blob: b5f697334e9187b656c5ffe62e469cb21227c9ed [file] [log] [blame]
/*
* Copyright 2019-2023 NXP
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <bl31/interrupt_mgmt.h>
#include <common/runtime_svc.h>
#include <lib/mmio.h>
#include <lib/spinlock.h>
#include <plat/common/platform.h>
#include <dram.h>
#include <gpc.h>
#define IMX_SIP_DDR_DVFS_GET_FREQ_COUNT 0x10
#define IMX_SIP_DDR_DVFS_GET_FREQ_INFO 0x11
struct dram_info dram_info;
/* lock used for DDR DVFS */
spinlock_t dfs_lock;
#if defined(PLAT_imx8mq)
/* ocram used to dram timing */
static uint8_t dram_timing_saved[13 * 1024] __aligned(8);
#endif
static volatile uint32_t wfe_done;
static volatile bool wait_ddrc_hwffc_done = true;
static unsigned int dev_fsp = 0x1;
static uint32_t fsp_init_reg[3][4] = {
{ DDRC_INIT3(0), DDRC_INIT4(0), DDRC_INIT6(0), DDRC_INIT7(0) },
{ DDRC_FREQ1_INIT3(0), DDRC_FREQ1_INIT4(0), DDRC_FREQ1_INIT6(0), DDRC_FREQ1_INIT7(0) },
{ DDRC_FREQ2_INIT3(0), DDRC_FREQ2_INIT4(0), DDRC_FREQ2_INIT6(0), DDRC_FREQ2_INIT7(0) },
};
#if defined(PLAT_imx8mq)
static inline struct dram_cfg_param *get_cfg_ptr(void *ptr,
void *old_base, void *new_base)
{
uintptr_t offset = (uintptr_t)ptr & ~((uintptr_t)old_base);
return (struct dram_cfg_param *)(offset + new_base);
}
/* copy the dram timing info from DRAM to OCRAM */
void imx8mq_dram_timing_copy(struct dram_timing_info *from)
{
struct dram_timing_info *info = (struct dram_timing_info *)dram_timing_saved;
/* copy the whole 13KB content used for dram timing info */
memcpy(dram_timing_saved, from, sizeof(dram_timing_saved));
/* correct the header after copied into ocram */
info->ddrc_cfg = get_cfg_ptr(info->ddrc_cfg, from, dram_timing_saved);
info->ddrphy_cfg = get_cfg_ptr(info->ddrphy_cfg, from, dram_timing_saved);
info->ddrphy_trained_csr = get_cfg_ptr(info->ddrphy_trained_csr, from, dram_timing_saved);
info->ddrphy_pie = get_cfg_ptr(info->ddrphy_pie, from, dram_timing_saved);
}
#endif
#if defined(PLAT_imx8mp)
static uint32_t lpddr4_mr_read(unsigned int mr_rank, unsigned int mr_addr)
{
unsigned int tmp, drate_byte;
tmp = mmio_read_32(DRC_PERF_MON_MRR0_DAT(0));
mmio_write_32(DRC_PERF_MON_MRR0_DAT(0), tmp | 0x1);
do {
tmp = mmio_read_32(DDRC_MRSTAT(0));
} while (tmp & 0x1);
mmio_write_32(DDRC_MRCTRL0(0), (mr_rank << 4) | 0x1);
mmio_write_32(DDRC_MRCTRL1(0), (mr_addr << 8));
mmio_write_32(DDRC_MRCTRL0(0), (mr_rank << 4) | BIT(31) | 0x1);
/* Workaround for SNPS STAR 9001549457 */
do {
tmp = mmio_read_32(DDRC_MRSTAT(0));
} while (tmp & 0x1);
do {
tmp = mmio_read_32(DRC_PERF_MON_MRR0_DAT(0));
} while (!(tmp & 0x8));
tmp = mmio_read_32(DRC_PERF_MON_MRR1_DAT(0));
drate_byte = (mmio_read_32(DDRC_DERATEEN(0)) >> 4) & 0xff;
tmp = (tmp >> (drate_byte * 8)) & 0xff;
mmio_write_32(DRC_PERF_MON_MRR0_DAT(0), 0x4);
return tmp;
}
#endif
static void get_mr_values(uint32_t (*mr_value)[8])
{
uint32_t init_val;
unsigned int i, fsp_index;
for (fsp_index = 0U; fsp_index < 3U; fsp_index++) {
for (i = 0U; i < 4U; i++) {
init_val = mmio_read_32(fsp_init_reg[fsp_index][i]);
mr_value[fsp_index][2*i] = init_val >> 16;
mr_value[fsp_index][2*i + 1] = init_val & 0xFFFF;
}
#if defined(PLAT_imx8mp)
if (dram_info.dram_type == DDRC_LPDDR4) {
mr_value[fsp_index][5] = lpddr4_mr_read(1, MR12); /* read MR12 from DRAM */
mr_value[fsp_index][7] = lpddr4_mr_read(1, MR14); /* read MR14 from DRAM */
}
#endif
}
}
static void save_rank_setting(void)
{
uint32_t i, offset;
uint32_t pstate_num = dram_info.num_fsp;
/* only support maximum 3 setpoints */
pstate_num = (pstate_num > MAX_FSP_NUM) ? MAX_FSP_NUM : pstate_num;
for (i = 0U; i < pstate_num; i++) {
offset = i ? (i + 1) * 0x1000 : 0U;
dram_info.rank_setting[i][0] = mmio_read_32(DDRC_DRAMTMG2(0) + offset);
if (dram_info.dram_type != DDRC_LPDDR4) {
dram_info.rank_setting[i][1] = mmio_read_32(DDRC_DRAMTMG9(0) + offset);
}
#if !defined(PLAT_imx8mq)
dram_info.rank_setting[i][2] = mmio_read_32(DDRC_RANKCTL(0) + offset);
#endif
}
#if defined(PLAT_imx8mq)
dram_info.rank_setting[0][2] = mmio_read_32(DDRC_RANKCTL(0));
#endif
}
/* Restore the ddrc configs */
void dram_umctl2_init(struct dram_timing_info *timing)
{
struct dram_cfg_param *ddrc_cfg = timing->ddrc_cfg;
unsigned int i;
for (i = 0U; i < timing->ddrc_cfg_num; i++) {
mmio_write_32(ddrc_cfg->reg, ddrc_cfg->val);
ddrc_cfg++;
}
/* set the default fsp to P0 */
mmio_write_32(DDRC_MSTR2(0), 0x0);
}
/* Restore the dram PHY config */
void dram_phy_init(struct dram_timing_info *timing)
{
struct dram_cfg_param *cfg = timing->ddrphy_cfg;
unsigned int i;
/* Restore the PHY init config */
cfg = timing->ddrphy_cfg;
for (i = 0U; i < timing->ddrphy_cfg_num; i++) {
dwc_ddrphy_apb_wr(cfg->reg, cfg->val);
cfg++;
}
/* Restore the DDR PHY CSRs */
cfg = timing->ddrphy_trained_csr;
for (i = 0U; i < timing->ddrphy_trained_csr_num; i++) {
dwc_ddrphy_apb_wr(cfg->reg, cfg->val);
cfg++;
}
/* Load the PIE image */
cfg = timing->ddrphy_pie;
for (i = 0U; i < timing->ddrphy_pie_num; i++) {
dwc_ddrphy_apb_wr(cfg->reg, cfg->val);
cfg++;
}
}
/* EL3 SGI-8 IPI handler for DDR Dynamic frequency scaling */
static uint64_t waiting_dvfs(uint32_t id, uint32_t flags,
void *handle, void *cookie)
{
uint64_t mpidr = read_mpidr_el1();
unsigned int cpu_id = MPIDR_AFFLVL0_VAL(mpidr);
uint32_t irq;
irq = plat_ic_acknowledge_interrupt();
if (irq < 1022U) {
plat_ic_end_of_interrupt(irq);
}
/* set the WFE done status */
spin_lock(&dfs_lock);
wfe_done |= (1 << cpu_id * 8);
dsb();
spin_unlock(&dfs_lock);
while (1) {
/* ddr frequency change done */
if (!wait_ddrc_hwffc_done)
break;
wfe();
}
return 0;
}
void dram_info_init(unsigned long dram_timing_base)
{
uint32_t ddrc_mstr, current_fsp;
unsigned int idx = 0;
uint32_t flags = 0;
uint32_t rc;
unsigned int i;
/* Get the dram type & rank */
ddrc_mstr = mmio_read_32(DDRC_MSTR(0));
dram_info.dram_type = ddrc_mstr & DDR_TYPE_MASK;
dram_info.num_rank = ((ddrc_mstr >> 24) & ACTIVE_RANK_MASK) == 0x3 ?
DDRC_ACTIVE_TWO_RANK : DDRC_ACTIVE_ONE_RANK;
/* Get current fsp info */
current_fsp = mmio_read_32(DDRC_DFIMISC(0));
current_fsp = (current_fsp >> 8) & 0xf;
dram_info.boot_fsp = current_fsp;
dram_info.current_fsp = current_fsp;
#if defined(PLAT_imx8mq)
imx8mq_dram_timing_copy((struct dram_timing_info *)dram_timing_base);
dram_timing_base = (unsigned long) dram_timing_saved;
#endif
get_mr_values(dram_info.mr_table);
dram_info.timing_info = (struct dram_timing_info *)dram_timing_base;
/* get the num of supported fsp */
for (i = 0U; i < 4U; ++i) {
if (!dram_info.timing_info->fsp_table[i]) {
break;
}
idx = i;
}
/* only support maximum 3 setpoints */
dram_info.num_fsp = (i > MAX_FSP_NUM) ? MAX_FSP_NUM : i;
/* no valid fsp table, return directly */
if (i == 0U) {
return;
}
/* save the DRAMTMG2/9 for rank to rank workaround */
save_rank_setting();
/* check if has bypass mode support */
if (dram_info.timing_info->fsp_table[idx] < 666) {
dram_info.bypass_mode = true;
} else {
dram_info.bypass_mode = false;
}
/* Register the EL3 handler for DDR DVFS */
set_interrupt_rm_flag(flags, NON_SECURE);
rc = register_interrupt_type_handler(INTR_TYPE_EL3, waiting_dvfs, flags);
if (rc != 0) {
panic();
}
if (dram_info.dram_type == DDRC_LPDDR4 && current_fsp != 0x0) {
/* flush the L1/L2 cache */
dcsw_op_all(DCCSW);
lpddr4_swffc(&dram_info, dev_fsp, 0x0);
dev_fsp = (~dev_fsp) & 0x1;
} else if (current_fsp != 0x0) {
/* flush the L1/L2 cache */
dcsw_op_all(DCCSW);
ddr4_swffc(&dram_info, 0x0);
}
}
/*
* For each freq return the following info:
*
* r1: data rate
* r2: 1 + dram_core parent
* r3: 1 + dram_alt parent index
* r4: 1 + dram_apb parent index
*
* The parent indices can be used by an OS who manages source clocks to enabled
* them ahead of the switch.
*
* A parent value of "0" means "don't care".
*
* Current implementation of freq switch is hardcoded in
* plat/imx/common/imx8m/clock.c but in theory this can be enhanced to support
* a wide variety of rates.
*/
int dram_dvfs_get_freq_info(void *handle, u_register_t index)
{
switch (index) {
case 0:
SMC_RET4(handle, dram_info.timing_info->fsp_table[0],
1, 0, 5);
case 1:
if (!dram_info.bypass_mode) {
SMC_RET4(handle, dram_info.timing_info->fsp_table[1],
1, 0, 0);
}
SMC_RET4(handle, dram_info.timing_info->fsp_table[1],
2, 2, 4);
case 2:
if (!dram_info.bypass_mode) {
SMC_RET4(handle, dram_info.timing_info->fsp_table[2],
1, 0, 0);
}
SMC_RET4(handle, dram_info.timing_info->fsp_table[2],
2, 3, 3);
case 3:
SMC_RET4(handle, dram_info.timing_info->fsp_table[3],
1, 0, 0);
default:
SMC_RET1(handle, -3);
}
}
int dram_dvfs_handler(uint32_t smc_fid, void *handle,
u_register_t x1, u_register_t x2, u_register_t x3)
{
uint64_t mpidr = read_mpidr_el1();
unsigned int cpu_id = MPIDR_AFFLVL0_VAL(mpidr);
unsigned int fsp_index = x1;
uint32_t online_cores = x2;
if (x1 == IMX_SIP_DDR_DVFS_GET_FREQ_COUNT) {
SMC_RET1(handle, dram_info.num_fsp);
} else if (x1 == IMX_SIP_DDR_DVFS_GET_FREQ_INFO) {
return dram_dvfs_get_freq_info(handle, x2);
} else if (x1 < 3U) {
wait_ddrc_hwffc_done = true;
dsb();
/* trigger the SGI IPI to info other cores */
for (int i = 0; i < PLATFORM_CORE_COUNT; i++) {
if (cpu_id != i && (online_cores & (0x1 << (i * 8)))) {
plat_ic_raise_el3_sgi(0x8, i);
}
}
#if defined(PLAT_imx8mq)
for (unsigned int i = 0; i < PLATFORM_CORE_COUNT; i++) {
if (i != cpu_id && online_cores & (1 << (i * 8))) {
imx_gpc_core_wake(1 << i);
}
}
#endif
/* make sure all the core in WFE */
online_cores &= ~(0x1 << (cpu_id * 8));
while (1) {
if (online_cores == wfe_done) {
break;
}
}
/* flush the L1/L2 cache */
dcsw_op_all(DCCSW);
if (dram_info.dram_type == DDRC_LPDDR4) {
lpddr4_swffc(&dram_info, dev_fsp, fsp_index);
dev_fsp = (~dev_fsp) & 0x1;
} else {
ddr4_swffc(&dram_info, fsp_index);
}
dram_info.current_fsp = fsp_index;
wait_ddrc_hwffc_done = false;
wfe_done = 0;
dsb();
sev();
isb();
}
SMC_RET1(handle, 0);
}