchdog_reset(void) |
| { |
| uint32_t rstc; |
| |
| console_flush(); |
| |
| dsbsy(); |
| isb(); |
| |
| mmio_write_32(RPI3_PM_BASE + RPI3_PM_WDOG_OFFSET, |
| RPI3_PM_PASSWORD | RESET_TIMEOUT); |
| |
| rstc = mmio_read_32(RPI3_PM_BASE + RPI3_PM_RSTC_OFFSET); |
| rstc &= ~RPI3_PM_RSTC_WRCFG_MASK; |
| rstc |= RPI3_PM_PASSWORD | RPI3_PM_RSTC_WRCFG_FULL_RESET; |
| mmio_write_32(RPI3_PM_BASE + RPI3_PM_RSTC_OFFSET, rstc); |
| |
| for (;;) { |
| wfi(); |
| } |
| } |
| |
| static void __dead2 rpi3_system_reset(void) |
| { |
| INFO("rpi3: PSCI_SYSTEM_RESET: Invoking watchdog reset\n"); |
| |
| rpi3_watchdog_reset(); |
| } |
| |
| static void __dead2 rpi3_system_off(void) |
| { |
| uint32_t rsts; |
| |
| INFO("rpi3: PSCI_SYSTEM_OFF: Invoking watchdog reset\n"); |
| |
| /* |
| * This function doesn't actually make the Raspberry Pi turn itself off, |
| * the hardware doesn't allow it. It simply reboots it and the RSTS |
| * value tells the bootcode.bin firmware not to continue the regular |
| * bootflow and to stay in a low power mode. |
| */ |
| |
| rsts = mmio_read_32(RPI3_PM_BASE + RPI3_PM_RSTS_OFFSET); |
| rsts |= RPI3_PM_PASSWORD | RPI3_PM_RSTS_WRCFG_HALT; |
| mmio_write_32(RPI3_PM_BASE + RPI3_PM_RSTS_OFFSET, rsts); |
| |
| rpi3_watchdog_reset(); |
| } |
| |
| /******************************************************************************* |
| * Platform handlers and setup function. |
| ******************************************************************************/ |
| static const plat_psci_ops_t plat_rpi3_psci_pm_ops = { |
| .cpu_standby = rpi3_cpu_standby, |
| .pwr_domain_off = rpi3_pwr_domain_off, |
| .pwr_domain_on = rpi3_pwr_domain_on, |
| .pwr_domain_on_finish = rpi3_pwr_domain_on_finish, |
| .pwr_domain_pwr_down_wfi = rpi3_pwr_down_wfi, |
| .system_off = rpi3_system_off, |
| .system_reset = rpi3_system_reset, |
| .validate_power_state = rpi3_validate_power_state, |
| }; |
| |
| int plat_setup_psci_ops(uintptr_t sec_entrypoint, |
| const plat_psci_ops_t **psci_ops) |
| { |
| uintptr_t *entrypoint = (void *) PLAT_RPI3_TM_ENTRYPOINT; |
| |
| *entrypoint = sec_entrypoint; |
| *psci_ops = &plat_rpi3_psci_pm_ops; |
| |
| return 0; |
| } |