| /* |
| * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved. |
| * |
| * SPDX-License-Identifier: BSD-3-Clause |
| */ |
| |
| |
| /******************************************************************************* |
| * This is the Secure Payload Dispatcher (SPD). The dispatcher is meant to be a |
| * plug-in component to the Secure Monitor, registered as a runtime service. The |
| * SPD is expected to be a functional extension of the Secure Payload (SP) that |
| * executes in Secure EL1. The Secure Monitor will delegate all SMCs targeting |
| * the Trusted OS/Applications range to the dispatcher. The SPD will either |
| * handle the request locally or delegate it to the Secure Payload. It is also |
| * responsible for initialising and maintaining communication with the SP. |
| ******************************************************************************/ |
| #include <assert.h> |
| #include <errno.h> |
| #include <stddef.h> |
| |
| #include <arch_helpers.h> |
| #include <bl31/bl31.h> |
| #include <common/bl_common.h> |
| #include <common/debug.h> |
| #include <common/runtime_svc.h> |
| #include <lib/el3_runtime/context_mgmt.h> |
| #include <plat/common/platform.h> |
| #include <tools_share/uuid.h> |
| |
| #include "opteed_private.h" |
| #include "teesmc_opteed.h" |
| #include "teesmc_opteed_macros.h" |
| |
| /******************************************************************************* |
| * Address of the entrypoint vector table in OPTEE. It is |
| * initialised once on the primary core after a cold boot. |
| ******************************************************************************/ |
| struct optee_vectors *optee_vector_table; |
| |
| /******************************************************************************* |
| * Array to keep track of per-cpu OPTEE state |
| ******************************************************************************/ |
| optee_context_t opteed_sp_context[OPTEED_CORE_COUNT]; |
| uint32_t opteed_rw; |
| |
| static int32_t opteed_init(void); |
| |
| /******************************************************************************* |
| * This function is the handler registered for S-EL1 interrupts by the |
| * OPTEED. It validates the interrupt and upon success arranges entry into |
| * the OPTEE at 'optee_fiq_entry()' for handling the interrupt. |
| ******************************************************************************/ |
| static uint64_t opteed_sel1_interrupt_handler(uint32_t id, |
| uint32_t flags, |
| void *handle, |
| void *cookie) |
| { |
| uint32_t linear_id; |
| optee_context_t *optee_ctx; |
| |
| /* Check the security state when the exception was generated */ |
| assert(get_interrupt_src_ss(flags) == NON_SECURE); |
| |
| /* Sanity check the pointer to this cpu's context */ |
| assert(handle == cm_get_context(NON_SECURE)); |
| |
| /* Save the non-secure context before entering the OPTEE */ |
| cm_el1_sysregs_context_save(NON_SECURE); |
| |
| /* Get a reference to this cpu's OPTEE context */ |
| linear_id = plat_my_core_pos(); |
| optee_ctx = &opteed_sp_context[linear_id]; |
| assert(&optee_ctx->cpu_ctx == cm_get_context(SECURE)); |
| |
| cm_set_elr_el3(SECURE, (uint64_t)&optee_vector_table->fiq_entry); |
| cm_el1_sysregs_context_restore(SECURE); |
| cm_set_next_eret_context(SECURE); |
| |
| /* |
| * Tell the OPTEE that it has to handle an FIQ (synchronously). |
| * Also the instruction in normal world where the interrupt was |
| * generated is passed for debugging purposes. It is safe to |
| * retrieve this address from ELR_EL3 as the secure context will |
| * not take effect until el3_exit(). |
| */ |
| SMC_RET1(&optee_ctx->cpu_ctx, read_elr_el3()); |
| } |
| |
| /******************************************************************************* |
| * OPTEE Dispatcher setup. The OPTEED finds out the OPTEE entrypoint and type |
| * (aarch32/aarch64) if not already known and initialises the context for entry |
| * into OPTEE for its initialization. |
| ******************************************************************************/ |
| static int32_t opteed_setup(void) |
| { |
| entry_point_info_t *optee_ep_info; |
| uint32_t linear_id; |
| uint64_t opteed_pageable_part; |
| uint64_t opteed_mem_limit; |
| uint64_t dt_addr; |
| |
| linear_id = plat_my_core_pos(); |
| |
| /* |
| * Get information about the Secure Payload (BL32) image. Its |
| * absence is a critical failure. TODO: Add support to |
| * conditionally include the SPD service |
| */ |
| optee_ep_info = bl31_plat_get_next_image_ep_info(SECURE); |
| if (!optee_ep_info) { |
| WARN("No OPTEE provided by BL2 boot loader, Booting device" |
| " without OPTEE initialization. SMC`s destined for OPTEE" |
| " will return SMC_UNK\n"); |
| return 1; |
| } |
| |
| /* |
| * If there's no valid entry point for SP, we return a non-zero value |
| * signalling failure initializing the service. We bail out without |
| * registering any handlers |
| */ |
| if (!optee_ep_info->pc) |
| return 1; |
| |
| opteed_rw = optee_ep_info->args.arg0; |
| opteed_pageable_part = optee_ep_info->args.arg1; |
| opteed_mem_limit = optee_ep_info->args.arg2; |
| dt_addr = optee_ep_info->args.arg3; |
| |
| opteed_init_optee_ep_state(optee_ep_info, |
| opteed_rw, |
| optee_ep_info->pc, |
| opteed_pageable_part, |
| opteed_mem_limit, |
| dt_addr, |
| &opteed_sp_context[linear_id]); |
| |
| /* |
| * All OPTEED initialization done. Now register our init function with |
| * BL31 for deferred invocation |
| */ |
| bl31_register_bl32_init(&opteed_init); |
| |
| return 0; |
| } |
| |
| /******************************************************************************* |
| * This function passes control to the OPTEE image (BL32) for the first time |
| * on the primary cpu after a cold boot. It assumes that a valid secure |
| * context has already been created by opteed_setup() which can be directly |
| * used. It also assumes that a valid non-secure context has been |
| * initialised by PSCI so it does not need to save and restore any |
| * non-secure state. This function performs a synchronous entry into |
| * OPTEE. OPTEE passes control back to this routine through a SMC. |
| ******************************************************************************/ |
| static int32_t opteed_init(void) |
| { |
| uint32_t linear_id = plat_my_core_pos(); |
| optee_context_t *optee_ctx = &opteed_sp_context[linear_id]; |
| entry_point_info_t *optee_entry_point; |
| uint64_t rc; |
| |
| /* |
| * Get information about the OPTEE (BL32) image. Its |
| * absence is a critical failure. |
| */ |
| optee_entry_point = bl31_plat_get_next_image_ep_info(SECURE); |
| assert(optee_entry_point); |
| |
| cm_init_my_context(optee_entry_point); |
| |
| /* |
| * Arrange for an entry into OPTEE. It will be returned via |
| * OPTEE_ENTRY_DONE case |
| */ |
| rc = opteed_synchronous_sp_entry(optee_ctx); |
| assert(rc != 0); |
| |
| return rc; |
| } |
| |
| |
| /******************************************************************************* |
| * This function is responsible for handling all SMCs in the Trusted OS/App |
| * range from the non-secure state as defined in the SMC Calling Convention |
| * Document. It is also responsible for communicating with the Secure |
| * payload to delegate work and return results back to the non-secure |
| * state. Lastly it will also return any information that OPTEE needs to do |
| * the work assigned to it. |
| ******************************************************************************/ |
| static uintptr_t opteed_smc_handler(uint32_t smc_fid, |
| u_register_t x1, |
| u_register_t x2, |
| u_register_t x3, |
| u_register_t x4, |
| void *cookie, |
| void *handle, |
| u_register_t flags) |
| { |
| cpu_context_t *ns_cpu_context; |
| uint32_t linear_id = plat_my_core_pos(); |
| optee_context_t *optee_ctx = &opteed_sp_context[linear_id]; |
| uint64_t rc; |
| |
| /* |
| * Determine which security state this SMC originated from |
| */ |
| |
| if (is_caller_non_secure(flags)) { |
| /* |
| * This is a fresh request from the non-secure client. |
| * The parameters are in x1 and x2. Figure out which |
| * registers need to be preserved, save the non-secure |
| * state and send the request to the secure payload. |
| */ |
| assert(handle == cm_get_context(NON_SECURE)); |
| |
| cm_el1_sysregs_context_save(NON_SECURE); |
| |
| /* |
| * We are done stashing the non-secure context. Ask the |
| * OPTEE to do the work now. |
| */ |
| |
| /* |
| * Verify if there is a valid context to use, copy the |
| * operation type and parameters to the secure context |
| * and jump to the fast smc entry point in the secure |
| * payload. Entry into S-EL1 will take place upon exit |
| * from this function. |
| */ |
| assert(&optee_ctx->cpu_ctx == cm_get_context(SECURE)); |
| |
| /* Set appropriate entry for SMC. |
| * We expect OPTEE to manage the PSTATE.I and PSTATE.F |
| * flags as appropriate. |
| */ |
| if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_FAST) { |
| cm_set_elr_el3(SECURE, (uint64_t) |
| &optee_vector_table->fast_smc_entry); |
| } else { |
| cm_set_elr_el3(SECURE, (uint64_t) |
| &optee_vector_table->yield_smc_entry); |
| } |
| |
| cm_el1_sysregs_context_restore(SECURE); |
| cm_set_next_eret_context(SECURE); |
| |
| write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx), |
| CTX_GPREG_X4, |
| read_ctx_reg(get_gpregs_ctx(handle), |
| CTX_GPREG_X4)); |
| write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx), |
| CTX_GPREG_X5, |
| read_ctx_reg(get_gpregs_ctx(handle), |
| CTX_GPREG_X5)); |
| write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx), |
| CTX_GPREG_X6, |
| read_ctx_reg(get_gpregs_ctx(handle), |
| CTX_GPREG_X6)); |
| /* Propagate hypervisor client ID */ |
| write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx), |
| CTX_GPREG_X7, |
| read_ctx_reg(get_gpregs_ctx(handle), |
| CTX_GPREG_X7)); |
| |
| SMC_RET4(&optee_ctx->cpu_ctx, smc_fid, x1, x2, x3); |
| } |
| |
| /* |
| * Returning from OPTEE |
| */ |
| |
| switch (smc_fid) { |
| /* |
| * OPTEE has finished initialising itself after a cold boot |
| */ |
| case TEESMC_OPTEED_RETURN_ENTRY_DONE: |
| /* |
| * Stash the OPTEE entry points information. This is done |
| * only once on the primary cpu |
| */ |
| assert(optee_vector_table == NULL); |
| optee_vector_table = (optee_vectors_t *) x1; |
| |
| if (optee_vector_table) { |
| set_optee_pstate(optee_ctx->state, OPTEE_PSTATE_ON); |
| |
| /* |
| * OPTEE has been successfully initialized. |
| * Register power management hooks with PSCI |
| */ |
| psci_register_spd_pm_hook(&opteed_pm); |
| |
| /* |
| * Register an interrupt handler for S-EL1 interrupts |
| * when generated during code executing in the |
| * non-secure state. |
| */ |
| flags = 0; |
| set_interrupt_rm_flag(flags, NON_SECURE); |
| rc = register_interrupt_type_handler(INTR_TYPE_S_EL1, |
| opteed_sel1_interrupt_handler, |
| flags); |
| if (rc) |
| panic(); |
| } |
| |
| /* |
| * OPTEE reports completion. The OPTEED must have initiated |
| * the original request through a synchronous entry into |
| * OPTEE. Jump back to the original C runtime context. |
| */ |
| opteed_synchronous_sp_exit(optee_ctx, x1); |
| break; |
| |
| |
| /* |
| * These function IDs is used only by OP-TEE to indicate it has |
| * finished: |
| * 1. turning itself on in response to an earlier psci |
| * cpu_on request |
| * 2. resuming itself after an earlier psci cpu_suspend |
| * request. |
| */ |
| case TEESMC_OPTEED_RETURN_ON_DONE: |
| case TEESMC_OPTEED_RETURN_RESUME_DONE: |
| |
| |
| /* |
| * These function IDs is used only by the SP to indicate it has |
| * finished: |
| * 1. suspending itself after an earlier psci cpu_suspend |
| * request. |
| * 2. turning itself off in response to an earlier psci |
| * cpu_off request. |
| */ |
| case TEESMC_OPTEED_RETURN_OFF_DONE: |
| case TEESMC_OPTEED_RETURN_SUSPEND_DONE: |
| case TEESMC_OPTEED_RETURN_SYSTEM_OFF_DONE: |
| case TEESMC_OPTEED_RETURN_SYSTEM_RESET_DONE: |
| |
| /* |
| * OPTEE reports completion. The OPTEED must have initiated the |
| * original request through a synchronous entry into OPTEE. |
| * Jump back to the original C runtime context, and pass x1 as |
| * return value to the caller |
| */ |
| opteed_synchronous_sp_exit(optee_ctx, x1); |
| break; |
| |
| /* |
| * OPTEE is returning from a call or being preempted from a call, in |
| * either case execution should resume in the normal world. |
| */ |
| case TEESMC_OPTEED_RETURN_CALL_DONE: |
| /* |
| * This is the result from the secure client of an |
| * earlier request. The results are in x0-x3. Copy it |
| * into the non-secure context, save the secure state |
| * and return to the non-secure state. |
| */ |
| assert(handle == cm_get_context(SECURE)); |
| cm_el1_sysregs_context_save(SECURE); |
| |
| /* Get a reference to the non-secure context */ |
| ns_cpu_context = cm_get_context(NON_SECURE); |
| assert(ns_cpu_context); |
| |
| /* Restore non-secure state */ |
| cm_el1_sysregs_context_restore(NON_SECURE); |
| cm_set_next_eret_context(NON_SECURE); |
| |
| SMC_RET4(ns_cpu_context, x1, x2, x3, x4); |
| |
| /* |
| * OPTEE has finished handling a S-EL1 FIQ interrupt. Execution |
| * should resume in the normal world. |
| */ |
| case TEESMC_OPTEED_RETURN_FIQ_DONE: |
| /* Get a reference to the non-secure context */ |
| ns_cpu_context = cm_get_context(NON_SECURE); |
| assert(ns_cpu_context); |
| |
| /* |
| * Restore non-secure state. There is no need to save the |
| * secure system register context since OPTEE was supposed |
| * to preserve it during S-EL1 interrupt handling. |
| */ |
| cm_el1_sysregs_context_restore(NON_SECURE); |
| cm_set_next_eret_context(NON_SECURE); |
| |
| SMC_RET0((uint64_t) ns_cpu_context); |
| |
| default: |
| panic(); |
| } |
| } |
| |
| /* Define an OPTEED runtime service descriptor for fast SMC calls */ |
| DECLARE_RT_SVC( |
| opteed_fast, |
| |
| OEN_TOS_START, |
| OEN_TOS_END, |
| SMC_TYPE_FAST, |
| opteed_setup, |
| opteed_smc_handler |
| ); |
| |
| /* Define an OPTEED runtime service descriptor for yielding SMC calls */ |
| DECLARE_RT_SVC( |
| opteed_std, |
| |
| OEN_TOS_START, |
| OEN_TOS_END, |
| SMC_TYPE_YIELD, |
| NULL, |
| opteed_smc_handler |
| ); |