| /* |
| * Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved. |
| * |
| * SPDX-License-Identifier: BSD-3-Clause |
| */ |
| |
| #include <arch.h> |
| #include <arch_helpers.h> |
| #include <assert.h> |
| #include <common_def.h> |
| #include <debug.h> |
| #include <errno.h> |
| #include <platform_def.h> |
| #include <string.h> |
| #include <types.h> |
| #include <utils.h> |
| #include <xlat_tables_arch_private.h> |
| #include <xlat_tables_defs.h> |
| #include <xlat_tables_v2.h> |
| |
| #include "xlat_tables_private.h" |
| |
| /* |
| * Each platform can define the size of its physical and virtual address spaces. |
| * If the platform hasn't defined one or both of them, default to |
| * ADDR_SPACE_SIZE. The latter is deprecated, though. |
| */ |
| #if ERROR_DEPRECATED |
| # ifdef ADDR_SPACE_SIZE |
| # error "ADDR_SPACE_SIZE is deprecated. Use PLAT_xxx_ADDR_SPACE_SIZE instead." |
| # endif |
| #elif defined(ADDR_SPACE_SIZE) |
| # ifndef PLAT_PHY_ADDR_SPACE_SIZE |
| # define PLAT_PHY_ADDR_SPACE_SIZE ADDR_SPACE_SIZE |
| # endif |
| # ifndef PLAT_VIRT_ADDR_SPACE_SIZE |
| # define PLAT_VIRT_ADDR_SPACE_SIZE ADDR_SPACE_SIZE |
| # endif |
| #endif |
| |
| /* |
| * Allocate and initialise the default translation context for the BL image |
| * currently executing. |
| */ |
| REGISTER_XLAT_CONTEXT(tf, MAX_MMAP_REGIONS, MAX_XLAT_TABLES, |
| PLAT_VIRT_ADDR_SPACE_SIZE, PLAT_PHY_ADDR_SPACE_SIZE); |
| |
| #if PLAT_XLAT_TABLES_DYNAMIC |
| |
| /* |
| * The following functions assume that they will be called using subtables only. |
| * The base table can't be unmapped, so it is not needed to do any special |
| * handling for it. |
| */ |
| |
| /* |
| * Returns the index of the array corresponding to the specified translation |
| * table. |
| */ |
| static int xlat_table_get_index(xlat_ctx_t *ctx, const uint64_t *table) |
| { |
| for (unsigned int i = 0; i < ctx->tables_num; i++) |
| if (ctx->tables[i] == table) |
| return i; |
| |
| /* |
| * Maybe we were asked to get the index of the base level table, which |
| * should never happen. |
| */ |
| assert(0); |
| |
| return -1; |
| } |
| |
| /* Returns a pointer to an empty translation table. */ |
| static uint64_t *xlat_table_get_empty(xlat_ctx_t *ctx) |
| { |
| for (unsigned int i = 0; i < ctx->tables_num; i++) |
| if (ctx->tables_mapped_regions[i] == 0) |
| return ctx->tables[i]; |
| |
| return NULL; |
| } |
| |
| /* Increments region count for a given table. */ |
| static void xlat_table_inc_regions_count(xlat_ctx_t *ctx, const uint64_t *table) |
| { |
| ctx->tables_mapped_regions[xlat_table_get_index(ctx, table)]++; |
| } |
| |
| /* Decrements region count for a given table. */ |
| static void xlat_table_dec_regions_count(xlat_ctx_t *ctx, const uint64_t *table) |
| { |
| ctx->tables_mapped_regions[xlat_table_get_index(ctx, table)]--; |
| } |
| |
| /* Returns 0 if the speficied table isn't empty, otherwise 1. */ |
| static int xlat_table_is_empty(xlat_ctx_t *ctx, const uint64_t *table) |
| { |
| return !ctx->tables_mapped_regions[xlat_table_get_index(ctx, table)]; |
| } |
| |
| #else /* PLAT_XLAT_TABLES_DYNAMIC */ |
| |
| /* Returns a pointer to the first empty translation table. */ |
| static uint64_t *xlat_table_get_empty(xlat_ctx_t *ctx) |
| { |
| assert(ctx->next_table < ctx->tables_num); |
| |
| return ctx->tables[ctx->next_table++]; |
| } |
| |
| #endif /* PLAT_XLAT_TABLES_DYNAMIC */ |
| |
| /* |
| * Returns a block/page table descriptor for the given level and attributes. |
| */ |
| static uint64_t xlat_desc(const xlat_ctx_t *ctx, uint32_t attr, |
| unsigned long long addr_pa, int level) |
| { |
| uint64_t desc; |
| int mem_type; |
| |
| /* Make sure that the granularity is fine enough to map this address. */ |
| assert((addr_pa & XLAT_BLOCK_MASK(level)) == 0); |
| |
| desc = addr_pa; |
| /* |
| * There are different translation table descriptors for level 3 and the |
| * rest. |
| */ |
| desc |= (level == XLAT_TABLE_LEVEL_MAX) ? PAGE_DESC : BLOCK_DESC; |
| /* |
| * Always set the access flag, as TF doesn't manage access flag faults. |
| * Deduce other fields of the descriptor based on the MT_NS and MT_RW |
| * memory region attributes. |
| */ |
| desc |= LOWER_ATTRS(ACCESS_FLAG); |
| |
| desc |= (attr & MT_NS) ? LOWER_ATTRS(NS) : 0; |
| desc |= (attr & MT_RW) ? LOWER_ATTRS(AP_RW) : LOWER_ATTRS(AP_RO); |
| |
| /* |
| * Do not allow unprivileged access when the mapping is for a privileged |
| * EL. For translation regimes that do not have mappings for access for |
| * lower exception levels, set AP[2] to AP_NO_ACCESS_UNPRIVILEGED. |
| */ |
| if (ctx->xlat_regime == EL1_EL0_REGIME) { |
| if (attr & MT_USER) { |
| /* EL0 mapping requested, so we give User access */ |
| desc |= LOWER_ATTRS(AP_ACCESS_UNPRIVILEGED); |
| } else { |
| /* EL1 mapping requested, no User access granted */ |
| desc |= LOWER_ATTRS(AP_NO_ACCESS_UNPRIVILEGED); |
| } |
| } else { |
| assert(ctx->xlat_regime == EL3_REGIME); |
| desc |= LOWER_ATTRS(AP_ONE_VA_RANGE_RES1); |
| } |
| |
| /* |
| * Deduce shareability domain and executability of the memory region |
| * from the memory type of the attributes (MT_TYPE). |
| * |
| * Data accesses to device memory and non-cacheable normal memory are |
| * coherent for all observers in the system, and correspondingly are |
| * always treated as being Outer Shareable. Therefore, for these 2 types |
| * of memory, it is not strictly needed to set the shareability field |
| * in the translation tables. |
| */ |
| mem_type = MT_TYPE(attr); |
| if (mem_type == MT_DEVICE) { |
| desc |= LOWER_ATTRS(ATTR_DEVICE_INDEX | OSH); |
| /* |
| * Always map device memory as execute-never. |
| * This is to avoid the possibility of a speculative instruction |
| * fetch, which could be an issue if this memory region |
| * corresponds to a read-sensitive peripheral. |
| */ |
| desc |= xlat_arch_regime_get_xn_desc(ctx->xlat_regime); |
| |
| } else { /* Normal memory */ |
| /* |
| * Always map read-write normal memory as execute-never. |
| * (Trusted Firmware doesn't self-modify its code, therefore |
| * R/W memory is reserved for data storage, which must not be |
| * executable.) |
| * Note that setting the XN bit here is for consistency only. |
| * The function that enables the MMU sets the SCTLR_ELx.WXN bit, |
| * which makes any writable memory region to be treated as |
| * execute-never, regardless of the value of the XN bit in the |
| * translation table. |
| * |
| * For read-only memory, rely on the MT_EXECUTE/MT_EXECUTE_NEVER |
| * attribute to figure out the value of the XN bit. The actual |
| * XN bit(s) to set in the descriptor depends on the context's |
| * translation regime and the policy applied in |
| * xlat_arch_regime_get_xn_desc(). |
| */ |
| if ((attr & MT_RW) || (attr & MT_EXECUTE_NEVER)) { |
| desc |= xlat_arch_regime_get_xn_desc(ctx->xlat_regime); |
| } |
| |
| if (mem_type == MT_MEMORY) { |
| desc |= LOWER_ATTRS(ATTR_IWBWA_OWBWA_NTR_INDEX | ISH); |
| } else { |
| assert(mem_type == MT_NON_CACHEABLE); |
| desc |= LOWER_ATTRS(ATTR_NON_CACHEABLE_INDEX | OSH); |
| } |
| } |
| |
| return desc; |
| } |
| |
| /* |
| * Enumeration of actions that can be made when mapping table entries depending |
| * on the previous value in that entry and information about the region being |
| * mapped. |
| */ |
| typedef enum { |
| |
| /* Do nothing */ |
| ACTION_NONE, |
| |
| /* Write a block (or page, if in level 3) entry. */ |
| ACTION_WRITE_BLOCK_ENTRY, |
| |
| /* |
| * Create a new table and write a table entry pointing to it. Recurse |
| * into it for further processing. |
| */ |
| ACTION_CREATE_NEW_TABLE, |
| |
| /* |
| * There is a table descriptor in this entry, read it and recurse into |
| * that table for further processing. |
| */ |
| ACTION_RECURSE_INTO_TABLE, |
| |
| } action_t; |
| |
| #if PLAT_XLAT_TABLES_DYNAMIC |
| |
| /* |
| * Recursive function that writes to the translation tables and unmaps the |
| * specified region. |
| */ |
| static void xlat_tables_unmap_region(xlat_ctx_t *ctx, mmap_region_t *mm, |
| const uintptr_t table_base_va, |
| uint64_t *const table_base, |
| const int table_entries, |
| const unsigned int level) |
| { |
| assert(level >= ctx->base_level && level <= XLAT_TABLE_LEVEL_MAX); |
| |
| uint64_t *subtable; |
| uint64_t desc; |
| |
| uintptr_t table_idx_va; |
| uintptr_t table_idx_end_va; /* End VA of this entry */ |
| |
| uintptr_t region_end_va = mm->base_va + mm->size - 1; |
| |
| int table_idx; |
| |
| if (mm->base_va > table_base_va) { |
| /* Find the first index of the table affected by the region. */ |
| table_idx_va = mm->base_va & ~XLAT_BLOCK_MASK(level); |
| |
| table_idx = (table_idx_va - table_base_va) >> |
| XLAT_ADDR_SHIFT(level); |
| |
| assert(table_idx < table_entries); |
| } else { |
| /* Start from the beginning of the table. */ |
| table_idx_va = table_base_va; |
| table_idx = 0; |
| } |
| |
| while (table_idx < table_entries) { |
| |
| table_idx_end_va = table_idx_va + XLAT_BLOCK_SIZE(level) - 1; |
| |
| desc = table_base[table_idx]; |
| uint64_t desc_type = desc & DESC_MASK; |
| |
| action_t action = ACTION_NONE; |
| |
| if ((mm->base_va <= table_idx_va) && |
| (region_end_va >= table_idx_end_va)) { |
| |
| /* Region covers all block */ |
| |
| if (level == 3) { |
| /* |
| * Last level, only page descriptors allowed, |
| * erase it. |
| */ |
| assert(desc_type == PAGE_DESC); |
| |
| action = ACTION_WRITE_BLOCK_ENTRY; |
| } else { |
| /* |
| * Other levels can have table descriptors. If |
| * so, recurse into it and erase descriptors |
| * inside it as needed. If there is a block |
| * descriptor, just erase it. If an invalid |
| * descriptor is found, this table isn't |
| * actually mapped, which shouldn't happen. |
| */ |
| if (desc_type == TABLE_DESC) { |
| action = ACTION_RECURSE_INTO_TABLE; |
| } else { |
| assert(desc_type == BLOCK_DESC); |
| action = ACTION_WRITE_BLOCK_ENTRY; |
| } |
| } |
| |
| } else if ((mm->base_va <= table_idx_end_va) || |
| (region_end_va >= table_idx_va)) { |
| |
| /* |
| * Region partially covers block. |
| * |
| * It can't happen in level 3. |
| * |
| * There must be a table descriptor here, if not there |
| * was a problem when mapping the region. |
| */ |
| |
| assert(level < 3); |
| |
| assert(desc_type == TABLE_DESC); |
| |
| action = ACTION_RECURSE_INTO_TABLE; |
| } |
| |
| if (action == ACTION_WRITE_BLOCK_ENTRY) { |
| |
| table_base[table_idx] = INVALID_DESC; |
| xlat_arch_tlbi_va_regime(table_idx_va, ctx->xlat_regime); |
| |
| } else if (action == ACTION_RECURSE_INTO_TABLE) { |
| |
| subtable = (uint64_t *)(uintptr_t)(desc & TABLE_ADDR_MASK); |
| |
| /* Recurse to write into subtable */ |
| xlat_tables_unmap_region(ctx, mm, table_idx_va, |
| subtable, XLAT_TABLE_ENTRIES, |
| level + 1); |
| |
| /* |
| * If the subtable is now empty, remove its reference. |
| */ |
| if (xlat_table_is_empty(ctx, subtable)) { |
| table_base[table_idx] = INVALID_DESC; |
| xlat_arch_tlbi_va_regime(table_idx_va, |
| ctx->xlat_regime); |
| } |
| |
| } else { |
| assert(action == ACTION_NONE); |
| } |
| |
| table_idx++; |
| table_idx_va += XLAT_BLOCK_SIZE(level); |
| |
| /* If reached the end of the region, exit */ |
| if (region_end_va <= table_idx_va) |
| break; |
| } |
| |
| if (level > ctx->base_level) |
| xlat_table_dec_regions_count(ctx, table_base); |
| } |
| |
| #endif /* PLAT_XLAT_TABLES_DYNAMIC */ |
| |
| /* |
| * From the given arguments, it decides which action to take when mapping the |
| * specified region. |
| */ |
| static action_t xlat_tables_map_region_action(const mmap_region_t *mm, |
| const int desc_type, const unsigned long long dest_pa, |
| const uintptr_t table_entry_base_va, const unsigned int level) |
| { |
| uintptr_t mm_end_va = mm->base_va + mm->size - 1; |
| uintptr_t table_entry_end_va = |
| table_entry_base_va + XLAT_BLOCK_SIZE(level) - 1; |
| |
| /* |
| * The descriptor types allowed depend on the current table level. |
| */ |
| |
| if ((mm->base_va <= table_entry_base_va) && |
| (mm_end_va >= table_entry_end_va)) { |
| |
| /* |
| * Table entry is covered by region |
| * -------------------------------- |
| * |
| * This means that this table entry can describe the whole |
| * translation with this granularity in principle. |
| */ |
| |
| if (level == 3) { |
| /* |
| * Last level, only page descriptors are allowed. |
| */ |
| if (desc_type == PAGE_DESC) { |
| /* |
| * There's another region mapped here, don't |
| * overwrite. |
| */ |
| return ACTION_NONE; |
| } else { |
| assert(desc_type == INVALID_DESC); |
| return ACTION_WRITE_BLOCK_ENTRY; |
| } |
| |
| } else { |
| |
| /* |
| * Other levels. Table descriptors are allowed. Block |
| * descriptors too, but they have some limitations. |
| */ |
| |
| if (desc_type == TABLE_DESC) { |
| /* There's already a table, recurse into it. */ |
| return ACTION_RECURSE_INTO_TABLE; |
| |
| } else if (desc_type == INVALID_DESC) { |
| /* |
| * There's nothing mapped here, create a new |
| * entry. |
| * |
| * Check if the destination granularity allows |
| * us to use a block descriptor or we need a |
| * finer table for it. |
| * |
| * Also, check if the current level allows block |
| * descriptors. If not, create a table instead. |
| */ |
| if ((dest_pa & XLAT_BLOCK_MASK(level)) || |
| (level < MIN_LVL_BLOCK_DESC) || |
| (mm->granularity < XLAT_BLOCK_SIZE(level))) |
| return ACTION_CREATE_NEW_TABLE; |
| else |
| return ACTION_WRITE_BLOCK_ENTRY; |
| |
| } else { |
| /* |
| * There's another region mapped here, don't |
| * overwrite. |
| */ |
| assert(desc_type == BLOCK_DESC); |
| |
| return ACTION_NONE; |
| } |
| } |
| |
| } else if ((mm->base_va <= table_entry_end_va) || |
| (mm_end_va >= table_entry_base_va)) { |
| |
| /* |
| * Region partially covers table entry |
| * ----------------------------------- |
| * |
| * This means that this table entry can't describe the whole |
| * translation, a finer table is needed. |
| |
| * There cannot be partial block overlaps in level 3. If that |
| * happens, some of the preliminary checks when adding the |
| * mmap region failed to detect that PA and VA must at least be |
| * aligned to PAGE_SIZE. |
| */ |
| assert(level < 3); |
| |
| if (desc_type == INVALID_DESC) { |
| /* |
| * The block is not fully covered by the region. Create |
| * a new table, recurse into it and try to map the |
| * region with finer granularity. |
| */ |
| return ACTION_CREATE_NEW_TABLE; |
| |
| } else { |
| assert(desc_type == TABLE_DESC); |
| /* |
| * The block is not fully covered by the region, but |
| * there is already a table here. Recurse into it and |
| * try to map with finer granularity. |
| * |
| * PAGE_DESC for level 3 has the same value as |
| * TABLE_DESC, but this code can't run on a level 3 |
| * table because there can't be overlaps in level 3. |
| */ |
| return ACTION_RECURSE_INTO_TABLE; |
| } |
| } |
| |
| /* |
| * This table entry is outside of the region specified in the arguments, |
| * don't write anything to it. |
| */ |
| return ACTION_NONE; |
| } |
| |
| /* |
| * Recursive function that writes to the translation tables and maps the |
| * specified region. On success, it returns the VA of the last byte that was |
| * succesfully mapped. On error, it returns the VA of the next entry that |
| * should have been mapped. |
| */ |
| static uintptr_t xlat_tables_map_region(xlat_ctx_t *ctx, mmap_region_t *mm, |
| const uintptr_t table_base_va, |
| uint64_t *const table_base, |
| const int table_entries, |
| const unsigned int level) |
| { |
| assert(level >= ctx->base_level && level <= XLAT_TABLE_LEVEL_MAX); |
| |
| uintptr_t mm_end_va = mm->base_va + mm->size - 1; |
| |
| uintptr_t table_idx_va; |
| unsigned long long table_idx_pa; |
| |
| uint64_t *subtable; |
| uint64_t desc; |
| |
| int table_idx; |
| |
| if (mm->base_va > table_base_va) { |
| /* Find the first index of the table affected by the region. */ |
| table_idx_va = mm->base_va & ~XLAT_BLOCK_MASK(level); |
| |
| table_idx = (table_idx_va - table_base_va) >> |
| XLAT_ADDR_SHIFT(level); |
| |
| assert(table_idx < table_entries); |
| } else { |
| /* Start from the beginning of the table. */ |
| table_idx_va = table_base_va; |
| table_idx = 0; |
| } |
| |
| #if PLAT_XLAT_TABLES_DYNAMIC |
| if (level > ctx->base_level) |
| xlat_table_inc_regions_count(ctx, table_base); |
| #endif |
| |
| while (table_idx < table_entries) { |
| |
| desc = table_base[table_idx]; |
| |
| table_idx_pa = mm->base_pa + table_idx_va - mm->base_va; |
| |
| action_t action = xlat_tables_map_region_action(mm, |
| desc & DESC_MASK, table_idx_pa, table_idx_va, level); |
| |
| if (action == ACTION_WRITE_BLOCK_ENTRY) { |
| |
| table_base[table_idx] = |
| xlat_desc(ctx, (uint32_t)mm->attr, table_idx_pa, |
| level); |
| |
| } else if (action == ACTION_CREATE_NEW_TABLE) { |
| |
| subtable = xlat_table_get_empty(ctx); |
| if (subtable == NULL) { |
| /* Not enough free tables to map this region */ |
| return table_idx_va; |
| } |
| |
| /* Point to new subtable from this one. */ |
| table_base[table_idx] = TABLE_DESC | (unsigned long)subtable; |
| |
| /* Recurse to write into subtable */ |
| uintptr_t end_va = xlat_tables_map_region(ctx, mm, table_idx_va, |
| subtable, XLAT_TABLE_ENTRIES, |
| level + 1); |
| if (end_va != table_idx_va + XLAT_BLOCK_SIZE(level) - 1) |
| return end_va; |
| |
| } else if (action == ACTION_RECURSE_INTO_TABLE) { |
| |
| subtable = (uint64_t *)(uintptr_t)(desc & TABLE_ADDR_MASK); |
| /* Recurse to write into subtable */ |
| uintptr_t end_va = xlat_tables_map_region(ctx, mm, table_idx_va, |
| subtable, XLAT_TABLE_ENTRIES, |
| level + 1); |
| if (end_va != table_idx_va + XLAT_BLOCK_SIZE(level) - 1) |
| return end_va; |
| |
| } else { |
| |
| assert(action == ACTION_NONE); |
| |
| } |
| |
| table_idx++; |
| table_idx_va += XLAT_BLOCK_SIZE(level); |
| |
| /* If reached the end of the region, exit */ |
| if (mm_end_va <= table_idx_va) |
| break; |
| } |
| |
| return table_idx_va - 1; |
| } |
| |
| void print_mmap(mmap_region_t *const mmap) |
| { |
| #if LOG_LEVEL >= LOG_LEVEL_VERBOSE |
| tf_printf("mmap:\n"); |
| mmap_region_t *mm = mmap; |
| |
| while (mm->size) { |
| tf_printf(" VA:%p PA:0x%llx size:0x%zx attr:0x%x", |
| (void *)mm->base_va, mm->base_pa, |
| mm->size, mm->attr); |
| tf_printf(" granularity:0x%zx\n", mm->granularity); |
| ++mm; |
| }; |
| tf_printf("\n"); |
| #endif |
| } |
| |
| /* |
| * Function that verifies that a region can be mapped. |
| * Returns: |
| * 0: Success, the mapping is allowed. |
| * EINVAL: Invalid values were used as arguments. |
| * ERANGE: The memory limits were surpassed. |
| * ENOMEM: There is not enough memory in the mmap array. |
| * EPERM: Region overlaps another one in an invalid way. |
| */ |
| static int mmap_add_region_check(xlat_ctx_t *ctx, const mmap_region_t *mm) |
| { |
| unsigned long long base_pa = mm->base_pa; |
| uintptr_t base_va = mm->base_va; |
| size_t size = mm->size; |
| size_t granularity = mm->granularity; |
| |
| unsigned long long end_pa = base_pa + size - 1; |
| uintptr_t end_va = base_va + size - 1; |
| |
| if (!IS_PAGE_ALIGNED(base_pa) || !IS_PAGE_ALIGNED(base_va) || |
| !IS_PAGE_ALIGNED(size)) |
| return -EINVAL; |
| |
| if ((granularity != XLAT_BLOCK_SIZE(1)) && |
| (granularity != XLAT_BLOCK_SIZE(2)) && |
| (granularity != XLAT_BLOCK_SIZE(3))) { |
| return -EINVAL; |
| } |
| |
| /* Check for overflows */ |
| if ((base_pa > end_pa) || (base_va > end_va)) |
| return -ERANGE; |
| |
| if ((base_va + (uintptr_t)size - (uintptr_t)1) > ctx->va_max_address) |
| return -ERANGE; |
| |
| if ((base_pa + (unsigned long long)size - 1ULL) > ctx->pa_max_address) |
| return -ERANGE; |
| |
| /* Check that there is space in the ctx->mmap array */ |
| if (ctx->mmap[ctx->mmap_num - 1].size != 0) |
| return -ENOMEM; |
| |
| /* Check for PAs and VAs overlaps with all other regions */ |
| for (mmap_region_t *mm_cursor = ctx->mmap; |
| mm_cursor->size; ++mm_cursor) { |
| |
| uintptr_t mm_cursor_end_va = mm_cursor->base_va |
| + mm_cursor->size - 1; |
| |
| /* |
| * Check if one of the regions is completely inside the other |
| * one. |
| */ |
| int fully_overlapped_va = |
| ((base_va >= mm_cursor->base_va) && |
| (end_va <= mm_cursor_end_va)) || |
| |
| ((mm_cursor->base_va >= base_va) && |
| (mm_cursor_end_va <= end_va)); |
| |
| /* |
| * Full VA overlaps are only allowed if both regions are |
| * identity mapped (zero offset) or have the same VA to PA |
| * offset. Also, make sure that it's not the exact same area. |
| * This can only be done with static regions. |
| */ |
| if (fully_overlapped_va) { |
| |
| #if PLAT_XLAT_TABLES_DYNAMIC |
| if ((mm->attr & MT_DYNAMIC) || |
| (mm_cursor->attr & MT_DYNAMIC)) |
| return -EPERM; |
| #endif /* PLAT_XLAT_TABLES_DYNAMIC */ |
| if ((mm_cursor->base_va - mm_cursor->base_pa) != |
| (base_va - base_pa)) |
| return -EPERM; |
| |
| if ((base_va == mm_cursor->base_va) && |
| (size == mm_cursor->size)) |
| return -EPERM; |
| |
| } else { |
| /* |
| * If the regions do not have fully overlapping VAs, |
| * then they must have fully separated VAs and PAs. |
| * Partial overlaps are not allowed |
| */ |
| |
| unsigned long long mm_cursor_end_pa = |
| mm_cursor->base_pa + mm_cursor->size - 1; |
| |
| int separated_pa = |
| (end_pa < mm_cursor->base_pa) || |
| (base_pa > mm_cursor_end_pa); |
| int separated_va = |
| (end_va < mm_cursor->base_va) || |
| (base_va > mm_cursor_end_va); |
| |
| if (!(separated_va && separated_pa)) |
| return -EPERM; |
| } |
| } |
| |
| return 0; |
| } |
| |
| void mmap_add_region_ctx(xlat_ctx_t *ctx, const mmap_region_t *mm) |
| { |
| mmap_region_t *mm_cursor = ctx->mmap; |
| const mmap_region_t *mm_end = ctx->mmap + ctx->mmap_num; |
| mmap_region_t *mm_last; |
| unsigned long long end_pa = mm->base_pa + mm->size - 1; |
| uintptr_t end_va = mm->base_va + mm->size - 1; |
| int ret; |
| |
| /* Ignore empty regions */ |
| if (!mm->size) |
| return; |
| |
| /* Static regions must be added before initializing the xlat tables. */ |
| assert(!ctx->initialized); |
| |
| ret = mmap_add_region_check(ctx, mm); |
| if (ret != 0) { |
| ERROR("mmap_add_region_check() failed. error %d\n", ret); |
| assert(0); |
| return; |
| } |
| |
| /* |
| * Find correct place in mmap to insert new region. |
| * |
| * 1 - Lower region VA end first. |
| * 2 - Smaller region size first. |
| * |
| * VA 0 0xFF |
| * |
| * 1st |------| |
| * 2nd |------------| |
| * 3rd |------| |
| * 4th |---| |
| * 5th |---| |
| * 6th |----------| |
| * 7th |-------------------------------------| |
| * |
| * This is required for overlapping regions only. It simplifies adding |
| * regions with the loop in xlat_tables_init_internal because the outer |
| * ones won't overwrite block or page descriptors of regions added |
| * previously. |
| * |
| * Overlapping is only allowed for static regions. |
| */ |
| |
| while ((mm_cursor->base_va + mm_cursor->size - 1) < end_va |
| && mm_cursor->size) |
| ++mm_cursor; |
| |
| while ((mm_cursor->base_va + mm_cursor->size - 1 == end_va) |
| && (mm_cursor->size < mm->size)) |
| ++mm_cursor; |
| |
| /* |
| * Find the last entry marker in the mmap |
| */ |
| mm_last = ctx->mmap; |
| while ((mm_last->size != 0U) && (mm_last < mm_end)) { |
| ++mm_last; |
| } |
| |
| /* |
| * Check if we have enough space in the memory mapping table. |
| * This shouldn't happen as we have checked in mmap_add_region_check |
| * that there is free space. |
| */ |
| assert(mm_last->size == 0U); |
| |
| /* Make room for new region by moving other regions up by one place */ |
| memmove(mm_cursor + 1, mm_cursor, |
| (uintptr_t)mm_last - (uintptr_t)mm_cursor); |
| |
| /* |
| * Check we haven't lost the empty sentinel from the end of the array. |
| * This shouldn't happen as we have checked in mmap_add_region_check |
| * that there is free space. |
| */ |
| assert(mm_end->size == 0U); |
| |
| *mm_cursor = *mm; |
| |
| if (end_pa > ctx->max_pa) |
| ctx->max_pa = end_pa; |
| if (end_va > ctx->max_va) |
| ctx->max_va = end_va; |
| } |
| |
| void mmap_add_region(unsigned long long base_pa, |
| uintptr_t base_va, |
| size_t size, |
| mmap_attr_t attr) |
| { |
| mmap_region_t mm = MAP_REGION(base_pa, base_va, size, attr); |
| mmap_add_region_ctx(&tf_xlat_ctx, &mm); |
| } |
| |
| |
| void mmap_add_ctx(xlat_ctx_t *ctx, const mmap_region_t *mm) |
| { |
| while (mm->size) { |
| mmap_add_region_ctx(ctx, mm); |
| mm++; |
| } |
| } |
| |
| void mmap_add(const mmap_region_t *mm) |
| { |
| mmap_add_ctx(&tf_xlat_ctx, mm); |
| } |
| |
| #if PLAT_XLAT_TABLES_DYNAMIC |
| |
| int mmap_add_dynamic_region_ctx(xlat_ctx_t *ctx, mmap_region_t *mm) |
| { |
| mmap_region_t *mm_cursor = ctx->mmap; |
| mmap_region_t *mm_last = mm_cursor + ctx->mmap_num; |
| unsigned long long end_pa = mm->base_pa + mm->size - 1; |
| uintptr_t end_va = mm->base_va + mm->size - 1; |
| int ret; |
| |
| /* Nothing to do */ |
| if (!mm->size) |
| return 0; |
| |
| /* Now this region is a dynamic one */ |
| mm->attr |= MT_DYNAMIC; |
| |
| ret = mmap_add_region_check(ctx, mm); |
| if (ret != 0) |
| return ret; |
| |
| /* |
| * Find the adequate entry in the mmap array in the same way done for |
| * static regions in mmap_add_region_ctx(). |
| */ |
| |
| while ((mm_cursor->base_va + mm_cursor->size - 1) |
| < end_va && mm_cursor->size) |
| ++mm_cursor; |
| |
| while ((mm_cursor->base_va + mm_cursor->size - 1 == end_va) |
| && (mm_cursor->size < mm->size)) |
| ++mm_cursor; |
| |
| /* Make room for new region by moving other regions up by one place */ |
| memmove(mm_cursor + 1, mm_cursor, |
| (uintptr_t)mm_last - (uintptr_t)mm_cursor); |
| |
| /* |
| * Check we haven't lost the empty sentinal from the end of the array. |
| * This shouldn't happen as we have checked in mmap_add_region_check |
| * that there is free space. |
| */ |
| assert(mm_last->size == 0); |
| |
| *mm_cursor = *mm; |
| |
| /* |
| * Update the translation tables if the xlat tables are initialized. If |
| * not, this region will be mapped when they are initialized. |
| */ |
| if (ctx->initialized) { |
| uintptr_t end_va = xlat_tables_map_region(ctx, mm_cursor, |
| 0, ctx->base_table, ctx->base_table_entries, |
| ctx->base_level); |
| |
| /* Failed to map, remove mmap entry, unmap and return error. */ |
| if (end_va != mm_cursor->base_va + mm_cursor->size - 1) { |
| memmove(mm_cursor, mm_cursor + 1, |
| (uintptr_t)mm_last - (uintptr_t)mm_cursor); |
| |
| /* |
| * Check if the mapping function actually managed to map |
| * anything. If not, just return now. |
| */ |
| if (mm->base_va >= end_va) |
| return -ENOMEM; |
| |
| /* |
| * Something went wrong after mapping some table |
| * entries, undo every change done up to this point. |
| */ |
| mmap_region_t unmap_mm = { |
| .base_pa = 0, |
| .base_va = mm->base_va, |
| .size = end_va - mm->base_va, |
| .attr = 0 |
| }; |
| xlat_tables_unmap_region(ctx, &unmap_mm, 0, ctx->base_table, |
| ctx->base_table_entries, ctx->base_level); |
| |
| return -ENOMEM; |
| } |
| |
| /* |
| * Make sure that all entries are written to the memory. There |
| * is no need to invalidate entries when mapping dynamic regions |
| * because new table/block/page descriptors only replace old |
| * invalid descriptors, that aren't TLB cached. |
| */ |
| dsbishst(); |
| } |
| |
| if (end_pa > ctx->max_pa) |
| ctx->max_pa = end_pa; |
| if (end_va > ctx->max_va) |
| ctx->max_va = end_va; |
| |
| return 0; |
| } |
| |
| int mmap_add_dynamic_region(unsigned long long base_pa, |
| uintptr_t base_va, size_t size, mmap_attr_t attr) |
| { |
| mmap_region_t mm = MAP_REGION(base_pa, base_va, size, attr); |
| return mmap_add_dynamic_region_ctx(&tf_xlat_ctx, &mm); |
| } |
| |
| /* |
| * Removes the region with given base Virtual Address and size from the given |
| * context. |
| * |
| * Returns: |
| * 0: Success. |
| * EINVAL: Invalid values were used as arguments (region not found). |
| * EPERM: Tried to remove a static region. |
| */ |
| int mmap_remove_dynamic_region_ctx(xlat_ctx_t *ctx, uintptr_t base_va, |
| size_t size) |
| { |
| mmap_region_t *mm = ctx->mmap; |
| mmap_region_t *mm_last = mm + ctx->mmap_num; |
| int update_max_va_needed = 0; |
| int update_max_pa_needed = 0; |
| |
| /* Check sanity of mmap array. */ |
| assert(mm[ctx->mmap_num].size == 0); |
| |
| while (mm->size) { |
| if ((mm->base_va == base_va) && (mm->size == size)) |
| break; |
| ++mm; |
| } |
| |
| /* Check that the region was found */ |
| if (mm->size == 0) |
| return -EINVAL; |
| |
| /* If the region is static it can't be removed */ |
| if (!(mm->attr & MT_DYNAMIC)) |
| return -EPERM; |
| |
| /* Check if this region is using the top VAs or PAs. */ |
| if ((mm->base_va + mm->size - 1) == ctx->max_va) |
| update_max_va_needed = 1; |
| if ((mm->base_pa + mm->size - 1) == ctx->max_pa) |
| update_max_pa_needed = 1; |
| |
| /* Update the translation tables if needed */ |
| if (ctx->initialized) { |
| xlat_tables_unmap_region(ctx, mm, 0, ctx->base_table, |
| ctx->base_table_entries, |
| ctx->base_level); |
| xlat_arch_tlbi_va_sync(); |
| } |
| |
| /* Remove this region by moving the rest down by one place. */ |
| memmove(mm, mm + 1, (uintptr_t)mm_last - (uintptr_t)mm); |
| |
| /* Check if we need to update the max VAs and PAs */ |
| if (update_max_va_needed) { |
| ctx->max_va = 0; |
| mm = ctx->mmap; |
| while (mm->size) { |
| if ((mm->base_va + mm->size - 1) > ctx->max_va) |
| ctx->max_va = mm->base_va + mm->size - 1; |
| ++mm; |
| } |
| } |
| |
| if (update_max_pa_needed) { |
| ctx->max_pa = 0; |
| mm = ctx->mmap; |
| while (mm->size) { |
| if ((mm->base_pa + mm->size - 1) > ctx->max_pa) |
| ctx->max_pa = mm->base_pa + mm->size - 1; |
| ++mm; |
| } |
| } |
| |
| return 0; |
| } |
| |
| int mmap_remove_dynamic_region(uintptr_t base_va, size_t size) |
| { |
| return mmap_remove_dynamic_region_ctx(&tf_xlat_ctx, |
| base_va, size); |
| } |
| |
| #endif /* PLAT_XLAT_TABLES_DYNAMIC */ |
| |
| #if LOG_LEVEL >= LOG_LEVEL_VERBOSE |
| |
| /* Print the attributes of the specified block descriptor. */ |
| static void xlat_desc_print(const xlat_ctx_t *ctx, uint64_t desc) |
| { |
| int mem_type_index = ATTR_INDEX_GET(desc); |
| xlat_regime_t xlat_regime = ctx->xlat_regime; |
| |
| if (mem_type_index == ATTR_IWBWA_OWBWA_NTR_INDEX) { |
| tf_printf("MEM"); |
| } else if (mem_type_index == ATTR_NON_CACHEABLE_INDEX) { |
| tf_printf("NC"); |
| } else { |
| assert(mem_type_index == ATTR_DEVICE_INDEX); |
| tf_printf("DEV"); |
| } |
| |
| const char *priv_str = "(PRIV)"; |
| const char *user_str = "(USER)"; |
| |
| /* |
| * Showing Privileged vs Unprivileged only makes sense for EL1&0 |
| * mappings |
| */ |
| const char *ro_str = "-RO"; |
| const char *rw_str = "-RW"; |
| const char *no_access_str = "-NOACCESS"; |
| |
| if (xlat_regime == EL3_REGIME) { |
| /* For EL3, the AP[2] bit is all what matters */ |
| tf_printf((desc & LOWER_ATTRS(AP_RO)) ? ro_str : rw_str); |
| } else { |
| const char *ap_str = (desc & LOWER_ATTRS(AP_RO)) ? ro_str : rw_str; |
| tf_printf(ap_str); |
| tf_printf(priv_str); |
| /* |
| * EL0 can only have the same permissions as EL1 or no |
| * permissions at all. |
| */ |
| tf_printf((desc & LOWER_ATTRS(AP_ACCESS_UNPRIVILEGED)) |
| ? ap_str : no_access_str); |
| tf_printf(user_str); |
| } |
| |
| const char *xn_str = "-XN"; |
| const char *exec_str = "-EXEC"; |
| |
| if (xlat_regime == EL3_REGIME) { |
| /* For EL3, the XN bit is all what matters */ |
| tf_printf(LOWER_ATTRS(XN) & desc ? xn_str : exec_str); |
| } else { |
| /* For EL0 and EL1, we need to know who has which rights */ |
| tf_printf(LOWER_ATTRS(PXN) & desc ? xn_str : exec_str); |
| tf_printf(priv_str); |
| |
| tf_printf(LOWER_ATTRS(UXN) & desc ? xn_str : exec_str); |
| tf_printf(user_str); |
| } |
| |
| tf_printf(LOWER_ATTRS(NS) & desc ? "-NS" : "-S"); |
| } |
| |
| static const char * const level_spacers[] = { |
| "[LV0] ", |
| " [LV1] ", |
| " [LV2] ", |
| " [LV3] " |
| }; |
| |
| static const char *invalid_descriptors_ommited = |
| "%s(%d invalid descriptors omitted)\n"; |
| |
| /* |
| * Recursive function that reads the translation tables passed as an argument |
| * and prints their status. |
| */ |
| static void xlat_tables_print_internal(xlat_ctx_t *ctx, |
| const uintptr_t table_base_va, |
| uint64_t *const table_base, const int table_entries, |
| const unsigned int level) |
| { |
| assert(level <= XLAT_TABLE_LEVEL_MAX); |
| |
| uint64_t desc; |
| uintptr_t table_idx_va = table_base_va; |
| int table_idx = 0; |
| |
| size_t level_size = XLAT_BLOCK_SIZE(level); |
| |
| /* |
| * Keep track of how many invalid descriptors are counted in a row. |
| * Whenever multiple invalid descriptors are found, only the first one |
| * is printed, and a line is added to inform about how many descriptors |
| * have been omitted. |
| */ |
| int invalid_row_count = 0; |
| |
| while (table_idx < table_entries) { |
| |
| desc = table_base[table_idx]; |
| |
| if ((desc & DESC_MASK) == INVALID_DESC) { |
| |
| if (invalid_row_count == 0) { |
| tf_printf("%sVA:%p size:0x%zx\n", |
| level_spacers[level], |
| (void *)table_idx_va, level_size); |
| } |
| invalid_row_count++; |
| |
| } else { |
| |
| if (invalid_row_count > 1) { |
| tf_printf(invalid_descriptors_ommited, |
| level_spacers[level], |
| invalid_row_count - 1); |
| } |
| invalid_row_count = 0; |
| |
| /* |
| * Check if this is a table or a block. Tables are only |
| * allowed in levels other than 3, but DESC_PAGE has the |
| * same value as DESC_TABLE, so we need to check. |
| */ |
| if (((desc & DESC_MASK) == TABLE_DESC) && |
| (level < XLAT_TABLE_LEVEL_MAX)) { |
| /* |
| * Do not print any PA for a table descriptor, |
| * as it doesn't directly map physical memory |
| * but instead points to the next translation |
| * table in the translation table walk. |
| */ |
| tf_printf("%sVA:%p size:0x%zx\n", |
| level_spacers[level], |
| (void *)table_idx_va, level_size); |
| |
| uintptr_t addr_inner = desc & TABLE_ADDR_MASK; |
| |
| xlat_tables_print_internal(ctx, table_idx_va, |
| (uint64_t *)addr_inner, |
| XLAT_TABLE_ENTRIES, level + 1); |
| } else { |
| tf_printf("%sVA:%p PA:0x%llx size:0x%zx ", |
| level_spacers[level], |
| (void *)table_idx_va, |
| (unsigned long long)(desc & TABLE_ADDR_MASK), |
| level_size); |
| xlat_desc_print(ctx, desc); |
| tf_printf("\n"); |
| } |
| } |
| |
| table_idx++; |
| table_idx_va += level_size; |
| } |
| |
| if (invalid_row_count > 1) { |
| tf_printf(invalid_descriptors_ommited, |
| level_spacers[level], invalid_row_count - 1); |
| } |
| } |
| |
| #endif /* LOG_LEVEL >= LOG_LEVEL_VERBOSE */ |
| |
| void xlat_tables_print(xlat_ctx_t *ctx) |
| { |
| #if LOG_LEVEL >= LOG_LEVEL_VERBOSE |
| const char *xlat_regime_str; |
| if (ctx->xlat_regime == EL1_EL0_REGIME) { |
| xlat_regime_str = "1&0"; |
| } else { |
| assert(ctx->xlat_regime == EL3_REGIME); |
| xlat_regime_str = "3"; |
| } |
| VERBOSE("Translation tables state:\n"); |
| VERBOSE(" Xlat regime: EL%s\n", xlat_regime_str); |
| VERBOSE(" Max allowed PA: 0x%llx\n", ctx->pa_max_address); |
| VERBOSE(" Max allowed VA: %p\n", (void *) ctx->va_max_address); |
| VERBOSE(" Max mapped PA: 0x%llx\n", ctx->max_pa); |
| VERBOSE(" Max mapped VA: %p\n", (void *) ctx->max_va); |
| |
| VERBOSE(" Initial lookup level: %i\n", ctx->base_level); |
| VERBOSE(" Entries @initial lookup level: %i\n", |
| ctx->base_table_entries); |
| |
| int used_page_tables; |
| #if PLAT_XLAT_TABLES_DYNAMIC |
| used_page_tables = 0; |
| for (unsigned int i = 0; i < ctx->tables_num; ++i) { |
| if (ctx->tables_mapped_regions[i] != 0) |
| ++used_page_tables; |
| } |
| #else |
| used_page_tables = ctx->next_table; |
| #endif |
| VERBOSE(" Used %i sub-tables out of %i (spare: %i)\n", |
| used_page_tables, ctx->tables_num, |
| ctx->tables_num - used_page_tables); |
| |
| xlat_tables_print_internal(ctx, 0, ctx->base_table, |
| ctx->base_table_entries, ctx->base_level); |
| #endif /* LOG_LEVEL >= LOG_LEVEL_VERBOSE */ |
| } |
| |
| void init_xlat_tables_ctx(xlat_ctx_t *ctx) |
| { |
| assert(ctx != NULL); |
| assert(!ctx->initialized); |
| assert(ctx->xlat_regime == EL3_REGIME || ctx->xlat_regime == EL1_EL0_REGIME); |
| assert(!is_mmu_enabled_ctx(ctx)); |
| |
| mmap_region_t *mm = ctx->mmap; |
| |
| print_mmap(mm); |
| |
| /* All tables must be zeroed before mapping any region. */ |
| |
| for (unsigned int i = 0; i < ctx->base_table_entries; i++) |
| ctx->base_table[i] = INVALID_DESC; |
| |
| for (unsigned int j = 0; j < ctx->tables_num; j++) { |
| #if PLAT_XLAT_TABLES_DYNAMIC |
| ctx->tables_mapped_regions[j] = 0; |
| #endif |
| for (unsigned int i = 0; i < XLAT_TABLE_ENTRIES; i++) |
| ctx->tables[j][i] = INVALID_DESC; |
| } |
| |
| while (mm->size) { |
| uintptr_t end_va = xlat_tables_map_region(ctx, mm, 0, ctx->base_table, |
| ctx->base_table_entries, ctx->base_level); |
| |
| if (end_va != mm->base_va + mm->size - 1) { |
| ERROR("Not enough memory to map region:\n" |
| " VA:%p PA:0x%llx size:0x%zx attr:0x%x\n", |
| (void *)mm->base_va, mm->base_pa, mm->size, mm->attr); |
| panic(); |
| } |
| |
| mm++; |
| } |
| |
| assert(ctx->pa_max_address <= xlat_arch_get_max_supported_pa()); |
| assert(ctx->max_va <= ctx->va_max_address); |
| assert(ctx->max_pa <= ctx->pa_max_address); |
| |
| ctx->initialized = 1; |
| |
| xlat_tables_print(ctx); |
| } |
| |
| void init_xlat_tables(void) |
| { |
| init_xlat_tables_ctx(&tf_xlat_ctx); |
| } |
| |
| /* |
| * If dynamic allocation of new regions is disabled then by the time we call the |
| * function enabling the MMU, we'll have registered all the memory regions to |
| * map for the system's lifetime. Therefore, at this point we know the maximum |
| * physical address that will ever be mapped. |
| * |
| * If dynamic allocation is enabled then we can't make any such assumption |
| * because the maximum physical address could get pushed while adding a new |
| * region. Therefore, in this case we have to assume that the whole address |
| * space size might be mapped. |
| */ |
| #ifdef PLAT_XLAT_TABLES_DYNAMIC |
| #define MAX_PHYS_ADDR tf_xlat_ctx.pa_max_address |
| #else |
| #define MAX_PHYS_ADDR tf_xlat_ctx.max_pa |
| #endif |
| |
| #ifdef AARCH32 |
| |
| void enable_mmu_secure(unsigned int flags) |
| { |
| enable_mmu_arch(flags, tf_xlat_ctx.base_table, MAX_PHYS_ADDR, |
| tf_xlat_ctx.va_max_address); |
| } |
| |
| #else |
| |
| void enable_mmu_el1(unsigned int flags) |
| { |
| enable_mmu_arch(flags, tf_xlat_ctx.base_table, MAX_PHYS_ADDR, |
| tf_xlat_ctx.va_max_address); |
| } |
| |
| void enable_mmu_el3(unsigned int flags) |
| { |
| enable_mmu_arch(flags, tf_xlat_ctx.base_table, MAX_PHYS_ADDR, |
| tf_xlat_ctx.va_max_address); |
| } |
| |
| #endif /* AARCH32 */ |
| |
| /* |
| * Do a translation table walk to find the block or page descriptor that maps |
| * virtual_addr. |
| * |
| * On success, return the address of the descriptor within the translation |
| * table. Its lookup level is stored in '*out_level'. |
| * On error, return NULL. |
| * |
| * xlat_table_base |
| * Base address for the initial lookup level. |
| * xlat_table_base_entries |
| * Number of entries in the translation table for the initial lookup level. |
| * virt_addr_space_size |
| * Size in bytes of the virtual address space. |
| */ |
| static uint64_t *find_xlat_table_entry(uintptr_t virtual_addr, |
| void *xlat_table_base, |
| int xlat_table_base_entries, |
| unsigned long long virt_addr_space_size, |
| int *out_level) |
| { |
| unsigned int start_level; |
| uint64_t *table; |
| int entries; |
| |
| VERBOSE("%s(%p)\n", __func__, (void *)virtual_addr); |
| |
| start_level = GET_XLAT_TABLE_LEVEL_BASE(virt_addr_space_size); |
| VERBOSE("Starting translation table walk from level %i\n", start_level); |
| |
| table = xlat_table_base; |
| entries = xlat_table_base_entries; |
| |
| for (unsigned int level = start_level; |
| level <= XLAT_TABLE_LEVEL_MAX; |
| ++level) { |
| int idx; |
| uint64_t desc; |
| uint64_t desc_type; |
| |
| VERBOSE("Table address: %p\n", (void *)table); |
| |
| idx = XLAT_TABLE_IDX(virtual_addr, level); |
| VERBOSE("Index into level %i table: %i\n", level, idx); |
| if (idx >= entries) { |
| VERBOSE("Invalid address\n"); |
| return NULL; |
| } |
| |
| desc = table[idx]; |
| desc_type = desc & DESC_MASK; |
| VERBOSE("Descriptor at level %i: 0x%llx\n", level, |
| (unsigned long long)desc); |
| |
| if (desc_type == INVALID_DESC) { |
| VERBOSE("Invalid entry (memory not mapped)\n"); |
| return NULL; |
| } |
| |
| if (level == XLAT_TABLE_LEVEL_MAX) { |
| /* |
| * There can't be table entries at the final lookup |
| * level. |
| */ |
| assert(desc_type == PAGE_DESC); |
| VERBOSE("Descriptor mapping a memory page (size: 0x%llx)\n", |
| (unsigned long long)XLAT_BLOCK_SIZE(XLAT_TABLE_LEVEL_MAX)); |
| *out_level = level; |
| return &table[idx]; |
| } |
| |
| if (desc_type == BLOCK_DESC) { |
| VERBOSE("Descriptor mapping a memory block (size: 0x%llx)\n", |
| (unsigned long long)XLAT_BLOCK_SIZE(level)); |
| *out_level = level; |
| return &table[idx]; |
| } |
| |
| assert(desc_type == TABLE_DESC); |
| VERBOSE("Table descriptor, continuing xlat table walk...\n"); |
| table = (uint64_t *)(uintptr_t)(desc & TABLE_ADDR_MASK); |
| entries = XLAT_TABLE_ENTRIES; |
| } |
| |
| /* |
| * This shouldn't be reached, the translation table walk should end at |
| * most at level XLAT_TABLE_LEVEL_MAX and return from inside the loop. |
| */ |
| assert(0); |
| |
| return NULL; |
| } |
| |
| |
| static int get_mem_attributes_internal(const xlat_ctx_t *ctx, uintptr_t base_va, |
| uint32_t *attributes, uint64_t **table_entry, |
| unsigned long long *addr_pa, int *table_level) |
| { |
| uint64_t *entry; |
| uint64_t desc; |
| int level; |
| unsigned long long virt_addr_space_size; |
| |
| /* |
| * Sanity-check arguments. |
| */ |
| assert(ctx != NULL); |
| assert(ctx->initialized); |
| assert(ctx->xlat_regime == EL1_EL0_REGIME || ctx->xlat_regime == EL3_REGIME); |
| |
| virt_addr_space_size = (unsigned long long)ctx->va_max_address + 1; |
| assert(virt_addr_space_size > 0); |
| |
| entry = find_xlat_table_entry(base_va, |
| ctx->base_table, |
| ctx->base_table_entries, |
| virt_addr_space_size, |
| &level); |
| if (entry == NULL) { |
| WARN("Address %p is not mapped.\n", (void *)base_va); |
| return -EINVAL; |
| } |
| |
| if (addr_pa != NULL) { |
| *addr_pa = *entry & TABLE_ADDR_MASK; |
| } |
| |
| if (table_entry != NULL) { |
| *table_entry = entry; |
| } |
| |
| if (table_level != NULL) { |
| *table_level = level; |
| } |
| |
| desc = *entry; |
| |
| #if LOG_LEVEL >= LOG_LEVEL_VERBOSE |
| VERBOSE("Attributes: "); |
| xlat_desc_print(ctx, desc); |
| tf_printf("\n"); |
| #endif /* LOG_LEVEL >= LOG_LEVEL_VERBOSE */ |
| |
| assert(attributes != NULL); |
| *attributes = 0; |
| |
| int attr_index = (desc >> ATTR_INDEX_SHIFT) & ATTR_INDEX_MASK; |
| |
| if (attr_index == ATTR_IWBWA_OWBWA_NTR_INDEX) { |
| *attributes |= MT_MEMORY; |
| } else if (attr_index == ATTR_NON_CACHEABLE_INDEX) { |
| *attributes |= MT_NON_CACHEABLE; |
| } else { |
| assert(attr_index == ATTR_DEVICE_INDEX); |
| *attributes |= MT_DEVICE; |
| } |
| |
| int ap2_bit = (desc >> AP2_SHIFT) & 1; |
| |
| if (ap2_bit == AP2_RW) |
| *attributes |= MT_RW; |
| |
| if (ctx->xlat_regime == EL1_EL0_REGIME) { |
| int ap1_bit = (desc >> AP1_SHIFT) & 1; |
| if (ap1_bit == AP1_ACCESS_UNPRIVILEGED) |
| *attributes |= MT_USER; |
| } |
| |
| int ns_bit = (desc >> NS_SHIFT) & 1; |
| |
| if (ns_bit == 1) |
| *attributes |= MT_NS; |
| |
| uint64_t xn_mask = xlat_arch_regime_get_xn_desc(ctx->xlat_regime); |
| |
| if ((desc & xn_mask) == xn_mask) { |
| *attributes |= MT_EXECUTE_NEVER; |
| } else { |
| assert((desc & xn_mask) == 0); |
| } |
| |
| return 0; |
| } |
| |
| |
| int get_mem_attributes(const xlat_ctx_t *ctx, uintptr_t base_va, |
| uint32_t *attributes) |
| { |
| return get_mem_attributes_internal(ctx, base_va, attributes, |
| NULL, NULL, NULL); |
| } |
| |
| |
| int change_mem_attributes(xlat_ctx_t *ctx, |
| uintptr_t base_va, |
| size_t size, |
| uint32_t attr) |
| { |
| /* Note: This implementation isn't optimized. */ |
| |
| assert(ctx != NULL); |
| assert(ctx->initialized); |
| |
| unsigned long long virt_addr_space_size = |
| (unsigned long long)ctx->va_max_address + 1; |
| assert(virt_addr_space_size > 0); |
| |
| if (!IS_PAGE_ALIGNED(base_va)) { |
| WARN("%s: Address %p is not aligned on a page boundary.\n", |
| __func__, (void *)base_va); |
| return -EINVAL; |
| } |
| |
| if (size == 0) { |
| WARN("%s: Size is 0.\n", __func__); |
| return -EINVAL; |
| } |
| |
| if ((size % PAGE_SIZE) != 0) { |
| WARN("%s: Size 0x%zx is not a multiple of a page size.\n", |
| __func__, size); |
| return -EINVAL; |
| } |
| |
| if (((attr & MT_EXECUTE_NEVER) == 0) && ((attr & MT_RW) != 0)) { |
| WARN("%s() doesn't allow to remap memory as read-write and executable.\n", |
| __func__); |
| return -EINVAL; |
| } |
| |
| int pages_count = size / PAGE_SIZE; |
| |
| VERBOSE("Changing memory attributes of %i pages starting from address %p...\n", |
| pages_count, (void *)base_va); |
| |
| uintptr_t base_va_original = base_va; |
| |
| /* |
| * Sanity checks. |
| */ |
| for (int i = 0; i < pages_count; ++i) { |
| uint64_t *entry; |
| uint64_t desc; |
| int level; |
| |
| entry = find_xlat_table_entry(base_va, |
| ctx->base_table, |
| ctx->base_table_entries, |
| virt_addr_space_size, |
| &level); |
| if (entry == NULL) { |
| WARN("Address %p is not mapped.\n", (void *)base_va); |
| return -EINVAL; |
| } |
| |
| desc = *entry; |
| |
| /* |
| * Check that all the required pages are mapped at page |
| * granularity. |
| */ |
| if (((desc & DESC_MASK) != PAGE_DESC) || |
| (level != XLAT_TABLE_LEVEL_MAX)) { |
| WARN("Address %p is not mapped at the right granularity.\n", |
| (void *)base_va); |
| WARN("Granularity is 0x%llx, should be 0x%x.\n", |
| (unsigned long long)XLAT_BLOCK_SIZE(level), PAGE_SIZE); |
| return -EINVAL; |
| } |
| |
| /* |
| * If the region type is device, it shouldn't be executable. |
| */ |
| int attr_index = (desc >> ATTR_INDEX_SHIFT) & ATTR_INDEX_MASK; |
| if (attr_index == ATTR_DEVICE_INDEX) { |
| if ((attr & MT_EXECUTE_NEVER) == 0) { |
| WARN("Setting device memory as executable at address %p.", |
| (void *)base_va); |
| return -EINVAL; |
| } |
| } |
| |
| base_va += PAGE_SIZE; |
| } |
| |
| /* Restore original value. */ |
| base_va = base_va_original; |
| |
| VERBOSE("%s: All pages are mapped, now changing their attributes...\n", |
| __func__); |
| |
| for (int i = 0; i < pages_count; ++i) { |
| |
| uint32_t old_attr, new_attr; |
| uint64_t *entry; |
| int level; |
| unsigned long long addr_pa; |
| |
| get_mem_attributes_internal(ctx, base_va, &old_attr, |
| &entry, &addr_pa, &level); |
| |
| VERBOSE("Old attributes: 0x%x\n", old_attr); |
| |
| /* |
| * From attr, only MT_RO/MT_RW, MT_EXECUTE/MT_EXECUTE_NEVER and |
| * MT_USER/MT_PRIVILEGED are taken into account. Any other |
| * information is ignored. |
| */ |
| |
| /* Clean the old attributes so that they can be rebuilt. */ |
| new_attr = old_attr & ~(MT_RW|MT_EXECUTE_NEVER|MT_USER); |
| |
| /* |
| * Update attributes, but filter out the ones this function |
| * isn't allowed to change. |
| */ |
| new_attr |= attr & (MT_RW|MT_EXECUTE_NEVER|MT_USER); |
| |
| VERBOSE("New attributes: 0x%x\n", new_attr); |
| |
| /* |
| * The break-before-make sequence requires writing an invalid |
| * descriptor and making sure that the system sees the change |
| * before writing the new descriptor. |
| */ |
| *entry = INVALID_DESC; |
| |
| /* Invalidate any cached copy of this mapping in the TLBs. */ |
| xlat_arch_tlbi_va_regime(base_va, ctx->xlat_regime); |
| |
| /* Ensure completion of the invalidation. */ |
| xlat_arch_tlbi_va_sync(); |
| |
| /* Write new descriptor */ |
| *entry = xlat_desc(ctx, new_attr, addr_pa, level); |
| |
| base_va += PAGE_SIZE; |
| } |
| |
| /* Ensure that the last descriptor writen is seen by the system. */ |
| dsbish(); |
| |
| return 0; |
| } |