blob: 8b44df29f8f5a45deb40cebe29a109e0320e1d7b [file] [log] [blame]
/*
* Copyright (c) 2016-2018, Arm Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include <platform_def.h>
#include <arch.h>
#include <arch_helpers.h>
#include <common/debug.h>
#include <lib/cassert.h>
#include <lib/utils.h>
#include <lib/xlat_tables/xlat_tables.h>
#include <plat/common/common_def.h>
#include "xlat_tables_private.h"
#if LOG_LEVEL >= LOG_LEVEL_VERBOSE
#define LVL0_SPACER ""
#define LVL1_SPACER " "
#define LVL2_SPACER " "
#define LVL3_SPACER " "
#define get_level_spacer(level) \
(((level) == U(0)) ? LVL0_SPACER : \
(((level) == U(1)) ? LVL1_SPACER : \
(((level) == U(2)) ? LVL2_SPACER : LVL3_SPACER)))
#define debug_print(...) printf(__VA_ARGS__)
#else
#define debug_print(...) ((void)0)
#endif
#define UNSET_DESC ~0ULL
#define MT_UNKNOWN ~0U
static uint64_t xlat_tables[MAX_XLAT_TABLES][XLAT_TABLE_ENTRIES]
__aligned(XLAT_TABLE_SIZE) __section(".xlat_table");
static unsigned int next_xlat;
static unsigned long long xlat_max_pa;
static uintptr_t xlat_max_va;
static uint64_t execute_never_mask;
static uint64_t ap1_mask;
/*
* Array of all memory regions stored in order of ascending base address.
* The list is terminated by the first entry with size == 0.
*/
static mmap_region_t mmap[MAX_MMAP_REGIONS + 1];
void print_mmap(void)
{
#if LOG_LEVEL >= LOG_LEVEL_VERBOSE
debug_print("mmap:\n");
mmap_region_t *mm = mmap;
while (mm->size != 0U) {
debug_print(" VA:%p PA:0x%llx size:0x%zx attr:0x%x\n",
(void *)mm->base_va, mm->base_pa,
mm->size, mm->attr);
++mm;
};
debug_print("\n");
#endif
}
void mmap_add_region(unsigned long long base_pa, uintptr_t base_va,
size_t size, unsigned int attr)
{
mmap_region_t *mm = mmap;
const mmap_region_t *mm_last = mm + ARRAY_SIZE(mmap) - 1U;
unsigned long long end_pa = base_pa + size - 1U;
uintptr_t end_va = base_va + size - 1U;
assert(IS_PAGE_ALIGNED(base_pa));
assert(IS_PAGE_ALIGNED(base_va));
assert(IS_PAGE_ALIGNED(size));
if (size == 0U)
return;
assert(base_pa < end_pa); /* Check for overflows */
assert(base_va < end_va);
assert((base_va + (uintptr_t)size - (uintptr_t)1) <=
(PLAT_VIRT_ADDR_SPACE_SIZE - 1U));
assert((base_pa + (unsigned long long)size - 1ULL) <=
(PLAT_PHY_ADDR_SPACE_SIZE - 1U));
#if ENABLE_ASSERTIONS
/* Check for PAs and VAs overlaps with all other regions */
for (mm = mmap; mm->size; ++mm) {
uintptr_t mm_end_va = mm->base_va + mm->size - 1U;
/*
* Check if one of the regions is completely inside the other
* one.
*/
bool fully_overlapped_va =
((base_va >= mm->base_va) && (end_va <= mm_end_va)) ||
((mm->base_va >= base_va) && (mm_end_va <= end_va));
/*
* Full VA overlaps are only allowed if both regions are
* identity mapped (zero offset) or have the same VA to PA
* offset. Also, make sure that it's not the exact same area.
*/
if (fully_overlapped_va) {
assert((mm->base_va - mm->base_pa) ==
(base_va - base_pa));
assert((base_va != mm->base_va) || (size != mm->size));
} else {
/*
* If the regions do not have fully overlapping VAs,
* then they must have fully separated VAs and PAs.
* Partial overlaps are not allowed
*/
unsigned long long mm_end_pa =
mm->base_pa + mm->size - 1;
bool separated_pa = (end_pa < mm->base_pa) ||
(base_pa > mm_end_pa);
bool separated_va = (end_va < mm->base_va) ||
(base_va > mm_end_va);
assert(separated_va && separated_pa);
}
}
mm = mmap; /* Restore pointer to the start of the array */
#endif /* ENABLE_ASSERTIONS */
/* Find correct place in mmap to insert new region */
while ((mm->base_va < base_va) && (mm->size != 0U))
++mm;
/*
* If a section is contained inside another one with the same base
* address, it must be placed after the one it is contained in:
*
* 1st |-----------------------|
* 2nd |------------|
* 3rd |------|
*
* This is required for mmap_region_attr() to get the attributes of the
* small region correctly.
*/
while ((mm->base_va == base_va) && (mm->size > size))
++mm;
/* Make room for new region by moving other regions up by one place */
(void)memmove(mm + 1, mm, (uintptr_t)mm_last - (uintptr_t)mm);
/* Check we haven't lost the empty sentinel from the end of the array */
assert(mm_last->size == 0U);
mm->base_pa = base_pa;
mm->base_va = base_va;
mm->size = size;
mm->attr = attr;
if (end_pa > xlat_max_pa)
xlat_max_pa = end_pa;
if (end_va > xlat_max_va)
xlat_max_va = end_va;
}
void mmap_add(const mmap_region_t *mm)
{
const mmap_region_t *mm_cursor = mm;
while ((mm_cursor->size != 0U) || (mm_cursor->attr != 0U)) {
mmap_add_region(mm_cursor->base_pa, mm_cursor->base_va,
mm_cursor->size, mm_cursor->attr);
mm_cursor++;
}
}
static uint64_t mmap_desc(unsigned int attr, unsigned long long addr_pa,
unsigned int level)
{
uint64_t desc;
int mem_type;
/* Make sure that the granularity is fine enough to map this address. */
assert((addr_pa & XLAT_BLOCK_MASK(level)) == 0U);
desc = addr_pa;
/*
* There are different translation table descriptors for level 3 and the
* rest.
*/
desc |= (level == XLAT_TABLE_LEVEL_MAX) ? PAGE_DESC : BLOCK_DESC;
desc |= ((attr & MT_NS) != 0U) ? LOWER_ATTRS(NS) : 0U;
desc |= ((attr & MT_RW) != 0U) ? LOWER_ATTRS(AP_RW) : LOWER_ATTRS(AP_RO);
/*
* Always set the access flag, as this library assumes access flag
* faults aren't managed.
*/
desc |= LOWER_ATTRS(ACCESS_FLAG);
desc |= ap1_mask;
/*
* Deduce shareability domain and executability of the memory region
* from the memory type.
*
* Data accesses to device memory and non-cacheable normal memory are
* coherent for all observers in the system, and correspondingly are
* always treated as being Outer Shareable. Therefore, for these 2 types
* of memory, it is not strictly needed to set the shareability field
* in the translation tables.
*/
mem_type = MT_TYPE(attr);
if (mem_type == MT_DEVICE) {
desc |= LOWER_ATTRS(ATTR_DEVICE_INDEX | OSH);
/*
* Always map device memory as execute-never.
* This is to avoid the possibility of a speculative instruction
* fetch, which could be an issue if this memory region
* corresponds to a read-sensitive peripheral.
*/
desc |= execute_never_mask;
} else { /* Normal memory */
/*
* Always map read-write normal memory as execute-never.
* This library assumes that it is used by software that does
* not self-modify its code, therefore R/W memory is reserved
* for data storage, which must not be executable.
*
* Note that setting the XN bit here is for consistency only.
* The function that enables the MMU sets the SCTLR_ELx.WXN bit,
* which makes any writable memory region to be treated as
* execute-never, regardless of the value of the XN bit in the
* translation table.
*
* For read-only memory, rely on the MT_EXECUTE/MT_EXECUTE_NEVER
* attribute to figure out the value of the XN bit.
*/
if (((attr & MT_RW) != 0U) || ((attr & MT_EXECUTE_NEVER) != 0U)) {
desc |= execute_never_mask;
}
if (mem_type == MT_MEMORY) {
desc |= LOWER_ATTRS(ATTR_IWBWA_OWBWA_NTR_INDEX | ISH);
} else {
assert(mem_type == MT_NON_CACHEABLE);
desc |= LOWER_ATTRS(ATTR_NON_CACHEABLE_INDEX | OSH);
}
}
debug_print((mem_type == MT_MEMORY) ? "MEM" :
((mem_type == MT_NON_CACHEABLE) ? "NC" : "DEV"));
debug_print(((attr & MT_RW) != 0U) ? "-RW" : "-RO");
debug_print(((attr & MT_NS) != 0U) ? "-NS" : "-S");
debug_print(((attr & MT_EXECUTE_NEVER) != 0U) ? "-XN" : "-EXEC");
return desc;
}
/*
* Look for the innermost region that contains the area at `base_va` with size
* `size`. Populate *attr with the attributes of this region.
*
* On success, this function returns 0.
* If there are partial overlaps (meaning that a smaller size is needed) or if
* the region can't be found in the given area, it returns MT_UNKNOWN. In this
* case the value pointed by attr should be ignored by the caller.
*/
static unsigned int mmap_region_attr(const mmap_region_t *mm, uintptr_t base_va,
size_t size, unsigned int *attr)
{
/* Don't assume that the area is contained in the first region */
unsigned int ret = MT_UNKNOWN;
/*
* Get attributes from last (innermost) region that contains the
* requested area. Don't stop as soon as one region doesn't contain it
* because there may be other internal regions that contain this area:
*
* |-----------------------------1-----------------------------|
* |----2----| |-------3-------| |----5----|
* |--4--|
*
* |---| <- Area we want the attributes of.
*
* In this example, the area is contained in regions 1, 3 and 4 but not
* in region 2. The loop shouldn't stop at region 2 as inner regions
* have priority over outer regions, it should stop at region 5.
*/
for ( ; ; ++mm) {
if (mm->size == 0U)
return ret; /* Reached end of list */
if (mm->base_va > (base_va + size - 1U))
return ret; /* Next region is after area so end */
if ((mm->base_va + mm->size - 1U) < base_va)
continue; /* Next region has already been overtaken */
if ((ret == 0U) && (mm->attr == *attr))
continue; /* Region doesn't override attribs so skip */
if ((mm->base_va > base_va) ||
((mm->base_va + mm->size - 1U) < (base_va + size - 1U)))
return MT_UNKNOWN; /* Region doesn't fully cover area */
*attr = mm->attr;
ret = 0U;
}
return ret;
}
static mmap_region_t *init_xlation_table_inner(mmap_region_t *mm,
uintptr_t base_va,
uint64_t *table,
unsigned int level)
{
assert((level >= XLAT_TABLE_LEVEL_MIN) &&
(level <= XLAT_TABLE_LEVEL_MAX));
unsigned int level_size_shift =
L0_XLAT_ADDRESS_SHIFT - level * XLAT_TABLE_ENTRIES_SHIFT;
u_register_t level_size = (u_register_t)1 << level_size_shift;
u_register_t level_index_mask =
((u_register_t)XLAT_TABLE_ENTRIES_MASK) << level_size_shift;
debug_print("New xlat table:\n");
do {
uint64_t desc = UNSET_DESC;
if (mm->size == 0U) {
/* Done mapping regions; finish zeroing the table */
desc = INVALID_DESC;
} else if ((mm->base_va + mm->size - 1U) < base_va) {
/* This area is after the region so get next region */
++mm;
continue;
}
debug_print("%s VA:%p size:0x%llx ", get_level_spacer(level),
(void *)base_va, (unsigned long long)level_size);
if (mm->base_va > (base_va + level_size - 1U)) {
/* Next region is after this area. Nothing to map yet */
desc = INVALID_DESC;
/* Make sure that the current level allows block descriptors */
} else if (level >= XLAT_BLOCK_LEVEL_MIN) {
/*
* Try to get attributes of this area. It will fail if
* there are partially overlapping regions. On success,
* it will return the innermost region's attributes.
*/
unsigned int attr;
unsigned int r = mmap_region_attr(mm, base_va,
level_size, &attr);
if (r == 0U) {
desc = mmap_desc(attr,
base_va - mm->base_va + mm->base_pa,
level);
}
}
if (desc == UNSET_DESC) {
/* Area not covered by a region so need finer table */
uint64_t *new_table = xlat_tables[next_xlat];
next_xlat++;
assert(next_xlat <= MAX_XLAT_TABLES);
desc = TABLE_DESC | (uintptr_t)new_table;
/* Recurse to fill in new table */
mm = init_xlation_table_inner(mm, base_va,
new_table, level + 1U);
}
debug_print("\n");
*table++ = desc;
base_va += level_size;
} while ((base_va & level_index_mask) &&
((base_va - 1U) < (PLAT_VIRT_ADDR_SPACE_SIZE - 1U)));
return mm;
}
void init_xlation_table(uintptr_t base_va, uint64_t *table,
unsigned int level, uintptr_t *max_va,
unsigned long long *max_pa)
{
unsigned int el = xlat_arch_current_el();
execute_never_mask = xlat_arch_get_xn_desc(el);
if (el == 3U) {
ap1_mask = LOWER_ATTRS(AP_ONE_VA_RANGE_RES1);
} else {
assert(el == 1U);
ap1_mask = 0ULL;
}
init_xlation_table_inner(mmap, base_va, table, level);
*max_va = xlat_max_va;
*max_pa = xlat_max_pa;
}