| /* |
| * Copyright (c) 2023, Linaro Limited and Contributors. All rights reserved. |
| * |
| * SPDX-License-Identifier: BSD-3-Clause |
| */ |
| |
| #include <assert.h> |
| |
| #include <common/fdt_wrappers.h> |
| #include <common/runtime_svc.h> |
| #include <libfdt.h> |
| #include <smccc_helpers.h> |
| |
| /* default platform version is 0.0 */ |
| static int platform_version_major; |
| static int platform_version_minor; |
| |
| #define SMC_FASTCALL 0x80000000 |
| #define SMC64_FUNCTION (SMC_FASTCALL | 0x40000000) |
| #define SIP_FUNCTION (SMC64_FUNCTION | 0x02000000) |
| #define SIP_FUNCTION_ID(n) (SIP_FUNCTION | (n)) |
| |
| /* |
| * We do not use SMCCC_ARCH_SOC_ID here because qemu_sbsa is virtual platform |
| * which uses SoC present in QEMU. And they can change on their own while we |
| * need version of whole 'virtual hardware platform'. |
| */ |
| #define SIP_SVC_VERSION SIP_FUNCTION_ID(1) |
| #define SIP_SVC_GET_GIC SIP_FUNCTION_ID(100) |
| #define SIP_SVC_GET_GIC_ITS SIP_FUNCTION_ID(101) |
| #define SIP_SVC_GET_CPU_COUNT SIP_FUNCTION_ID(200) |
| #define SIP_SVC_GET_CPU_NODE SIP_FUNCTION_ID(201) |
| #define SIP_SVC_GET_MEMORY_NODE_COUNT SIP_FUNCTION_ID(300) |
| #define SIP_SVC_GET_MEMORY_NODE SIP_FUNCTION_ID(301) |
| |
| static uint64_t gic_its_addr; |
| |
| typedef struct { |
| uint32_t nodeid; |
| uint32_t mpidr; |
| } cpu_data; |
| |
| typedef struct{ |
| uint32_t nodeid; |
| uint64_t addr_base; |
| uint64_t addr_size; |
| } memory_data; |
| |
| static struct { |
| uint32_t num_cpus; |
| uint32_t num_memnodes; |
| cpu_data cpu[PLATFORM_CORE_COUNT]; |
| memory_data memory[PLAT_MAX_MEM_NODES]; |
| } dynamic_platform_info; |
| |
| void sbsa_set_gic_bases(const uintptr_t gicd_base, const uintptr_t gicr_base); |
| uintptr_t sbsa_get_gicd(void); |
| uintptr_t sbsa_get_gicr(void); |
| |
| /* |
| * QEMU provides us with minimal information about hardware platform using |
| * minimalistic DeviceTree. This is not a Linux DeviceTree. It is not even |
| * a firmware DeviceTree. |
| * |
| * It is information passed from QEMU to describe the information a hardware |
| * platform would have other mechanisms to discover at runtime, that are |
| * affected by the QEMU command line. |
| * |
| * Ultimately this device tree will be replaced by IPC calls to an emulated SCP. |
| * And when we do that, we won't then have to rewrite Normal world firmware to |
| * cope. |
| */ |
| |
| void read_cpuinfo_from_dt(void *dtb) |
| { |
| int node; |
| int prev; |
| int cpu = 0; |
| uint32_t nodeid = 0; |
| uintptr_t mpidr; |
| |
| /* |
| * QEMU gives us this DeviceTree node: |
| * numa-node-id entries are only when NUMA config is used |
| * |
| * cpus { |
| * #size-cells = <0x00>; |
| * #address-cells = <0x02>; |
| * |
| * cpu@0 { |
| * numa-node-id = <0x00>; |
| * reg = <0x00 0x00>; |
| * }; |
| * |
| * cpu@1 { |
| * numa-node-id = <0x03>; |
| * reg = <0x00 0x01>; |
| * }; |
| * }; |
| */ |
| node = fdt_path_offset(dtb, "/cpus"); |
| if (node < 0) { |
| ERROR("No information about cpus in DeviceTree.\n"); |
| panic(); |
| } |
| |
| /* |
| * QEMU numbers cpus from 0 and there can be /cpus/cpu-map present so we |
| * cannot use fdt_first_subnode() here |
| */ |
| node = fdt_path_offset(dtb, "/cpus/cpu@0"); |
| |
| while (node > 0) { |
| if (fdt_getprop(dtb, node, "reg", NULL)) { |
| fdt_get_reg_props_by_index(dtb, node, 0, &mpidr, NULL); |
| } else { |
| ERROR("Incomplete information for cpu %d in DeviceTree.\n", cpu); |
| panic(); |
| } |
| |
| if (fdt_getprop(dtb, node, "numa-node-id", NULL)) { |
| fdt_read_uint32(dtb, node, "numa-node-id", &nodeid); |
| } |
| |
| dynamic_platform_info.cpu[cpu].nodeid = nodeid; |
| dynamic_platform_info.cpu[cpu].mpidr = mpidr; |
| |
| INFO("CPU %d: node-id: %d, mpidr: %ld\n", cpu, nodeid, mpidr); |
| |
| cpu++; |
| |
| prev = node; |
| node = fdt_next_subnode(dtb, prev); |
| } |
| |
| dynamic_platform_info.num_cpus = cpu; |
| INFO("Found %d cpus\n", dynamic_platform_info.num_cpus); |
| } |
| |
| void read_meminfo_from_dt(void *dtb) |
| { |
| const fdt32_t *prop; |
| const char *type; |
| int prev, node; |
| int len; |
| uint32_t nodeid = 0; |
| uint32_t memnode = 0; |
| uint32_t higher_value, lower_value; |
| uint64_t cur_base, cur_size; |
| |
| /* |
| * QEMU gives us this DeviceTree node: |
| * |
| * memory@100c0000000 { |
| * numa-node-id = <0x01>; |
| * reg = <0x100 0xc0000000 0x00 0x40000000>; |
| * device_type = "memory"; |
| * }; |
| * |
| * memory@10000000000 { |
| * numa-node-id = <0x00>; |
| * reg = <0x100 0x00 0x00 0xc0000000>; |
| * device_type = "memory"; |
| * } |
| */ |
| |
| for (prev = 0;; prev = node) { |
| node = fdt_next_node(dtb, prev, NULL); |
| if (node < 0) { |
| break; |
| } |
| |
| type = fdt_getprop(dtb, node, "device_type", &len); |
| if (type && strncmp(type, "memory", len) == 0) { |
| if (fdt_getprop(dtb, node, "numa-node-id", NULL)) { |
| fdt_read_uint32(dtb, node, "numa-node-id", &nodeid); |
| } |
| |
| dynamic_platform_info.memory[memnode].nodeid = nodeid; |
| |
| /* |
| * Get the 'reg' property of this node and |
| * assume two 8 bytes for base and size. |
| */ |
| prop = fdt_getprop(dtb, node, "reg", &len); |
| if (prop != 0 && len == (2 * sizeof(int64_t))) { |
| higher_value = fdt32_to_cpu(*prop); |
| lower_value = fdt32_to_cpu(*(prop + 1)); |
| cur_base = (uint64_t)(lower_value | ((uint64_t)higher_value) << 32); |
| |
| higher_value = fdt32_to_cpu(*(prop + 2)); |
| lower_value = fdt32_to_cpu(*(prop + 3)); |
| cur_size = (uint64_t)(lower_value | ((uint64_t)higher_value) << 32); |
| |
| dynamic_platform_info.memory[memnode].addr_base = cur_base; |
| dynamic_platform_info.memory[memnode].addr_size = cur_size; |
| |
| INFO("RAM %d: node-id: %d, address: 0x%lx - 0x%lx\n", |
| memnode, |
| dynamic_platform_info.memory[memnode].nodeid, |
| dynamic_platform_info.memory[memnode].addr_base, |
| dynamic_platform_info.memory[memnode].addr_base + |
| dynamic_platform_info.memory[memnode].addr_size - 1); |
| } |
| |
| memnode++; |
| } |
| } |
| |
| dynamic_platform_info.num_memnodes = memnode; |
| } |
| |
| void read_platform_config_from_dt(void *dtb) |
| { |
| int node; |
| const fdt64_t *data; |
| int err; |
| uintptr_t gicd_base; |
| uintptr_t gicr_base; |
| |
| /* |
| * QEMU gives us this DeviceTree node: |
| * |
| * intc { |
| * reg = < 0x00 0x40060000 0x00 0x10000 |
| * 0x00 0x40080000 0x00 0x4000000>; |
| * its { |
| * reg = <0x00 0x44081000 0x00 0x20000>; |
| * }; |
| * }; |
| */ |
| node = fdt_path_offset(dtb, "/intc"); |
| if (node < 0) { |
| return; |
| } |
| |
| data = fdt_getprop(dtb, node, "reg", NULL); |
| if (data == NULL) { |
| return; |
| } |
| |
| err = fdt_get_reg_props_by_index(dtb, node, 0, &gicd_base, NULL); |
| if (err < 0) { |
| ERROR("Failed to read GICD reg property of GIC node\n"); |
| return; |
| } |
| INFO("GICD base = 0x%lx\n", gicd_base); |
| |
| err = fdt_get_reg_props_by_index(dtb, node, 1, &gicr_base, NULL); |
| if (err < 0) { |
| ERROR("Failed to read GICR reg property of GIC node\n"); |
| return; |
| } |
| INFO("GICR base = 0x%lx\n", gicr_base); |
| |
| sbsa_set_gic_bases(gicd_base, gicr_base); |
| |
| node = fdt_path_offset(dtb, "/intc/its"); |
| if (node < 0) { |
| return; |
| } |
| |
| err = fdt_get_reg_props_by_index(dtb, node, 0, &gic_its_addr, NULL); |
| if (err < 0) { |
| ERROR("Failed to read GICI reg property of GIC node\n"); |
| return; |
| } |
| INFO("GICI base = 0x%lx\n", gic_its_addr); |
| } |
| |
| void read_platform_version(void *dtb) |
| { |
| int node; |
| |
| node = fdt_path_offset(dtb, "/"); |
| if (node >= 0) { |
| platform_version_major = fdt32_ld(fdt_getprop(dtb, node, |
| "machine-version-major", NULL)); |
| platform_version_minor = fdt32_ld(fdt_getprop(dtb, node, |
| "machine-version-minor", NULL)); |
| } |
| } |
| |
| void sip_svc_init(void) |
| { |
| /* Read DeviceTree data before MMU is enabled */ |
| |
| void *dtb = (void *)(uintptr_t)ARM_PRELOADED_DTB_BASE; |
| int err; |
| |
| err = fdt_open_into(dtb, dtb, PLAT_QEMU_DT_MAX_SIZE); |
| if (err < 0) { |
| ERROR("Invalid Device Tree at %p: error %d\n", dtb, err); |
| return; |
| } |
| |
| err = fdt_check_header(dtb); |
| if (err < 0) { |
| ERROR("Invalid DTB file passed\n"); |
| return; |
| } |
| |
| read_platform_version(dtb); |
| INFO("Platform version: %d.%d\n", platform_version_major, platform_version_minor); |
| |
| read_platform_config_from_dt(dtb); |
| read_cpuinfo_from_dt(dtb); |
| read_meminfo_from_dt(dtb); |
| } |
| |
| /* |
| * This function is responsible for handling all SiP calls from the NS world |
| */ |
| uintptr_t sbsa_sip_smc_handler(uint32_t smc_fid, |
| u_register_t x1, |
| u_register_t x2, |
| u_register_t x3, |
| u_register_t x4, |
| void *cookie, |
| void *handle, |
| u_register_t flags) |
| { |
| uint32_t ns; |
| uint64_t index; |
| |
| /* Determine which security state this SMC originated from */ |
| ns = is_caller_non_secure(flags); |
| if (!ns) { |
| ERROR("%s: wrong world SMC (0x%x)\n", __func__, smc_fid); |
| SMC_RET1(handle, SMC_UNK); |
| } |
| |
| switch (smc_fid) { |
| case SIP_SVC_VERSION: |
| INFO("Platform version requested\n"); |
| SMC_RET3(handle, NULL, platform_version_major, platform_version_minor); |
| |
| case SIP_SVC_GET_GIC: |
| SMC_RET3(handle, NULL, sbsa_get_gicd(), sbsa_get_gicr()); |
| |
| case SIP_SVC_GET_GIC_ITS: |
| SMC_RET2(handle, NULL, gic_its_addr); |
| |
| case SIP_SVC_GET_CPU_COUNT: |
| SMC_RET2(handle, NULL, dynamic_platform_info.num_cpus); |
| |
| case SIP_SVC_GET_CPU_NODE: |
| index = x1; |
| if (index < PLATFORM_CORE_COUNT) { |
| SMC_RET3(handle, NULL, |
| dynamic_platform_info.cpu[index].nodeid, |
| dynamic_platform_info.cpu[index].mpidr); |
| } else { |
| SMC_RET1(handle, SMC_ARCH_CALL_INVAL_PARAM); |
| } |
| |
| case SIP_SVC_GET_MEMORY_NODE_COUNT: |
| SMC_RET2(handle, NULL, dynamic_platform_info.num_memnodes); |
| |
| case SIP_SVC_GET_MEMORY_NODE: |
| index = x1; |
| if (index < PLAT_MAX_MEM_NODES) { |
| SMC_RET4(handle, NULL, |
| dynamic_platform_info.memory[index].nodeid, |
| dynamic_platform_info.memory[index].addr_base, |
| dynamic_platform_info.memory[index].addr_size); |
| } else { |
| SMC_RET1(handle, SMC_ARCH_CALL_INVAL_PARAM); |
| } |
| |
| default: |
| ERROR("%s: unhandled SMC (0x%x) (function id: %d)\n", __func__, smc_fid, |
| smc_fid - SIP_FUNCTION); |
| SMC_RET1(handle, SMC_UNK); |
| } |
| } |
| |
| int sbsa_sip_smc_setup(void) |
| { |
| return 0; |
| } |
| |
| /* Define a runtime service descriptor for fast SMC calls */ |
| DECLARE_RT_SVC( |
| sbsa_sip_svc, |
| OEN_SIP_START, |
| OEN_SIP_END, |
| SMC_TYPE_FAST, |
| sbsa_sip_smc_setup, |
| sbsa_sip_smc_handler |
| ); |