blob: 34fdaee94c72f2710ec63dd6b644030454a496ae [file] [log] [blame]
/*
* Copyright (c) 2015-2017, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef __EL3_COMMON_MACROS_S__
#define __EL3_COMMON_MACROS_S__
#include <arch.h>
#include <asm_macros.S>
/*
* Helper macro to initialise EL3 registers we care about.
*/
.macro el3_arch_init_common _exception_vectors
/* ---------------------------------------------------------------------
* SCTLR_EL3 has already been initialised - read current value before
* modifying.
*
* SCTLR_EL3.I: Enable the instruction cache.
*
* SCTLR_EL3.SA: Enable Stack Aligment check. A SP alignment fault
* exception is generated if a load or store instruction executed at
* EL3 uses the SP as the base address and the SP is not aligned to a
* 16-byte boundary.
*
* SCTLR_EL3.A: Enable Alignment fault checking. All instructions that
* load or store one or more registers have an alignment check that the
* address being accessed is aligned to the size of the data element(s)
* being accessed.
* ---------------------------------------------------------------------
*/
mov x1, #(SCTLR_I_BIT | SCTLR_A_BIT | SCTLR_SA_BIT)
mrs x0, sctlr_el3
orr x0, x0, x1
msr sctlr_el3, x0
isb
#ifdef IMAGE_BL31
/* ---------------------------------------------------------------------
* Initialise the per-cpu cache pointer to the CPU.
* This is done early to enable crash reporting to have access to crash
* stack. Since crash reporting depends on cpu_data to report the
* unhandled exception, not doing so can lead to recursive exceptions
* due to a NULL TPIDR_EL3.
* ---------------------------------------------------------------------
*/
bl init_cpu_data_ptr
#endif /* IMAGE_BL31 */
/* ---------------------------------------------------------------------
* Set the exception vectors.
* ---------------------------------------------------------------------
*/
adr x0, \_exception_vectors
msr vbar_el3, x0
isb
/* ---------------------------------------------------------------------
* Initialise SCR_EL3, setting all fields rather than relying on hw.
* All fields are architecturally UNKNOWN on reset. The following fields
* do not change during the TF lifetime. The remaining fields are set to
* zero here but are updated ahead of transitioning to a lower EL in the
* function cm_init_context_common().
*
* SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
* EL2, EL1 and EL0 are not trapped to EL3.
*
* SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
* EL2, EL1 and EL0 are not trapped to EL3.
*
* SCR_EL3.SIF: Set to one to disable instruction fetches from
* Non-secure memory.
*
* SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
* both Security states and both Execution states.
*
* SCR_EL3.EA: Set to one to route External Aborts and SError Interrupts
* to EL3 when executing at any EL.
* ---------------------------------------------------------------------
*/
mov x0, #((SCR_RESET_VAL | SCR_EA_BIT | SCR_SIF_BIT) \
& ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT))
msr scr_el3, x0
/* ---------------------------------------------------------------------
* Initialise MDCR_EL3, setting all fields rather than relying on hw.
* Some fields are architecturally UNKNOWN on reset.
*
* MDCR_EL3.SDD: Set to one to disable AArch64 Secure self-hosted debug.
* Debug exceptions, other than Breakpoint Instruction exceptions, are
* disabled from all ELs in Secure state.
*
* MDCR_EL3.SPD32: Set to 0b10 to disable AArch32 Secure self-hosted
* privileged debug from S-EL1.
*
* MDCR_EL3.NSPB (ARM v8.2): SPE enabled in non-secure state and
* disabled in secure state. Accesses to SPE registers at SEL1 generate
* trap exceptions to EL3.
*
* MDCR_EL3.TDOSA: Set to zero so that EL2 and EL2 System register
* access to the powerdown debug registers do not trap to EL3.
*
* MDCR_EL3.TDA: Set to zero to allow EL0, EL1 and EL2 access to the
* debug registers, other than those registers that are controlled by
* MDCR_EL3.TDOSA.
*
* MDCR_EL3.TPM: Set to zero so that EL0, EL1, and EL2 System register
* accesses to all Performance Monitors registers do not trap to EL3.
* ---------------------------------------------------------------------
*/
mov_imm x0, ((MDCR_EL3_RESET_VAL | MDCR_SDD_BIT | MDCR_SPD32(MDCR_SPD32_DISABLE)) \
& ~(MDCR_TDOSA_BIT | MDCR_TDA_BIT | MDCR_TPM_BIT))
#if ENABLE_SPE_FOR_LOWER_ELS
/* Detect if SPE is implemented */
mrs x1, id_aa64dfr0_el1
ubfx x1, x1, #ID_AA64DFR0_PMS_SHIFT, #ID_AA64DFR0_PMS_LENGTH
cmp x1, #0x1
b.ne 1f
/* Enable SPE for use by normal world */
orr x0, x0, #MDCR_NSPB(MDCR_NSPB_EL1)
1:
#endif
msr mdcr_el3, x0
/* ---------------------------------------------------------------------
* Enable External Aborts and SError Interrupts now that the exception
* vectors have been setup.
* ---------------------------------------------------------------------
*/
msr daifclr, #DAIF_ABT_BIT
/* ---------------------------------------------------------------------
* Initialise CPTR_EL3, setting all fields rather than relying on hw.
* All fields are architecturally UNKNOWN on reset.
*
* CPTR_EL3.TCPAC: Set to zero so that any accesses to CPACR_EL1,
* CPTR_EL2, CPACR, or HCPTR do not trap to EL3.
*
* CPTR_EL3.TTA: Set to zero so that System register accesses to the
* trace registers do not trap to EL3.
*
* CPTR_EL3.TFP: Set to zero so that accesses to Advanced SIMD and
* floating-point functionality do not trap to EL3.
* ---------------------------------------------------------------------
*/
mov_imm x0, (CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TTA_BIT | TFP_BIT))
msr cptr_el3, x0
.endm
/* -----------------------------------------------------------------------------
* This is the super set of actions that need to be performed during a cold boot
* or a warm boot in EL3. This code is shared by BL1 and BL31.
*
* This macro will always perform reset handling, architectural initialisations
* and stack setup. The rest of the actions are optional because they might not
* be needed, depending on the context in which this macro is called. This is
* why this macro is parameterised ; each parameter allows to enable/disable
* some actions.
*
* _init_sctlr:
* Whether the macro needs to initialise SCTLR_EL3, including configuring
* the endianness of data accesses.
*
* _warm_boot_mailbox:
* Whether the macro needs to detect the type of boot (cold/warm). The
* detection is based on the platform entrypoint address : if it is zero
* then it is a cold boot, otherwise it is a warm boot. In the latter case,
* this macro jumps on the platform entrypoint address.
*
* _secondary_cold_boot:
* Whether the macro needs to identify the CPU that is calling it: primary
* CPU or secondary CPU. The primary CPU will be allowed to carry on with
* the platform initialisations, while the secondaries will be put in a
* platform-specific state in the meantime.
*
* If the caller knows this macro will only be called by the primary CPU
* then this parameter can be defined to 0 to skip this step.
*
* _init_memory:
* Whether the macro needs to initialise the memory.
*
* _init_c_runtime:
* Whether the macro needs to initialise the C runtime environment.
*
* _exception_vectors:
* Address of the exception vectors to program in the VBAR_EL3 register.
* -----------------------------------------------------------------------------
*/
.macro el3_entrypoint_common \
_init_sctlr, _warm_boot_mailbox, _secondary_cold_boot, \
_init_memory, _init_c_runtime, _exception_vectors
.if \_init_sctlr
/* -------------------------------------------------------------
* This is the initialisation of SCTLR_EL3 and so must ensure
* that all fields are explicitly set rather than relying on hw.
* Some fields reset to an IMPLEMENTATION DEFINED value and
* others are architecturally UNKNOWN on reset.
*
* SCTLR.EE: Set the CPU endianness before doing anything that
* might involve memory reads or writes. Set to zero to select
* Little Endian.
*
* SCTLR_EL3.WXN: For the EL3 translation regime, this field can
* force all memory regions that are writeable to be treated as
* XN (Execute-never). Set to zero so that this control has no
* effect on memory access permissions.
*
* SCTLR_EL3.SA: Set to zero to disable Stack Aligment check.
*
* SCTLR_EL3.A: Set to zero to disable Alignment fault checking.
* -------------------------------------------------------------
*/
mov_imm x0, (SCTLR_RESET_VAL & ~(SCTLR_EE_BIT | SCTLR_WXN_BIT \
| SCTLR_SA_BIT | SCTLR_A_BIT))
msr sctlr_el3, x0
isb
.endif /* _init_sctlr */
.if \_warm_boot_mailbox
/* -------------------------------------------------------------
* This code will be executed for both warm and cold resets.
* Now is the time to distinguish between the two.
* Query the platform entrypoint address and if it is not zero
* then it means it is a warm boot so jump to this address.
* -------------------------------------------------------------
*/
bl plat_get_my_entrypoint
cbz x0, do_cold_boot
br x0
do_cold_boot:
.endif /* _warm_boot_mailbox */
/* ---------------------------------------------------------------------
* It is a cold boot.
* Perform any processor specific actions upon reset e.g. cache, TLB
* invalidations etc.
* ---------------------------------------------------------------------
*/
bl reset_handler
el3_arch_init_common \_exception_vectors
.if \_secondary_cold_boot
/* -------------------------------------------------------------
* Check if this is a primary or secondary CPU cold boot.
* The primary CPU will set up the platform while the
* secondaries are placed in a platform-specific state until the
* primary CPU performs the necessary actions to bring them out
* of that state and allows entry into the OS.
* -------------------------------------------------------------
*/
bl plat_is_my_cpu_primary
cbnz w0, do_primary_cold_boot
/* This is a cold boot on a secondary CPU */
bl plat_secondary_cold_boot_setup
/* plat_secondary_cold_boot_setup() is not supposed to return */
bl el3_panic
do_primary_cold_boot:
.endif /* _secondary_cold_boot */
/* ---------------------------------------------------------------------
* Initialize memory now. Secondary CPU initialization won't get to this
* point.
* ---------------------------------------------------------------------
*/
.if \_init_memory
bl platform_mem_init
.endif /* _init_memory */
/* ---------------------------------------------------------------------
* Init C runtime environment:
* - Zero-initialise the NOBITS sections. There are 2 of them:
* - the .bss section;
* - the coherent memory section (if any).
* - Relocate the data section from ROM to RAM, if required.
* ---------------------------------------------------------------------
*/
.if \_init_c_runtime
#ifdef IMAGE_BL31
/* -------------------------------------------------------------
* Invalidate the RW memory used by the BL31 image. This
* includes the data and NOBITS sections. This is done to
* safeguard against possible corruption of this memory by
* dirty cache lines in a system cache as a result of use by
* an earlier boot loader stage.
* -------------------------------------------------------------
*/
adr x0, __RW_START__
adr x1, __RW_END__
sub x1, x1, x0
bl inv_dcache_range
#endif /* IMAGE_BL31 */
ldr x0, =__BSS_START__
ldr x1, =__BSS_SIZE__
bl zeromem
#if USE_COHERENT_MEM
ldr x0, =__COHERENT_RAM_START__
ldr x1, =__COHERENT_RAM_UNALIGNED_SIZE__
bl zeromem
#endif
#ifdef IMAGE_BL1
ldr x0, =__DATA_RAM_START__
ldr x1, =__DATA_ROM_START__
ldr x2, =__DATA_SIZE__
bl memcpy16
#endif
.endif /* _init_c_runtime */
/* ---------------------------------------------------------------------
* Use SP_EL0 for the C runtime stack.
* ---------------------------------------------------------------------
*/
msr spsel, #0
/* ---------------------------------------------------------------------
* Allocate a stack whose memory will be marked as Normal-IS-WBWA when
* the MMU is enabled. There is no risk of reading stale stack memory
* after enabling the MMU as only the primary CPU is running at the
* moment.
* ---------------------------------------------------------------------
*/
bl plat_set_my_stack
#if STACK_PROTECTOR_ENABLED
.if \_init_c_runtime
bl update_stack_protector_canary
.endif /* _init_c_runtime */
#endif
.endm
#endif /* __EL3_COMMON_MACROS_S__ */