blob: 2f5f7b5c921c2586229fbc3bfa6690ba632f26e1 [file] [log] [blame]
/*
* Copyright 2018-2023 NXP
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <lib/mmio.h>
#include <dram.h>
static void lpddr4_mr_write(uint32_t mr_rank, uint32_t mr_addr, uint32_t mr_data)
{
/*
* 1. Poll MRSTAT.mr_wr_busy until it is 0. This checks that there
* is no outstanding MR transaction. No
* writes should be performed to MRCTRL0 and MRCTRL1 if MRSTAT.mr_wr_busy = 1.
*/
while (mmio_read_32(DDRC_MRSTAT(0)) & 0x1)
;
/*
* 2. Write the MRCTRL0.mr_type, MRCTRL0.mr_addr,
* MRCTRL0.mr_rank and (for MRWs)
* MRCTRL1.mr_data to define the MR transaction.
*/
mmio_write_32(DDRC_MRCTRL0(0), (mr_rank << 4));
mmio_write_32(DDRC_MRCTRL1(0), (mr_addr << 8) | mr_data);
mmio_setbits_32(DDRC_MRCTRL0(0), BIT(31));
}
void lpddr4_swffc(struct dram_info *info, unsigned int init_fsp,
unsigned int fsp_index)
{
uint32_t mr, emr, emr2, emr3;
uint32_t mr11, mr12, mr22, mr14;
uint32_t val;
uint32_t derate_backup[3];
uint32_t (*mr_data)[8];
uint32_t phy_master;
/* 1. program targetd UMCTL2_REGS_FREQ1/2/3,already done, skip it. */
/* 2. MR13.FSP-WR=1, MRW to update MR registers */
mr_data = info->mr_table;
mr = mr_data[fsp_index][0];
emr = mr_data[fsp_index][1];
emr2 = mr_data[fsp_index][2];
emr3 = mr_data[fsp_index][3];
mr11 = mr_data[fsp_index][4];
mr12 = mr_data[fsp_index][5];
mr22 = mr_data[fsp_index][6];
mr14 = mr_data[fsp_index][7];
val = (init_fsp == 1) ? 0x2 << 6 : 0x1 << 6;
emr3 = (emr3 & 0x003f) | val | 0x0d00;
/* 12. set PWRCTL.selfref_en=0 */
mmio_clrbits_32(DDRC_PWRCTL(0), 0xf);
phy_master = mmio_read_32(DDRC_DFIPHYMSTR(0));
/* It is more safe to config it here */
mmio_clrbits_32(DDRC_DFIPHYMSTR(0), 0x1);
lpddr4_mr_write(3, 13, emr3);
lpddr4_mr_write(3, 1, mr);
lpddr4_mr_write(3, 2, emr);
lpddr4_mr_write(3, 3, emr2);
lpddr4_mr_write(3, 11, mr11);
lpddr4_mr_write(3, 12, mr12);
lpddr4_mr_write(3, 14, mr14);
lpddr4_mr_write(3, 22, mr22);
do {
val = mmio_read_32(DDRC_MRSTAT(0));
} while (val & 0x1);
/* 3. disable AXI ports */
mmio_write_32(DDRC_PCTRL_0(0), 0x0);
/* 4.Poll PSTAT.rd_port_busy_n=0 and PSTAT.wr_port_busy_n=0. */
do {
val = mmio_read_32(DDRC_PSTAT(0));
} while (val != 0);
/* 6.disable SBRCTL.scrub_en, skip if never enable it */
/* 7.poll SBRSTAT.scrub_busy Q2: should skip phy master if never enable it */
/* Disable phy master */
#ifdef DFILP_SPT
/* 8. disable DFI LP */
/* DFILPCFG0.dfi_lp_en_sr */
val = mmio_read_32(DDRC_DFILPCFG0(0));
if (val & 0x100) {
mmio_write_32(DDRC_DFILPCFG0(0), 0x0);
do {
val = mmio_read_32(DDRC_DFISTAT(0)); // dfi_lp_ack
val2 = mmio_read_32(DDRC_STAT(0)); // operating_mode
} while (((val & 0x2) == 0x2) && ((val2 & 0x7) == 3));
}
#endif
/* 9. wait until in normal or power down states */
do {
/* operating_mode */
val = mmio_read_32(DDRC_STAT(0));
} while (((val & 0x7) != 1) && ((val & 0x7) != 2));
/* 10. Disable automatic derating: derate_enable */
val = mmio_read_32(DDRC_DERATEEN(0));
derate_backup[0] = val;
mmio_clrbits_32(DDRC_DERATEEN(0), 0x1);
val = mmio_read_32(DDRC_FREQ1_DERATEEN(0));
derate_backup[1] = val;
mmio_clrbits_32(DDRC_FREQ1_DERATEEN(0), 0x1);
val = mmio_read_32(DDRC_FREQ2_DERATEEN(0));
derate_backup[2] = val;
mmio_clrbits_32(DDRC_FREQ2_DERATEEN(0), 0x1);
/* 11. disable automatic ZQ calibration */
mmio_setbits_32(DDRC_ZQCTL0(0), BIT(31));
mmio_setbits_32(DDRC_FREQ1_ZQCTL0(0), BIT(31));
mmio_setbits_32(DDRC_FREQ2_ZQCTL0(0), BIT(31));
/* 12. set PWRCTL.selfref_en=0 */
mmio_clrbits_32(DDRC_PWRCTL(0), 0x1);
/* 13.Poll STAT.operating_mode is in "Normal" (001) or "Power-down" (010) */
do {
val = mmio_read_32(DDRC_STAT(0));
} while (((val & 0x7) != 1) && ((val & 0x7) != 2));
/* 14-15. trigger SW SR */
/* bit 5: selfref_sw, bit 6: stay_in_selfref */
mmio_setbits_32(DDRC_PWRCTL(0), 0x60);
/* 16. Poll STAT.selfref_state in "Self Refresh 1" */
do {
val = mmio_read_32(DDRC_STAT(0));
} while ((val & 0x300) != 0x100);
/* 17. disable dq */
mmio_setbits_32(DDRC_DBG1(0), 0x1);
/* 18. Poll DBGCAM.wr_data_pipeline_empty and DBGCAM.rd_data_pipeline_empty */
do {
val = mmio_read_32(DDRC_DBGCAM(0));
val &= 0x30000000;
} while (val != 0x30000000);
/* 19. change MR13.FSP-OP to new FSP and MR13.VRCG to high current */
emr3 = (((~init_fsp) & 0x1) << 7) | (0x1 << 3) | (emr3 & 0x0077) | 0x0d00;
lpddr4_mr_write(3, 13, emr3);
/* 20. enter SR Power Down */
mmio_clrsetbits_32(DDRC_PWRCTL(0), 0x60, 0x20);
/* 21. Poll STAT.selfref_state is in "SR Power down" */
do {
val = mmio_read_32(DDRC_STAT(0));
} while ((val & 0x300) != 0x200);
/* 22. set dfi_init_complete_en = 0 */
/* 23. switch clock */
/* set SWCTL.dw_done to 0 */
mmio_write_32(DDRC_SWCTL(0), 0x0000);
/* 24. program frequency mode=1(bit 29), target_frequency=target_freq (bit 29) */
mmio_write_32(DDRC_MSTR2(0), fsp_index);
/* 25. DBICTL for FSP-OP[1], skip it if never enable it */
/* 26.trigger initialization in the PHY */
/* Q3: if refresh level is updated, then should program */
/* as updating refresh, need to toggle refresh_update_level signal */
val = mmio_read_32(DDRC_RFSHCTL3(0));
val = val ^ 0x2;
mmio_write_32(DDRC_RFSHCTL3(0), val);
/* Q4: only for legacy PHY, so here can skipped */
/* dfi_frequency -> 0x1x */
val = mmio_read_32(DDRC_DFIMISC(0));
val &= 0xFE;
val |= (fsp_index << 8);
mmio_write_32(DDRC_DFIMISC(0), val);
/* dfi_init_start */
val |= 0x20;
mmio_write_32(DDRC_DFIMISC(0), val);
/* polling dfi_init_complete de-assert */
do {
val = mmio_read_32(DDRC_DFISTAT(0));
} while ((val & 0x1) == 0x1);
/* change the clock frequency */
dram_clock_switch(info->timing_info->fsp_table[fsp_index], info->bypass_mode);
/* dfi_init_start de-assert */
mmio_clrbits_32(DDRC_DFIMISC(0), 0x20);
/* polling dfi_init_complete re-assert */
do {
val = mmio_read_32(DDRC_DFISTAT(0));
} while ((val & 0x1) == 0x0);
/* 27. set ZQCTL0.dis_srx_zqcl = 1 */
if (fsp_index == 0) {
mmio_setbits_32(DDRC_ZQCTL0(0), BIT(30));
} else if (fsp_index == 1) {
mmio_setbits_32(DDRC_FREQ1_ZQCTL0(0), BIT(30));
} else {
mmio_setbits_32(DDRC_FREQ2_ZQCTL0(0), BIT(30));
}
/* 28,29. exit "self refresh power down" to stay "self refresh 2" */
/* exit SR power down */
mmio_clrsetbits_32(DDRC_PWRCTL(0), 0x60, 0x40);
/* 30. Poll STAT.selfref_state in "Self refresh 2" */
do {
val = mmio_read_32(DDRC_STAT(0));
} while ((val & 0x300) != 0x300);
/* 31. change MR13.VRCG to normal */
emr3 = (emr3 & 0x00f7) | 0x0d00;
lpddr4_mr_write(3, 13, emr3);
/* restore the PHY master */
mmio_write_32(DDRC_DFIPHYMSTR(0), phy_master);
/* 32. issue ZQ if required: zq_calib_short, bit 4 */
/* polling zq_calib_short_busy */
mmio_setbits_32(DDRC_DBGCMD(0), 0x10);
do {
val = mmio_read_32(DDRC_DBGSTAT(0));
} while ((val & 0x10) != 0x0);
/* 33. Reset ZQCTL0.dis_srx_zqcl=0 */
if (fsp_index == 1)
mmio_clrbits_32(DDRC_FREQ1_ZQCTL0(0), BIT(30));
else if (fsp_index == 2)
mmio_clrbits_32(DDRC_FREQ2_ZQCTL0(0), BIT(30));
else
mmio_clrbits_32(DDRC_ZQCTL0(0), BIT(30));
/* set SWCTL.dw_done to 1 and poll SWSTAT.sw_done_ack=1 */
mmio_write_32(DDRC_SWCTL(0), 0x1);
/* wait SWSTAT.sw_done_ack to 1 */
do {
val = mmio_read_32(DDRC_SWSTAT(0));
} while ((val & 0x1) == 0x0);
/* 34. set PWRCTL.stay_in_selfreh=0, exit SR */
mmio_clrbits_32(DDRC_PWRCTL(0), 0x40);
/* wait tXSR */
/* 35. Poll STAT.selfref_state in "Idle" */
do {
val = mmio_read_32(DDRC_STAT(0));
} while ((val & 0x300) != 0x0);
#ifdef DFILP_SPT
/* 36. restore dfi_lp.dfi_lp_en_sr */
mmio_setbits_32(DDRC_DFILPCFG0(0), BIT(8));
#endif
/* 37. re-enable CAM: dis_dq */
mmio_clrbits_32(DDRC_DBG1(0), 0x1);
/* 38. re-enable automatic SR: selfref_en */
mmio_setbits_32(DDRC_PWRCTL(0), 0x1);
/* 39. re-enable automatic ZQ: dis_auto_zq=0 */
/* disable automatic ZQ calibration */
if (fsp_index == 1)
mmio_clrbits_32(DDRC_FREQ1_ZQCTL0(0), BIT(31));
else if (fsp_index == 2)
mmio_clrbits_32(DDRC_FREQ2_ZQCTL0(0), BIT(31));
else
mmio_clrbits_32(DDRC_ZQCTL0(0), BIT(31));
/* 40. re-emable automatic derating: derate_enable */
mmio_write_32(DDRC_DERATEEN(0), derate_backup[0]);
mmio_write_32(DDRC_FREQ1_DERATEEN(0), derate_backup[1]);
mmio_write_32(DDRC_FREQ2_DERATEEN(0), derate_backup[2]);
/* 41. write 1 to PCTRL.port_en */
mmio_write_32(DDRC_PCTRL_0(0), 0x1);
/* 42. enable SBRCTL.scrub_en, skip if never enable it */
}