blob: b682086297ad8116b7af928ef0fc041f7f1eb198 [file] [log] [blame]
/*
* Copyright (C) 2018 Marvell International Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
* https://spdx.org/licenses
*/
/* Marvell CP110 SoC COMPHY unit driver */
#include <errno.h>
#include <common/debug.h>
#include <drivers/delay_timer.h>
#include <lib/mmio.h>
#include <lib/spinlock.h>
#include <mvebu_def.h>
#include "mvebu.h"
#include "comphy-cp110.h"
#include "phy-comphy-cp110.h"
#include "phy-comphy-common.h"
#if __has_include("phy-porting-layer.h")
#include "phy-porting-layer.h"
#else
#include "phy-default-porting-layer.h"
#endif
/* COMPHY speed macro */
#define COMPHY_SPEED_1_25G 0 /* SGMII 1G */
#define COMPHY_SPEED_2_5G 1
#define COMPHY_SPEED_3_125G 2 /* SGMII 2.5G */
#define COMPHY_SPEED_5G 3
#define COMPHY_SPEED_5_15625G 4 /* XFI 5G */
#define COMPHY_SPEED_6G 5
#define COMPHY_SPEED_10_3125G 6 /* XFI 10G */
#define COMPHY_SPEED_MAX 0x3F
/* The default speed for IO with fixed known speed */
#define COMPHY_SPEED_DEFAULT COMPHY_SPEED_MAX
/* Commands for comphy driver */
#define COMPHY_COMMAND_DIGITAL_PWR_OFF 0x00000001
#define COMPHY_COMMAND_DIGITAL_PWR_ON 0x00000002
#define COMPHY_PIPE_FROM_COMPHY_ADDR(x) ((x & ~0xffffff) + 0x120000)
/* System controller registers */
#define PCIE_MAC_RESET_MASK_PORT0 BIT(13)
#define PCIE_MAC_RESET_MASK_PORT1 BIT(11)
#define PCIE_MAC_RESET_MASK_PORT2 BIT(12)
#define SYS_CTRL_UINIT_SOFT_RESET_REG 0x268
#define SYS_CTRL_FROM_COMPHY_ADDR(x) ((x & ~0xffffff) + 0x440000)
/* DFX register spaces */
#define SAR_RST_PCIE0_CLOCK_CONFIG_CP1_OFFSET (0)
#define SAR_RST_PCIE0_CLOCK_CONFIG_CP1_MASK (0x1 << \
SAR_RST_PCIE0_CLOCK_CONFIG_CP1_OFFSET)
#define SAR_RST_PCIE1_CLOCK_CONFIG_CP1_OFFSET (1)
#define SAR_RST_PCIE1_CLOCK_CONFIG_CP1_MASK (0x1 << \
SAR_RST_PCIE1_CLOCK_CONFIG_CP1_OFFSET)
#define SAR_STATUS_0_REG 200
#define DFX_FROM_COMPHY_ADDR(x) ((x & ~0xffffff) + DFX_BASE)
/* The same Units Soft Reset Config register are accessed in all PCIe ports
* initialization, so a spin lock is defined in case when more than 1 CPUs
* resets PCIe MAC and need to access the register in the same time. The spin
* lock is shared by all CP110 units.
*/
spinlock_t cp110_mac_reset_lock;
/* These values come from the PCI Express Spec */
enum pcie_link_width {
PCIE_LNK_WIDTH_RESRV = 0x00,
PCIE_LNK_X1 = 0x01,
PCIE_LNK_X2 = 0x02,
PCIE_LNK_X4 = 0x04,
PCIE_LNK_X8 = 0x08,
PCIE_LNK_X12 = 0x0C,
PCIE_LNK_X16 = 0x10,
PCIE_LNK_X32 = 0x20,
PCIE_LNK_WIDTH_UNKNOWN = 0xFF,
};
_Bool rx_trainng_done[AP_NUM][CP_NUM][MAX_LANE_NR] = {0};
static void mvebu_cp110_get_ap_and_cp_nr(uint8_t *ap_nr, uint8_t *cp_nr,
uint64_t comphy_base)
{
#if (AP_NUM == 1)
*ap_nr = 0;
#else
*ap_nr = (((comphy_base & ~0xffffff) - MVEBU_AP_IO_BASE(0)) /
AP_IO_OFFSET);
#endif
*cp_nr = (((comphy_base & ~0xffffff) - MVEBU_AP_IO_BASE(*ap_nr)) /
MVEBU_CP_OFFSET);
debug("cp_base 0x%llx, ap_io_base 0x%lx, cp_offset 0x%lx\n",
comphy_base, (unsigned long)MVEBU_AP_IO_BASE(*ap_nr),
(unsigned long)MVEBU_CP_OFFSET);
}
/* Clear PIPE selector - avoid collision with previous configuration */
static void mvebu_cp110_comphy_clr_pipe_selector(uint64_t comphy_base,
uint8_t comphy_index)
{
uint32_t reg, mask, field;
uint32_t comphy_offset =
COMMON_SELECTOR_COMPHYN_FIELD_WIDTH * comphy_index;
mask = COMMON_SELECTOR_COMPHY_MASK << comphy_offset;
reg = mmio_read_32(comphy_base + COMMON_SELECTOR_PIPE_REG_OFFSET);
field = reg & mask;
if (field) {
reg &= ~mask;
mmio_write_32(comphy_base + COMMON_SELECTOR_PIPE_REG_OFFSET,
reg);
}
}
/* Clear PHY selector - avoid collision with previous configuration */
static void mvebu_cp110_comphy_clr_phy_selector(uint64_t comphy_base,
uint8_t comphy_index)
{
uint32_t reg, mask, field;
uint32_t comphy_offset =
COMMON_SELECTOR_COMPHYN_FIELD_WIDTH * comphy_index;
mask = COMMON_SELECTOR_COMPHY_MASK << comphy_offset;
reg = mmio_read_32(comphy_base + COMMON_SELECTOR_PHY_REG_OFFSET);
field = reg & mask;
/* Clear comphy selector - if it was already configured.
* (might be that this comphy was configured as PCIe/USB,
* in such case, no need to clear comphy selector because PCIe/USB
* are controlled by hpipe selector).
*/
if (field) {
reg &= ~mask;
mmio_write_32(comphy_base + COMMON_SELECTOR_PHY_REG_OFFSET,
reg);
}
}
/* PHY selector configures SATA and Network modes */
static void mvebu_cp110_comphy_set_phy_selector(uint64_t comphy_base,
uint8_t comphy_index, uint32_t comphy_mode)
{
uint32_t reg, mask;
uint32_t comphy_offset =
COMMON_SELECTOR_COMPHYN_FIELD_WIDTH * comphy_index;
int mode;
/* If phy selector is used the pipe selector should be marked as
* unconnected.
*/
mvebu_cp110_comphy_clr_pipe_selector(comphy_base, comphy_index);
/* Comphy mode (compound of the IO mode and id). Here, only the IO mode
* is required to distinguish between SATA and network modes.
*/
mode = COMPHY_GET_MODE(comphy_mode);
mask = COMMON_SELECTOR_COMPHY_MASK << comphy_offset;
reg = mmio_read_32(comphy_base + COMMON_SELECTOR_PHY_REG_OFFSET);
reg &= ~mask;
/* SATA port 0/1 require the same configuration */
if (mode == COMPHY_SATA_MODE) {
/* SATA selector values is always 4 */
reg |= COMMON_SELECTOR_COMPHYN_SATA << comphy_offset;
} else {
switch (comphy_index) {
case(0):
case(1):
case(2):
/* For comphy 0,1, and 2:
* Network selector value is always 1.
*/
reg |= COMMON_SELECTOR_COMPHY0_1_2_NETWORK <<
comphy_offset;
break;
case(3):
/* For comphy 3:
* 0x1 = RXAUI_Lane1
* 0x2 = SGMII/HS-SGMII Port1
*/
if (mode == COMPHY_RXAUI_MODE)
reg |= COMMON_SELECTOR_COMPHY3_RXAUI <<
comphy_offset;
else
reg |= COMMON_SELECTOR_COMPHY3_SGMII <<
comphy_offset;
break;
case(4):
/* For comphy 4:
* 0x1 = SGMII/HS-SGMII Port1, XFI1/SFI1
* 0x2 = SGMII/HS-SGMII Port0: XFI0/SFI0, RXAUI_Lane0
*
* We want to check if SGMII1/HS_SGMII1 is the
* requested mode in order to determine which value
* should be set (all other modes use the same value)
* so we need to strip the mode, and check the ID
* because we might handle SGMII0/HS_SGMII0 too.
*/
/* TODO: need to distinguish between CP110 and CP115
* as SFI1/XFI1 available only for CP115.
*/
if ((mode == COMPHY_SGMII_MODE ||
mode == COMPHY_HS_SGMII_MODE ||
mode == COMPHY_SFI_MODE || mode == COMPHY_XFI_MODE)
&& COMPHY_GET_ID(comphy_mode) == 1)
reg |= COMMON_SELECTOR_COMPHY4_PORT1 <<
comphy_offset;
else
reg |= COMMON_SELECTOR_COMPHY4_ALL_OTHERS <<
comphy_offset;
break;
case(5):
/* For comphy 5:
* 0x1 = SGMII/HS-SGMII Port2
* 0x2 = RXAUI Lane1
*/
if (mode == COMPHY_RXAUI_MODE)
reg |= COMMON_SELECTOR_COMPHY5_RXAUI <<
comphy_offset;
else
reg |= COMMON_SELECTOR_COMPHY5_SGMII <<
comphy_offset;
break;
}
}
mmio_write_32(comphy_base + COMMON_SELECTOR_PHY_REG_OFFSET, reg);
}
/* PIPE selector configures for PCIe, USB 3.0 Host, and USB 3.0 Device mode */
static void mvebu_cp110_comphy_set_pipe_selector(uint64_t comphy_base,
uint8_t comphy_index, uint32_t comphy_mode)
{
uint32_t reg;
uint32_t shift = COMMON_SELECTOR_COMPHYN_FIELD_WIDTH * comphy_index;
int mode = COMPHY_GET_MODE(comphy_mode);
uint32_t mask = COMMON_SELECTOR_COMPHY_MASK << shift;
uint32_t pipe_sel = 0x0;
/* If pipe selector is used the phy selector should be marked as
* unconnected.
*/
mvebu_cp110_comphy_clr_phy_selector(comphy_base, comphy_index);
reg = mmio_read_32(comphy_base + COMMON_SELECTOR_PIPE_REG_OFFSET);
reg &= ~mask;
switch (mode) {
case (COMPHY_PCIE_MODE):
/* For lanes support PCIE, selector value are all same */
pipe_sel = COMMON_SELECTOR_PIPE_COMPHY_PCIE;
break;
case (COMPHY_USB3H_MODE):
/* Only lane 1-4 support USB host, selector value is same */
if (comphy_index == COMPHY_LANE0 ||
comphy_index == COMPHY_LANE5)
ERROR("COMPHY[%d] mode[%d] is invalid\n",
comphy_index, mode);
else
pipe_sel = COMMON_SELECTOR_PIPE_COMPHY_USBH;
break;
case (COMPHY_USB3D_MODE):
/* Lane 1 and 4 support USB device, selector value is same */
if (comphy_index == COMPHY_LANE1 ||
comphy_index == COMPHY_LANE4)
pipe_sel = COMMON_SELECTOR_PIPE_COMPHY_USBD;
else
ERROR("COMPHY[%d] mode[%d] is invalid\n", comphy_index,
mode);
break;
default:
ERROR("COMPHY[%d] mode[%d] is invalid\n", comphy_index, mode);
break;
}
mmio_write_32(comphy_base + COMMON_SELECTOR_PIPE_REG_OFFSET, reg |
(pipe_sel << shift));
}
int mvebu_cp110_comphy_is_pll_locked(uint64_t comphy_base, uint8_t comphy_index)
{
uintptr_t sd_ip_addr, addr;
uint32_t mask, data;
int ret = 0;
debug_enter();
sd_ip_addr = SD_ADDR(COMPHY_PIPE_FROM_COMPHY_ADDR(comphy_base),
comphy_index);
addr = sd_ip_addr + SD_EXTERNAL_STATUS0_REG;
data = SD_EXTERNAL_STATUS0_PLL_TX_MASK &
SD_EXTERNAL_STATUS0_PLL_RX_MASK;
mask = data;
data = polling_with_timeout(addr, data, mask,
PLL_LOCK_TIMEOUT, REG_32BIT);
if (data != 0) {
if (data & SD_EXTERNAL_STATUS0_PLL_RX_MASK)
ERROR("RX PLL is not locked\n");
if (data & SD_EXTERNAL_STATUS0_PLL_TX_MASK)
ERROR("TX PLL is not locked\n");
ret = -ETIMEDOUT;
}
debug_exit();
return ret;
}
static int mvebu_cp110_comphy_sata_power_on(uint64_t comphy_base,
uint8_t comphy_index, uint32_t comphy_mode)
{
uintptr_t hpipe_addr, sd_ip_addr, comphy_addr;
uint32_t mask, data;
uint8_t ap_nr, cp_nr;
int ret = 0;
debug_enter();
mvebu_cp110_get_ap_and_cp_nr(&ap_nr, &cp_nr, comphy_base);
const struct sata_params *sata_static_values =
&sata_static_values_tab[ap_nr][cp_nr][comphy_index];
/* configure phy selector for SATA */
mvebu_cp110_comphy_set_phy_selector(comphy_base,
comphy_index, comphy_mode);
hpipe_addr = HPIPE_ADDR(COMPHY_PIPE_FROM_COMPHY_ADDR(comphy_base),
comphy_index);
sd_ip_addr = SD_ADDR(COMPHY_PIPE_FROM_COMPHY_ADDR(comphy_base),
comphy_index);
comphy_addr = COMPHY_ADDR(comphy_base, comphy_index);
debug(" add hpipe 0x%lx, sd 0x%lx, comphy 0x%lx\n",
hpipe_addr, sd_ip_addr, comphy_addr);
debug("stage: RFU configurations - hard reset comphy\n");
/* RFU configurations - hard reset comphy */
mask = COMMON_PHY_CFG1_PWR_UP_MASK;
data = 0x1 << COMMON_PHY_CFG1_PWR_UP_OFFSET;
mask |= COMMON_PHY_CFG1_PIPE_SELECT_MASK;
data |= 0x0 << COMMON_PHY_CFG1_PIPE_SELECT_OFFSET;
mask |= COMMON_PHY_CFG1_PWR_ON_RESET_MASK;
data |= 0x0 << COMMON_PHY_CFG1_PWR_ON_RESET_OFFSET;
mask |= COMMON_PHY_CFG1_CORE_RSTN_MASK;
data |= 0x0 << COMMON_PHY_CFG1_CORE_RSTN_OFFSET;
reg_set(comphy_addr + COMMON_PHY_CFG1_REG, data, mask);
/* Set select data width 40Bit - SATA mode only */
reg_set(comphy_addr + COMMON_PHY_CFG6_REG,
0x1 << COMMON_PHY_CFG6_IF_40_SEL_OFFSET,
COMMON_PHY_CFG6_IF_40_SEL_MASK);
/* release from hard reset in SD external */
mask = SD_EXTERNAL_CONFIG1_RESET_IN_MASK;
data = 0x1 << SD_EXTERNAL_CONFIG1_RESET_IN_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RESET_CORE_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG1_RESET_CORE_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG, data, mask);
/* Wait 1ms - until band gap and ref clock ready */
mdelay(1);
debug("stage: Comphy configuration\n");
/* Start comphy Configuration */
/* Set reference clock to comes from group 1 - choose 25Mhz */
reg_set(hpipe_addr + HPIPE_MISC_REG,
0x0 << HPIPE_MISC_REFCLK_SEL_OFFSET,
HPIPE_MISC_REFCLK_SEL_MASK);
/* Reference frequency select set 1 (for SATA = 25Mhz) */
mask = HPIPE_PWR_PLL_REF_FREQ_MASK;
data = 0x1 << HPIPE_PWR_PLL_REF_FREQ_OFFSET;
/* PHY mode select (set SATA = 0x0 */
mask |= HPIPE_PWR_PLL_PHY_MODE_MASK;
data |= 0x0 << HPIPE_PWR_PLL_PHY_MODE_OFFSET;
reg_set(hpipe_addr + HPIPE_PWR_PLL_REG, data, mask);
/* Set max PHY generation setting - 6Gbps */
reg_set(hpipe_addr + HPIPE_INTERFACE_REG,
0x2 << HPIPE_INTERFACE_GEN_MAX_OFFSET,
HPIPE_INTERFACE_GEN_MAX_MASK);
/* Set select data width 40Bit (SEL_BITS[2:0]) */
reg_set(hpipe_addr + HPIPE_LOOPBACK_REG,
0x2 << HPIPE_LOOPBACK_SEL_OFFSET, HPIPE_LOOPBACK_SEL_MASK);
debug("stage: Analog parameters from ETP(HW)\n");
/* G1 settings */
mask = HPIPE_G1_SET_1_G1_RX_SELMUPI_MASK;
data = sata_static_values->g1_rx_selmupi <<
HPIPE_G1_SET_1_G1_RX_SELMUPI_OFFSET;
mask |= HPIPE_G1_SET_1_G1_RX_SELMUPF_MASK;
data |= sata_static_values->g1_rx_selmupf <<
HPIPE_G1_SET_1_G1_RX_SELMUPF_OFFSET;
mask |= HPIPE_G1_SET_1_G1_RX_SELMUFI_MASK;
data |= sata_static_values->g1_rx_selmufi <<
HPIPE_G1_SET_1_G1_RX_SELMUFI_OFFSET;
mask |= HPIPE_G1_SET_1_G1_RX_SELMUFF_MASK;
data |= sata_static_values->g1_rx_selmuff <<
HPIPE_G1_SET_1_G1_RX_SELMUFF_OFFSET;
mask |= HPIPE_G1_SET_1_G1_RX_DIGCK_DIV_MASK;
data |= 0x1 << HPIPE_G1_SET_1_G1_RX_DIGCK_DIV_OFFSET;
reg_set(hpipe_addr + HPIPE_G1_SET_1_REG, data, mask);
mask = HPIPE_G1_SETTINGS_3_G1_FFE_CAP_SEL_MASK;
data = 0xf << HPIPE_G1_SETTINGS_3_G1_FFE_CAP_SEL_OFFSET;
mask |= HPIPE_G1_SETTINGS_3_G1_FFE_RES_SEL_MASK;
data |= 0x2 << HPIPE_G1_SETTINGS_3_G1_FFE_RES_SEL_OFFSET;
mask |= HPIPE_G1_SETTINGS_3_G1_FFE_SETTING_FORCE_MASK;
data |= 0x1 << HPIPE_G1_SETTINGS_3_G1_FFE_SETTING_FORCE_OFFSET;
mask |= HPIPE_G1_SETTINGS_3_G1_FFE_DEG_RES_LEVEL_MASK;
data |= 0x1 << HPIPE_G1_SETTINGS_3_G1_FFE_DEG_RES_LEVEL_OFFSET;
mask |= HPIPE_G1_SETTINGS_3_G1_FFE_LOAD_RES_LEVEL_MASK;
data |= 0x1 << HPIPE_G1_SETTINGS_3_G1_FFE_LOAD_RES_LEVEL_OFFSET;
reg_set(hpipe_addr + HPIPE_G1_SETTINGS_3_REG, data, mask);
/* G2 settings */
mask = HPIPE_G2_SET_1_G2_RX_SELMUPI_MASK;
data = sata_static_values->g2_rx_selmupi <<
HPIPE_G2_SET_1_G2_RX_SELMUPI_OFFSET;
mask |= HPIPE_G2_SET_1_G2_RX_SELMUPF_MASK;
data |= sata_static_values->g2_rx_selmupf <<
HPIPE_G2_SET_1_G2_RX_SELMUPF_OFFSET;
mask |= HPIPE_G2_SET_1_G2_RX_SELMUFI_MASK;
data |= sata_static_values->g2_rx_selmufi <<
HPIPE_G2_SET_1_G2_RX_SELMUFI_OFFSET;
mask |= HPIPE_G2_SET_1_G2_RX_SELMUFF_MASK;
data |= sata_static_values->g2_rx_selmuff <<
HPIPE_G2_SET_1_G2_RX_SELMUFF_OFFSET;
mask |= HPIPE_G2_SET_1_G2_RX_DIGCK_DIV_MASK;
data |= 0x1 << HPIPE_G2_SET_1_G2_RX_DIGCK_DIV_OFFSET;
reg_set(hpipe_addr + HPIPE_G2_SET_1_REG, data, mask);
/* G3 settings */
mask = HPIPE_G3_SET_1_G3_RX_SELMUPI_MASK;
data = sata_static_values->g3_rx_selmupi <<
HPIPE_G3_SET_1_G3_RX_SELMUPI_OFFSET;
mask |= HPIPE_G3_SET_1_G3_RX_SELMUPF_MASK;
data |= sata_static_values->g3_rx_selmupf <<
HPIPE_G3_SET_1_G3_RX_SELMUPF_OFFSET;
mask |= HPIPE_G3_SET_1_G3_RX_SELMUFI_MASK;
data |= sata_static_values->g3_rx_selmufi <<
HPIPE_G3_SET_1_G3_RX_SELMUFI_OFFSET;
mask |= HPIPE_G3_SET_1_G3_RX_SELMUFF_MASK;
data |= sata_static_values->g3_rx_selmuff <<
HPIPE_G3_SET_1_G3_RX_SELMUFF_OFFSET;
mask |= HPIPE_G3_SET_1_G3_RX_DFE_EN_MASK;
data |= 0x1 << HPIPE_G3_SET_1_G3_RX_DFE_EN_OFFSET;
mask |= HPIPE_G3_SET_1_G3_RX_DIGCK_DIV_MASK;
data |= 0x2 << HPIPE_G3_SET_1_G3_RX_DIGCK_DIV_OFFSET;
mask |= HPIPE_G3_SET_1_G3_SAMPLER_INPAIRX2_EN_MASK;
data |= 0x0 << HPIPE_G3_SET_1_G3_SAMPLER_INPAIRX2_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_G3_SET_1_REG, data, mask);
/* DTL Control */
mask = HPIPE_PWR_CTR_DTL_SQ_DET_EN_MASK;
data = 0x1 << HPIPE_PWR_CTR_DTL_SQ_DET_EN_OFFSET;
mask |= HPIPE_PWR_CTR_DTL_SQ_PLOOP_EN_MASK;
data |= 0x1 << HPIPE_PWR_CTR_DTL_SQ_PLOOP_EN_OFFSET;
mask |= HPIPE_PWR_CTR_DTL_FLOOP_EN_MASK;
data |= 0x1 << HPIPE_PWR_CTR_DTL_FLOOP_EN_OFFSET;
mask |= HPIPE_PWR_CTR_DTL_CLAMPING_SEL_MASK;
data |= 0x1 << HPIPE_PWR_CTR_DTL_CLAMPING_SEL_OFFSET;
mask |= HPIPE_PWR_CTR_DTL_INTPCLK_DIV_FORCE_MASK;
data |= 0x1 << HPIPE_PWR_CTR_DTL_INTPCLK_DIV_FORCE_OFFSET;
mask |= HPIPE_PWR_CTR_DTL_CLK_MODE_MASK;
data |= 0x1 << HPIPE_PWR_CTR_DTL_CLK_MODE_OFFSET;
mask |= HPIPE_PWR_CTR_DTL_CLK_MODE_FORCE_MASK;
data |= 0x1 << HPIPE_PWR_CTR_DTL_CLK_MODE_FORCE_OFFSET;
reg_set(hpipe_addr + HPIPE_PWR_CTR_DTL_REG, data, mask);
/* Trigger sampler enable pulse */
mask = HPIPE_SMAPLER_MASK;
data = 0x1 << HPIPE_SMAPLER_OFFSET;
reg_set(hpipe_addr + HPIPE_SAMPLER_N_PROC_CALIB_CTRL_REG, data, mask);
mask = HPIPE_SMAPLER_MASK;
data = 0x0 << HPIPE_SMAPLER_OFFSET;
reg_set(hpipe_addr + HPIPE_SAMPLER_N_PROC_CALIB_CTRL_REG, data, mask);
/* VDD Calibration Control 3 */
mask = HPIPE_EXT_SELLV_RXSAMPL_MASK;
data = 0x10 << HPIPE_EXT_SELLV_RXSAMPL_OFFSET;
reg_set(hpipe_addr + HPIPE_VDD_CAL_CTRL_REG, data, mask);
/* DFE Resolution Control */
mask = HPIPE_DFE_RES_FORCE_MASK;
data = 0x1 << HPIPE_DFE_RES_FORCE_OFFSET;
reg_set(hpipe_addr + HPIPE_DFE_REG0, data, mask);
/* DFE F3-F5 Coefficient Control */
mask = HPIPE_DFE_F3_F5_DFE_EN_MASK;
data = 0x0 << HPIPE_DFE_F3_F5_DFE_EN_OFFSET;
mask |= HPIPE_DFE_F3_F5_DFE_CTRL_MASK;
data = 0x0 << HPIPE_DFE_F3_F5_DFE_CTRL_OFFSET;
reg_set(hpipe_addr + HPIPE_DFE_F3_F5_REG, data, mask);
/* G3 Setting 3 */
mask = HPIPE_G3_FFE_CAP_SEL_MASK;
data = sata_static_values->g3_ffe_cap_sel <<
HPIPE_G3_FFE_CAP_SEL_OFFSET;
mask |= HPIPE_G3_FFE_RES_SEL_MASK;
data |= sata_static_values->g3_ffe_res_sel <<
HPIPE_G3_FFE_RES_SEL_OFFSET;
mask |= HPIPE_G3_FFE_SETTING_FORCE_MASK;
data |= 0x1 << HPIPE_G3_FFE_SETTING_FORCE_OFFSET;
mask |= HPIPE_G3_FFE_DEG_RES_LEVEL_MASK;
data |= 0x1 << HPIPE_G3_FFE_DEG_RES_LEVEL_OFFSET;
mask |= HPIPE_G3_FFE_LOAD_RES_LEVEL_MASK;
data |= 0x3 << HPIPE_G3_FFE_LOAD_RES_LEVEL_OFFSET;
reg_set(hpipe_addr + HPIPE_G3_SETTING_3_REG, data, mask);
/* G3 Setting 4 */
mask = HPIPE_G3_DFE_RES_MASK;
data = sata_static_values->g3_dfe_res << HPIPE_G3_DFE_RES_OFFSET;
reg_set(hpipe_addr + HPIPE_G3_SETTING_4_REG, data, mask);
/* Offset Phase Control */
mask = HPIPE_OS_PH_OFFSET_MASK;
data = sata_static_values->align90 << HPIPE_OS_PH_OFFSET_OFFSET;
mask |= HPIPE_OS_PH_OFFSET_FORCE_MASK;
data |= 0x1 << HPIPE_OS_PH_OFFSET_FORCE_OFFSET;
mask |= HPIPE_OS_PH_VALID_MASK;
data |= 0x0 << HPIPE_OS_PH_VALID_OFFSET;
reg_set(hpipe_addr + HPIPE_PHASE_CONTROL_REG, data, mask);
mask = HPIPE_OS_PH_VALID_MASK;
data = 0x1 << HPIPE_OS_PH_VALID_OFFSET;
reg_set(hpipe_addr + HPIPE_PHASE_CONTROL_REG, data, mask);
mask = HPIPE_OS_PH_VALID_MASK;
data = 0x0 << HPIPE_OS_PH_VALID_OFFSET;
reg_set(hpipe_addr + HPIPE_PHASE_CONTROL_REG, data, mask);
/* Set G1 TX amplitude and TX post emphasis value */
mask = HPIPE_G1_SET_0_G1_TX_AMP_MASK;
data = sata_static_values->g1_amp << HPIPE_G1_SET_0_G1_TX_AMP_OFFSET;
mask |= HPIPE_G1_SET_0_G1_TX_AMP_ADJ_MASK;
data |= sata_static_values->g1_tx_amp_adj <<
HPIPE_G1_SET_0_G1_TX_AMP_ADJ_OFFSET;
mask |= HPIPE_G1_SET_0_G1_TX_EMPH1_MASK;
data |= sata_static_values->g1_emph <<
HPIPE_G1_SET_0_G1_TX_EMPH1_OFFSET;
mask |= HPIPE_G1_SET_0_G1_TX_EMPH1_EN_MASK;
data |= sata_static_values->g1_emph_en <<
HPIPE_G1_SET_0_G1_TX_EMPH1_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_G1_SET_0_REG, data, mask);
/* Set G1 emph */
mask = HPIPE_G1_SET_2_G1_TX_EMPH0_EN_MASK;
data = sata_static_values->g1_tx_emph_en <<
HPIPE_G1_SET_2_G1_TX_EMPH0_EN_OFFSET;
mask |= HPIPE_G1_SET_2_G1_TX_EMPH0_MASK;
data |= sata_static_values->g1_tx_emph <<
HPIPE_G1_SET_2_G1_TX_EMPH0_OFFSET;
reg_set(hpipe_addr + HPIPE_G1_SET_2_REG, data, mask);
/* Set G2 TX amplitude and TX post emphasis value */
mask = HPIPE_G2_SET_0_G2_TX_AMP_MASK;
data = sata_static_values->g2_amp << HPIPE_G2_SET_0_G2_TX_AMP_OFFSET;
mask |= HPIPE_G2_SET_0_G2_TX_AMP_ADJ_MASK;
data |= sata_static_values->g2_tx_amp_adj <<
HPIPE_G2_SET_0_G2_TX_AMP_ADJ_OFFSET;
mask |= HPIPE_G2_SET_0_G2_TX_EMPH1_MASK;
data |= sata_static_values->g2_emph <<
HPIPE_G2_SET_0_G2_TX_EMPH1_OFFSET;
mask |= HPIPE_G2_SET_0_G2_TX_EMPH1_EN_MASK;
data |= sata_static_values->g2_emph_en <<
HPIPE_G2_SET_0_G2_TX_EMPH1_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_G2_SET_0_REG, data, mask);
/* Set G2 emph */
mask = HPIPE_G2_SET_2_G2_TX_EMPH0_EN_MASK;
data = sata_static_values->g2_tx_emph_en <<
HPIPE_G2_SET_2_G2_TX_EMPH0_EN_OFFSET;
mask |= HPIPE_G2_SET_2_G2_TX_EMPH0_MASK;
data |= sata_static_values->g2_tx_emph <<
HPIPE_G2_SET_2_G2_TX_EMPH0_OFFSET;
reg_set(hpipe_addr + HPIPE_G2_SET_2_REG, data, mask);
/* Set G3 TX amplitude and TX post emphasis value */
mask = HPIPE_G3_SET_0_G3_TX_AMP_MASK;
data = sata_static_values->g3_amp << HPIPE_G3_SET_0_G3_TX_AMP_OFFSET;
mask |= HPIPE_G3_SET_0_G3_TX_AMP_ADJ_MASK;
data |= sata_static_values->g3_tx_amp_adj <<
HPIPE_G3_SET_0_G3_TX_AMP_ADJ_OFFSET;
mask |= HPIPE_G3_SET_0_G3_TX_EMPH1_MASK;
data |= sata_static_values->g3_emph <<
HPIPE_G3_SET_0_G3_TX_EMPH1_OFFSET;
mask |= HPIPE_G3_SET_0_G3_TX_EMPH1_EN_MASK;
data |= sata_static_values->g3_emph_en <<
HPIPE_G3_SET_0_G3_TX_EMPH1_EN_OFFSET;
mask |= HPIPE_G3_SET_0_G3_TX_SLEW_RATE_SEL_MASK;
data |= 0x4 << HPIPE_G3_SET_0_G3_TX_SLEW_RATE_SEL_OFFSET;
mask |= HPIPE_G3_SET_0_G3_TX_SLEW_CTRL_EN_MASK;
data |= 0x0 << HPIPE_G3_SET_0_G3_TX_SLEW_CTRL_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_G3_SET_0_REG, data, mask);
/* Set G3 emph */
mask = HPIPE_G3_SET_2_G3_TX_EMPH0_EN_MASK;
data = sata_static_values->g3_tx_emph_en <<
HPIPE_G3_SET_2_G3_TX_EMPH0_EN_OFFSET;
mask |= HPIPE_G3_SET_2_G3_TX_EMPH0_MASK;
data |= sata_static_values->g3_tx_emph <<
HPIPE_G3_SET_2_G3_TX_EMPH0_OFFSET;
reg_set(hpipe_addr + HPIPE_G3_SET_2_REG, data, mask);
/* SERDES External Configuration 2 register */
mask = SD_EXTERNAL_CONFIG2_SSC_ENABLE_MASK;
data = 0x1 << SD_EXTERNAL_CONFIG2_SSC_ENABLE_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG2_REG, data, mask);
/* DFE reset sequence */
reg_set(hpipe_addr + HPIPE_PWR_CTR_REG,
0x1 << HPIPE_PWR_CTR_RST_DFE_OFFSET,
HPIPE_PWR_CTR_RST_DFE_MASK);
reg_set(hpipe_addr + HPIPE_PWR_CTR_REG,
0x0 << HPIPE_PWR_CTR_RST_DFE_OFFSET,
HPIPE_PWR_CTR_RST_DFE_MASK);
/* SW reset for interrupt logic */
reg_set(hpipe_addr + HPIPE_PWR_CTR_REG,
0x1 << HPIPE_PWR_CTR_SFT_RST_OFFSET,
HPIPE_PWR_CTR_SFT_RST_MASK);
reg_set(hpipe_addr + HPIPE_PWR_CTR_REG,
0x0 << HPIPE_PWR_CTR_SFT_RST_OFFSET,
HPIPE_PWR_CTR_SFT_RST_MASK);
debug_exit();
return ret;
}
static int mvebu_cp110_comphy_sgmii_power_on(uint64_t comphy_base,
uint8_t comphy_index, uint32_t comphy_mode)
{
uintptr_t hpipe_addr, sd_ip_addr, comphy_addr, addr;
uint32_t mask, data, sgmii_speed = COMPHY_GET_SPEED(comphy_mode);
int ret = 0;
debug_enter();
hpipe_addr = HPIPE_ADDR(COMPHY_PIPE_FROM_COMPHY_ADDR(comphy_base),
comphy_index);
sd_ip_addr = SD_ADDR(COMPHY_PIPE_FROM_COMPHY_ADDR(comphy_base),
comphy_index);
comphy_addr = COMPHY_ADDR(comphy_base, comphy_index);
/* configure phy selector for SGMII */
mvebu_cp110_comphy_set_phy_selector(comphy_base, comphy_index,
comphy_mode);
/* Confiugre the lane */
debug("stage: RFU configurations - hard reset comphy\n");
/* RFU configurations - hard reset comphy */
mask = COMMON_PHY_CFG1_PWR_UP_MASK;
data = 0x1 << COMMON_PHY_CFG1_PWR_UP_OFFSET;
mask |= COMMON_PHY_CFG1_PIPE_SELECT_MASK;
data |= 0x0 << COMMON_PHY_CFG1_PIPE_SELECT_OFFSET;
reg_set(comphy_addr + COMMON_PHY_CFG1_REG, data, mask);
/* Select Baud Rate of Comphy And PD_PLL/Tx/Rx */
mask = SD_EXTERNAL_CONFIG0_SD_PU_PLL_MASK;
data = 0x0 << SD_EXTERNAL_CONFIG0_SD_PU_PLL_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PHY_GEN_RX_MASK;
mask |= SD_EXTERNAL_CONFIG0_SD_PHY_GEN_TX_MASK;
if (sgmii_speed == COMPHY_SPEED_1_25G) {
/* SGMII 1G, SerDes speed 1.25G */
data |= 0x6 << SD_EXTERNAL_CONFIG0_SD_PHY_GEN_RX_OFFSET;
data |= 0x6 << SD_EXTERNAL_CONFIG0_SD_PHY_GEN_TX_OFFSET;
} else if (sgmii_speed == COMPHY_SPEED_3_125G) {
/* HS SGMII (2.5G), SerDes speed 3.125G */
data |= 0x8 << SD_EXTERNAL_CONFIG0_SD_PHY_GEN_RX_OFFSET;
data |= 0x8 << SD_EXTERNAL_CONFIG0_SD_PHY_GEN_TX_OFFSET;
} else {
/* Other rates are not supported */
ERROR("unsupported SGMII speed on comphy%d\n", comphy_index);
return -EINVAL;
}
mask |= SD_EXTERNAL_CONFIG0_SD_PU_RX_MASK;
data |= 0 << SD_EXTERNAL_CONFIG0_SD_PU_RX_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PU_TX_MASK;
data |= 0 << SD_EXTERNAL_CONFIG0_SD_PU_TX_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_HALF_BUS_MODE_MASK;
data |= 1 << SD_EXTERNAL_CONFIG0_HALF_BUS_MODE_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG0_REG, data, mask);
/* Set hard reset */
mask = SD_EXTERNAL_CONFIG1_RESET_IN_MASK;
data = 0x0 << SD_EXTERNAL_CONFIG1_RESET_IN_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RESET_CORE_MASK;
data |= 0x0 << SD_EXTERNAL_CONFIG1_RESET_CORE_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RF_RESET_IN_MASK;
data |= 0x0 << SD_EXTERNAL_CONFIG1_RF_RESET_IN_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG, data, mask);
/* Release hard reset */
mask = SD_EXTERNAL_CONFIG1_RESET_IN_MASK;
data = 0x1 << SD_EXTERNAL_CONFIG1_RESET_IN_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RESET_CORE_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG1_RESET_CORE_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG, data, mask);
/* Wait 1ms - until band gap and ref clock ready */
mdelay(1);
/* Make sure that 40 data bits is disabled
* This bit is not cleared by reset
*/
mask = COMMON_PHY_CFG6_IF_40_SEL_MASK;
data = 0 << COMMON_PHY_CFG6_IF_40_SEL_OFFSET;
reg_set(comphy_addr + COMMON_PHY_CFG6_REG, data, mask);
/* Start comphy Configuration */
debug("stage: Comphy configuration\n");
/* set reference clock */
mask = HPIPE_MISC_REFCLK_SEL_MASK;
data = 0x0 << HPIPE_MISC_REFCLK_SEL_OFFSET;
reg_set(hpipe_addr + HPIPE_MISC_REG, data, mask);
/* Power and PLL Control */
mask = HPIPE_PWR_PLL_REF_FREQ_MASK;
data = 0x1 << HPIPE_PWR_PLL_REF_FREQ_OFFSET;
mask |= HPIPE_PWR_PLL_PHY_MODE_MASK;
data |= 0x4 << HPIPE_PWR_PLL_PHY_MODE_OFFSET;
reg_set(hpipe_addr + HPIPE_PWR_PLL_REG, data, mask);
/* Loopback register */
mask = HPIPE_LOOPBACK_SEL_MASK;
data = 0x1 << HPIPE_LOOPBACK_SEL_OFFSET;
reg_set(hpipe_addr + HPIPE_LOOPBACK_REG, data, mask);
/* rx control 1 */
mask = HPIPE_RX_CONTROL_1_RXCLK2X_SEL_MASK;
data = 0x1 << HPIPE_RX_CONTROL_1_RXCLK2X_SEL_OFFSET;
mask |= HPIPE_RX_CONTROL_1_CLK8T_EN_MASK;
data |= 0x0 << HPIPE_RX_CONTROL_1_CLK8T_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_RX_CONTROL_1_REG, data, mask);
/* DTL Control */
mask = HPIPE_PWR_CTR_DTL_FLOOP_EN_MASK;
data = 0x0 << HPIPE_PWR_CTR_DTL_FLOOP_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_PWR_CTR_DTL_REG, data, mask);
/* Set analog parameters from ETP(HW) - for now use the default data */
debug("stage: Analog parameters from ETP(HW)\n");
reg_set(hpipe_addr + HPIPE_G1_SET_0_REG,
0x1 << HPIPE_G1_SET_0_G1_TX_EMPH1_OFFSET,
HPIPE_G1_SET_0_G1_TX_EMPH1_MASK);
debug("stage: RFU configurations- Power Up PLL,Tx,Rx\n");
/* SERDES External Configuration */
mask = SD_EXTERNAL_CONFIG0_SD_PU_PLL_MASK;
data = 0x1 << SD_EXTERNAL_CONFIG0_SD_PU_PLL_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PU_RX_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG0_SD_PU_RX_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PU_TX_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG0_SD_PU_TX_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG0_REG, data, mask);
ret = mvebu_cp110_comphy_is_pll_locked(comphy_base, comphy_index);
if (ret)
return ret;
/* RX init */
mask = SD_EXTERNAL_CONFIG1_RX_INIT_MASK;
data = 0x1 << SD_EXTERNAL_CONFIG1_RX_INIT_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG, data, mask);
/* check that RX init done */
addr = sd_ip_addr + SD_EXTERNAL_STATUS0_REG;
data = SD_EXTERNAL_STATUS0_RX_INIT_MASK;
mask = data;
data = polling_with_timeout(addr, data, mask, 100, REG_32BIT);
if (data != 0) {
ERROR("RX init failed\n");
ret = -ETIMEDOUT;
}
debug("stage: RF Reset\n");
/* RF Reset */
mask = SD_EXTERNAL_CONFIG1_RX_INIT_MASK;
data = 0x0 << SD_EXTERNAL_CONFIG1_RX_INIT_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RF_RESET_IN_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG1_RF_RESET_IN_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG, data, mask);
debug_exit();
return ret;
}
static int mvebu_cp110_comphy_xfi_power_on(uint64_t comphy_base,
uint8_t comphy_index,
uint32_t comphy_mode)
{
uintptr_t hpipe_addr, sd_ip_addr, comphy_addr, addr;
uint32_t mask, data, speed = COMPHY_GET_SPEED(comphy_mode);
int ret = 0;
uint8_t ap_nr, cp_nr;
debug_enter();
mvebu_cp110_get_ap_and_cp_nr(&ap_nr, &cp_nr, comphy_base);
if (rx_trainng_done[ap_nr][cp_nr][comphy_index]) {
debug("Skip %s for comphy[%d][%d][%d], due to rx training\n",
__func__, ap_nr, cp_nr, comphy_index);
return 0;
}
const struct xfi_params *xfi_static_values =
&xfi_static_values_tab[ap_nr][cp_nr][comphy_index];
debug("%s: the ap_nr = %d, cp_nr = %d, comphy_index %d\n",
__func__, ap_nr, cp_nr, comphy_index);
debug("g1_ffe_cap_sel= 0x%x, g1_ffe_res_sel= 0x%x, g1_dfe_res= 0x%x\n",
xfi_static_values->g1_ffe_cap_sel,
xfi_static_values->g1_ffe_res_sel,
xfi_static_values->g1_dfe_res);
if (!xfi_static_values->valid) {
ERROR("[ap%d][cp[%d][comphy:%d]: Has no valid static params\n",
ap_nr, cp_nr, comphy_index);
ERROR("[ap%d][cp[%d][comphy:%d]: porting layer needs update\n",
ap_nr, cp_nr, comphy_index);
return -EINVAL;
}
if ((speed != COMPHY_SPEED_5_15625G) &&
(speed != COMPHY_SPEED_10_3125G) &&
(speed != COMPHY_SPEED_DEFAULT)) {
ERROR("comphy:%d: unsupported sfi/xfi speed\n", comphy_index);
return -EINVAL;
}
hpipe_addr = HPIPE_ADDR(COMPHY_PIPE_FROM_COMPHY_ADDR(comphy_base),
comphy_index);
sd_ip_addr = SD_ADDR(COMPHY_PIPE_FROM_COMPHY_ADDR(comphy_base),
comphy_index);
comphy_addr = COMPHY_ADDR(comphy_base, comphy_index);
/* configure phy selector for XFI/SFI */
mvebu_cp110_comphy_set_phy_selector(comphy_base, comphy_index,
comphy_mode);
debug("stage: RFU configurations - hard reset comphy\n");
/* RFU configurations - hard reset comphy */
mask = COMMON_PHY_CFG1_PWR_UP_MASK;
data = 0x1 << COMMON_PHY_CFG1_PWR_UP_OFFSET;
mask |= COMMON_PHY_CFG1_PIPE_SELECT_MASK;
data |= 0x0 << COMMON_PHY_CFG1_PIPE_SELECT_OFFSET;
reg_set(comphy_addr + COMMON_PHY_CFG1_REG, data, mask);
/* Make sure that 40 data bits is disabled
* This bit is not cleared by reset
*/
mask = COMMON_PHY_CFG6_IF_40_SEL_MASK;
data = 0 << COMMON_PHY_CFG6_IF_40_SEL_OFFSET;
reg_set(comphy_addr + COMMON_PHY_CFG6_REG, data, mask);
/* Select Baud Rate of Comphy And PD_PLL/Tx/Rx */
mask = SD_EXTERNAL_CONFIG0_SD_PU_PLL_MASK;
data = 0x0 << SD_EXTERNAL_CONFIG0_SD_PU_PLL_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PHY_GEN_RX_MASK;
data |= 0xE << SD_EXTERNAL_CONFIG0_SD_PHY_GEN_RX_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PHY_GEN_TX_MASK;
data |= 0xE << SD_EXTERNAL_CONFIG0_SD_PHY_GEN_TX_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PU_RX_MASK;
data |= 0 << SD_EXTERNAL_CONFIG0_SD_PU_RX_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PU_TX_MASK;
data |= 0 << SD_EXTERNAL_CONFIG0_SD_PU_TX_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_HALF_BUS_MODE_MASK;
data |= 0 << SD_EXTERNAL_CONFIG0_HALF_BUS_MODE_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG0_REG, data, mask);
/* release from hard reset */
mask = SD_EXTERNAL_CONFIG1_RESET_IN_MASK;
data = 0x0 << SD_EXTERNAL_CONFIG1_RESET_IN_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RESET_CORE_MASK;
data |= 0x0 << SD_EXTERNAL_CONFIG1_RESET_CORE_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RF_RESET_IN_MASK;
data |= 0x0 << SD_EXTERNAL_CONFIG1_RF_RESET_IN_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG, data, mask);
mask = SD_EXTERNAL_CONFIG1_RESET_IN_MASK;
data = 0x1 << SD_EXTERNAL_CONFIG1_RESET_IN_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RESET_CORE_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG1_RESET_CORE_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG, data, mask);
/* Wait 1ms - until band gap and ref clock ready */
mdelay(1);
/* Start comphy Configuration */
debug("stage: Comphy configuration\n");
/* set reference clock */
mask = HPIPE_MISC_ICP_FORCE_MASK;
data = (speed == COMPHY_SPEED_5_15625G) ?
(0x0 << HPIPE_MISC_ICP_FORCE_OFFSET) :
(0x1 << HPIPE_MISC_ICP_FORCE_OFFSET);
mask |= HPIPE_MISC_REFCLK_SEL_MASK;
data |= 0x0 << HPIPE_MISC_REFCLK_SEL_OFFSET;
reg_set(hpipe_addr + HPIPE_MISC_REG, data, mask);
/* Power and PLL Control */
mask = HPIPE_PWR_PLL_REF_FREQ_MASK;
data = 0x1 << HPIPE_PWR_PLL_REF_FREQ_OFFSET;
mask |= HPIPE_PWR_PLL_PHY_MODE_MASK;
data |= 0x4 << HPIPE_PWR_PLL_PHY_MODE_OFFSET;
reg_set(hpipe_addr + HPIPE_PWR_PLL_REG, data, mask);
/* Loopback register */
mask = HPIPE_LOOPBACK_SEL_MASK;
data = 0x1 << HPIPE_LOOPBACK_SEL_OFFSET;
reg_set(hpipe_addr + HPIPE_LOOPBACK_REG, data, mask);
/* rx control 1 */
mask = HPIPE_RX_CONTROL_1_RXCLK2X_SEL_MASK;
data = 0x1 << HPIPE_RX_CONTROL_1_RXCLK2X_SEL_OFFSET;
mask |= HPIPE_RX_CONTROL_1_CLK8T_EN_MASK;
data |= 0x1 << HPIPE_RX_CONTROL_1_CLK8T_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_RX_CONTROL_1_REG, data, mask);
/* DTL Control */
mask = HPIPE_PWR_CTR_DTL_FLOOP_EN_MASK;
data = 0x1 << HPIPE_PWR_CTR_DTL_FLOOP_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_PWR_CTR_DTL_REG, data, mask);
/* Transmitter/Receiver Speed Divider Force */
if (speed == COMPHY_SPEED_5_15625G) {
mask = HPIPE_SPD_DIV_FORCE_RX_SPD_DIV_MASK;
data = 1 << HPIPE_SPD_DIV_FORCE_RX_SPD_DIV_OFFSET;
mask |= HPIPE_SPD_DIV_FORCE_RX_SPD_DIV_FORCE_MASK;
data |= 1 << HPIPE_SPD_DIV_FORCE_RX_SPD_DIV_FORCE_OFFSET;
mask |= HPIPE_SPD_DIV_FORCE_TX_SPD_DIV_MASK;
data |= 1 << HPIPE_SPD_DIV_FORCE_TX_SPD_DIV_OFFSET;
mask |= HPIPE_SPD_DIV_FORCE_TX_SPD_DIV_FORCE_MASK;
data |= 1 << HPIPE_SPD_DIV_FORCE_TX_SPD_DIV_FORCE_OFFSET;
} else {
mask = HPIPE_TXDIGCK_DIV_FORCE_MASK;
data = 0x1 << HPIPE_TXDIGCK_DIV_FORCE_OFFSET;
}
reg_set(hpipe_addr + HPIPE_SPD_DIV_FORCE_REG, data, mask);
/* Set analog parameters from ETP(HW) */
debug("stage: Analog parameters from ETP(HW)\n");
/* SERDES External Configuration 2 */
mask = SD_EXTERNAL_CONFIG2_PIN_DFE_EN_MASK;
data = 0x1 << SD_EXTERNAL_CONFIG2_PIN_DFE_EN_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG2_REG, data, mask);
/* 0x7-DFE Resolution control */
mask = HPIPE_DFE_RES_FORCE_MASK;
data = 0x1 << HPIPE_DFE_RES_FORCE_OFFSET;
reg_set(hpipe_addr + HPIPE_DFE_REG0, data, mask);
/* 0xd-G1_Setting_0 */
if (speed == COMPHY_SPEED_5_15625G) {
mask = HPIPE_G1_SET_0_G1_TX_EMPH1_MASK;
data = 0x6 << HPIPE_G1_SET_0_G1_TX_EMPH1_OFFSET;
} else {
mask = HPIPE_G1_SET_0_G1_TX_AMP_MASK;
data = xfi_static_values->g1_amp <<
HPIPE_G1_SET_0_G1_TX_AMP_OFFSET;
mask |= HPIPE_G1_SET_0_G1_TX_EMPH1_MASK;
data |= xfi_static_values->g1_emph <<
HPIPE_G1_SET_0_G1_TX_EMPH1_OFFSET;
mask |= HPIPE_G1_SET_0_G1_TX_EMPH1_EN_MASK;
data |= xfi_static_values->g1_emph_en <<
HPIPE_G1_SET_0_G1_TX_EMPH1_EN_OFFSET;
mask |= HPIPE_G1_SET_0_G1_TX_AMP_ADJ_MASK;
data |= xfi_static_values->g1_tx_amp_adj <<
HPIPE_G1_SET_0_G1_TX_AMP_ADJ_OFFSET;
}
reg_set(hpipe_addr + HPIPE_G1_SET_0_REG, data, mask);
/* Genration 1 setting 2 (G1_Setting_2) */
mask = HPIPE_G1_SET_2_G1_TX_EMPH0_MASK;
data = xfi_static_values->g1_tx_emph <<
HPIPE_G1_SET_2_G1_TX_EMPH0_OFFSET;
mask |= HPIPE_G1_SET_2_G1_TX_EMPH0_EN_MASK;
data |= xfi_static_values->g1_tx_emph_en <<
HPIPE_G1_SET_2_G1_TX_EMPH0_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_G1_SET_2_REG, data, mask);
/* Transmitter Slew Rate Control register (tx_reg1) */
mask = HPIPE_TX_REG1_TX_EMPH_RES_MASK;
data = 0x3 << HPIPE_TX_REG1_TX_EMPH_RES_OFFSET;
mask |= HPIPE_TX_REG1_SLC_EN_MASK;
data |= 0x3f << HPIPE_TX_REG1_SLC_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_TX_REG1_REG, data, mask);
/* Impedance Calibration Control register (cal_reg1) */
mask = HPIPE_CAL_REG_1_EXT_TXIMP_MASK;
data = 0xe << HPIPE_CAL_REG_1_EXT_TXIMP_OFFSET;
mask |= HPIPE_CAL_REG_1_EXT_TXIMP_EN_MASK;
data |= 0x1 << HPIPE_CAL_REG_1_EXT_TXIMP_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_CAL_REG1_REG, data, mask);
/* Generation 1 Setting 5 (g1_setting_5) */
mask = HPIPE_G1_SETTING_5_G1_ICP_MASK;
data = 0 << HPIPE_CAL_REG_1_EXT_TXIMP_OFFSET;
reg_set(hpipe_addr + HPIPE_G1_SETTING_5_REG, data, mask);
/* 0xE-G1_Setting_1 */
mask = HPIPE_G1_SET_1_G1_RX_DFE_EN_MASK;
data = 0x1 << HPIPE_G1_SET_1_G1_RX_DFE_EN_OFFSET;
if (speed == COMPHY_SPEED_5_15625G) {
mask |= HPIPE_G1_SET_1_G1_RX_SELMUPI_MASK;
data |= 0x1 << HPIPE_G1_SET_1_G1_RX_SELMUPI_OFFSET;
mask |= HPIPE_G1_SET_1_G1_RX_SELMUPF_MASK;
data |= 0x1 << HPIPE_G1_SET_1_G1_RX_SELMUPF_OFFSET;
} else {
mask |= HPIPE_G1_SET_1_G1_RX_SELMUPI_MASK;
data |= xfi_static_values->g1_rx_selmupi <<
HPIPE_G1_SET_1_G1_RX_SELMUPI_OFFSET;
mask |= HPIPE_G1_SET_1_G1_RX_SELMUPF_MASK;
data |= xfi_static_values->g1_rx_selmupf <<
HPIPE_G1_SET_1_G1_RX_SELMUPF_OFFSET;
mask |= HPIPE_G1_SET_1_G1_RX_SELMUFI_MASK;
data |= xfi_static_values->g1_rx_selmufi <<
HPIPE_G1_SET_1_G1_RX_SELMUFI_OFFSET;
mask |= HPIPE_G1_SET_1_G1_RX_SELMUFF_MASK;
data |= xfi_static_values->g1_rx_selmuff <<
HPIPE_G1_SET_1_G1_RX_SELMUFF_OFFSET;
mask |= HPIPE_G1_SET_1_G1_RX_DIGCK_DIV_MASK;
data |= 0x3 << HPIPE_G1_SET_1_G1_RX_DIGCK_DIV_OFFSET;
}
reg_set(hpipe_addr + HPIPE_G1_SET_1_REG, data, mask);
/* 0xA-DFE_Reg3 */
mask = HPIPE_DFE_F3_F5_DFE_EN_MASK;
data = 0x0 << HPIPE_DFE_F3_F5_DFE_EN_OFFSET;
mask |= HPIPE_DFE_F3_F5_DFE_CTRL_MASK;
data |= 0x0 << HPIPE_DFE_F3_F5_DFE_CTRL_OFFSET;
reg_set(hpipe_addr + HPIPE_DFE_F3_F5_REG, data, mask);
/* 0x111-G1_Setting_4 */
mask = HPIPE_G1_SETTINGS_4_G1_DFE_RES_MASK;
data = 0x1 << HPIPE_G1_SETTINGS_4_G1_DFE_RES_OFFSET;
reg_set(hpipe_addr + HPIPE_G1_SETTINGS_4_REG, data, mask);
/* Genration 1 setting 3 (G1_Setting_3) */
mask = HPIPE_G1_SETTINGS_3_G1_FBCK_SEL_MASK;
data = 0x1 << HPIPE_G1_SETTINGS_3_G1_FBCK_SEL_OFFSET;
if (speed == COMPHY_SPEED_5_15625G) {
/* Force FFE (Feed Forward Equalization) to 5G */
mask |= HPIPE_G1_SETTINGS_3_G1_FFE_CAP_SEL_MASK;
data |= 0xf << HPIPE_G1_SETTINGS_3_G1_FFE_CAP_SEL_OFFSET;
mask |= HPIPE_G1_SETTINGS_3_G1_FFE_RES_SEL_MASK;
data |= 0x4 << HPIPE_G1_SETTINGS_3_G1_FFE_RES_SEL_OFFSET;
mask |= HPIPE_G1_SETTINGS_3_G1_FFE_SETTING_FORCE_MASK;
data |= 0x1 << HPIPE_G1_SETTINGS_3_G1_FFE_SETTING_FORCE_OFFSET;
reg_set(hpipe_addr + HPIPE_G1_SETTINGS_3_REG, data, mask);
} else {
mask |= HPIPE_G1_SETTINGS_3_G1_FFE_CAP_SEL_MASK;
data |= xfi_static_values->g1_ffe_cap_sel <<
HPIPE_G1_SETTINGS_3_G1_FFE_CAP_SEL_OFFSET;
mask |= HPIPE_G1_SETTINGS_3_G1_FFE_RES_SEL_MASK;
data |= xfi_static_values->g1_ffe_res_sel <<
HPIPE_G1_SETTINGS_3_G1_FFE_RES_SEL_OFFSET;
mask |= HPIPE_G1_SETTINGS_3_G1_FFE_SETTING_FORCE_MASK;
data |= 0x1 << HPIPE_G1_SETTINGS_3_G1_FFE_SETTING_FORCE_OFFSET;
reg_set(hpipe_addr + HPIPE_G1_SETTINGS_3_REG, data, mask);
/* Use the value from CAL_OS_PH_EXT */
mask = HPIPE_CAL_RXCLKALIGN_90_EXT_EN_MASK;
data = 1 << HPIPE_CAL_RXCLKALIGN_90_EXT_EN_OFFSET;
reg_set(hpipe_addr +
HPIPE_RX_CLK_ALIGN90_AND_TX_IDLE_CALIB_CTRL_REG,
data, mask);
/* Update align90 */
mask = HPIPE_CAL_OS_PH_EXT_MASK;
data = xfi_static_values->align90 << HPIPE_CAL_OS_PH_EXT_OFFSET;
reg_set(hpipe_addr +
HPIPE_RX_CLK_ALIGN90_AND_TX_IDLE_CALIB_CTRL_REG,
data, mask);
/* Force DFE resolution (use gen table value) */
mask = HPIPE_DFE_RES_FORCE_MASK;
data = 0x0 << HPIPE_DFE_RES_FORCE_OFFSET;
reg_set(hpipe_addr + HPIPE_DFE_REG0, data, mask);
/* 0x111-G1 DFE_Setting_4 */
mask = HPIPE_G1_SETTINGS_4_G1_DFE_RES_MASK;
data = xfi_static_values->g1_dfe_res <<
HPIPE_G1_SETTINGS_4_G1_DFE_RES_OFFSET;
reg_set(hpipe_addr + HPIPE_G1_SETTINGS_4_REG, data, mask);
}
/* Connfigure RX training timer */
mask = HPIPE_RX_TRAIN_TIMER_MASK;
data = 0x13 << HPIPE_RX_TRAIN_TIMER_OFFSET;
reg_set(hpipe_addr + HPIPE_TX_TRAIN_CTRL_5_REG, data, mask);
/* Enable TX train peak to peak hold */
mask = HPIPE_TX_TRAIN_P2P_HOLD_MASK;
data = 0x1 << HPIPE_TX_TRAIN_P2P_HOLD_OFFSET;
reg_set(hpipe_addr + HPIPE_TX_TRAIN_CTRL_0_REG, data, mask);
/* Configure TX preset index */
mask = HPIPE_TX_PRESET_INDEX_MASK;
data = 0x2 << HPIPE_TX_PRESET_INDEX_OFFSET;
reg_set(hpipe_addr + HPIPE_TX_PRESET_INDEX_REG, data, mask);
/* Disable pattern lock lost timeout */
mask = HPIPE_PATTERN_LOCK_LOST_TIMEOUT_EN_MASK;
data = 0x0 << HPIPE_PATTERN_LOCK_LOST_TIMEOUT_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_FRAME_DETECT_CTRL_3_REG, data, mask);
/* Configure TX training pattern and TX training 16bit auto */
mask = HPIPE_TX_TRAIN_16BIT_AUTO_EN_MASK;
data = 0x1 << HPIPE_TX_TRAIN_16BIT_AUTO_EN_OFFSET;
mask |= HPIPE_TX_TRAIN_PAT_SEL_MASK;
data |= 0x1 << HPIPE_TX_TRAIN_PAT_SEL_OFFSET;
reg_set(hpipe_addr + HPIPE_TX_TRAIN_REG, data, mask);
/* Configure Training patten number */
mask = HPIPE_TRAIN_PAT_NUM_MASK;
data = 0x88 << HPIPE_TRAIN_PAT_NUM_OFFSET;
reg_set(hpipe_addr + HPIPE_FRAME_DETECT_CTRL_0_REG, data, mask);
/* Configure differencial manchester encoter to ethernet mode */
mask = HPIPE_DME_ETHERNET_MODE_MASK;
data = 0x1 << HPIPE_DME_ETHERNET_MODE_OFFSET;
reg_set(hpipe_addr + HPIPE_DME_REG, data, mask);
/* Configure VDD Continuous Calibration */
mask = HPIPE_CAL_VDD_CONT_MODE_MASK;
data = 0x1 << HPIPE_CAL_VDD_CONT_MODE_OFFSET;
reg_set(hpipe_addr + HPIPE_VDD_CAL_0_REG, data, mask);
/* Trigger sampler enable pulse (by toggleing the bit) */
mask = HPIPE_RX_SAMPLER_OS_GAIN_MASK;
data = 0x3 << HPIPE_RX_SAMPLER_OS_GAIN_OFFSET;
mask |= HPIPE_SMAPLER_MASK;
data |= 0x1 << HPIPE_SMAPLER_OFFSET;
reg_set(hpipe_addr + HPIPE_SAMPLER_N_PROC_CALIB_CTRL_REG, data, mask);
mask = HPIPE_SMAPLER_MASK;
data = 0x0 << HPIPE_SMAPLER_OFFSET;
reg_set(hpipe_addr + HPIPE_SAMPLER_N_PROC_CALIB_CTRL_REG, data, mask);
/* Set External RX Regulator Control */
mask = HPIPE_EXT_SELLV_RXSAMPL_MASK;
data = 0x1A << HPIPE_EXT_SELLV_RXSAMPL_OFFSET;
reg_set(hpipe_addr + HPIPE_VDD_CAL_CTRL_REG, data, mask);
debug("stage: RFU configurations- Power Up PLL,Tx,Rx\n");
/* SERDES External Configuration */
mask = SD_EXTERNAL_CONFIG0_SD_PU_PLL_MASK;
data = 0x1 << SD_EXTERNAL_CONFIG0_SD_PU_PLL_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PU_RX_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG0_SD_PU_RX_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PU_TX_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG0_SD_PU_TX_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG0_REG, data, mask);
/* check PLL rx & tx ready */
addr = sd_ip_addr + SD_EXTERNAL_STATUS0_REG;
data = SD_EXTERNAL_STATUS0_PLL_RX_MASK |
SD_EXTERNAL_STATUS0_PLL_TX_MASK;
mask = data;
data = polling_with_timeout(addr, data, mask,
PLL_LOCK_TIMEOUT, REG_32BIT);
if (data != 0) {
if (data & SD_EXTERNAL_STATUS0_PLL_RX_MASK)
ERROR("RX PLL is not locked\n");
if (data & SD_EXTERNAL_STATUS0_PLL_TX_MASK)
ERROR("TX PLL is not locked\n");
ret = -ETIMEDOUT;
}
/* RX init */
mask = SD_EXTERNAL_CONFIG1_RX_INIT_MASK;
data = 0x1 << SD_EXTERNAL_CONFIG1_RX_INIT_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG, data, mask);
/* check that RX init done */
addr = sd_ip_addr + SD_EXTERNAL_STATUS0_REG;
data = SD_EXTERNAL_STATUS0_RX_INIT_MASK;
mask = data;
data = polling_with_timeout(addr, data, mask, 100, REG_32BIT);
if (data != 0) {
ERROR("RX init failed\n");
ret = -ETIMEDOUT;
}
debug("stage: RF Reset\n");
/* RF Reset */
mask = SD_EXTERNAL_CONFIG1_RX_INIT_MASK;
data = 0x0 << SD_EXTERNAL_CONFIG1_RX_INIT_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RF_RESET_IN_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG1_RF_RESET_IN_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG, data, mask);
debug_exit();
return ret;
}
static int mvebu_cp110_comphy_pcie_power_on(uint64_t comphy_base,
uint8_t comphy_index, uint32_t comphy_mode)
{
int ret = 0;
uint32_t reg, mask, data, pcie_width;
uint32_t clk_dir;
uintptr_t hpipe_addr, comphy_addr, addr;
_Bool clk_src = COMPHY_GET_CLK_SRC(comphy_mode);
_Bool called_from_uboot = COMPHY_GET_CALLER(comphy_mode);
/* In Armada 8K DB boards, PCIe initialization can be executed
* only once (PCIe reset performed during chip power on and
* it cannot be executed via GPIO later).
* This means that power on can be executed only once, so let's
* mark if the caller is bootloader or Linux.
* If bootloader -> run power on.
* If Linux -> exit.
*
* TODO: In MacciatoBIN, PCIe reset is connected via GPIO,
* so after GPIO reset is added to Linux Kernel, it can be
* powered-on by Linux.
*/
if (!called_from_uboot)
return ret;
hpipe_addr = HPIPE_ADDR(COMPHY_PIPE_FROM_COMPHY_ADDR(comphy_base),
comphy_index);
comphy_addr = COMPHY_ADDR(comphy_base, comphy_index);
pcie_width = COMPHY_GET_PCIE_WIDTH(comphy_mode);
debug_enter();
spin_lock(&cp110_mac_reset_lock);
reg = mmio_read_32(SYS_CTRL_FROM_COMPHY_ADDR(comphy_base) +
SYS_CTRL_UINIT_SOFT_RESET_REG);
switch (comphy_index) {
case COMPHY_LANE0:
reg |= PCIE_MAC_RESET_MASK_PORT0;
break;
case COMPHY_LANE4:
reg |= PCIE_MAC_RESET_MASK_PORT1;
break;
case COMPHY_LANE5:
reg |= PCIE_MAC_RESET_MASK_PORT2;
break;
}
mmio_write_32(SYS_CTRL_FROM_COMPHY_ADDR(comphy_base) +
SYS_CTRL_UINIT_SOFT_RESET_REG, reg);
spin_unlock(&cp110_mac_reset_lock);
/* Configure PIPE selector for PCIE */
mvebu_cp110_comphy_set_pipe_selector(comphy_base, comphy_index,
comphy_mode);
/*
* Read SAR (Sample-At-Reset) configuration for the PCIe clock
* direction.
*
* SerDes Lane 4/5 got the PCIe ref-clock #1,
* and SerDes Lane 0 got PCIe ref-clock #0
*/
reg = mmio_read_32(DFX_FROM_COMPHY_ADDR(comphy_base) +
SAR_STATUS_0_REG);
if (comphy_index == COMPHY_LANE4 || comphy_index == COMPHY_LANE5)
clk_dir = (reg & SAR_RST_PCIE1_CLOCK_CONFIG_CP1_MASK) >>
SAR_RST_PCIE1_CLOCK_CONFIG_CP1_OFFSET;
else
clk_dir = (reg & SAR_RST_PCIE0_CLOCK_CONFIG_CP1_MASK) >>
SAR_RST_PCIE0_CLOCK_CONFIG_CP1_OFFSET;
debug("On lane %d\n", comphy_index);
debug("PCIe clock direction = %x\n", clk_dir);
debug("PCIe Width = %d\n", pcie_width);
/* enable PCIe X4 and X2 */
if (comphy_index == COMPHY_LANE0) {
if (pcie_width == PCIE_LNK_X4) {
data = 0x1 << COMMON_PHY_SD_CTRL1_PCIE_X4_EN_OFFSET;
mask = COMMON_PHY_SD_CTRL1_PCIE_X4_EN_MASK;
reg_set(comphy_base + COMMON_PHY_SD_CTRL1,
data, mask);
} else if (pcie_width == PCIE_LNK_X2) {
data = 0x1 << COMMON_PHY_SD_CTRL1_PCIE_X2_EN_OFFSET;
mask = COMMON_PHY_SD_CTRL1_PCIE_X2_EN_MASK;
reg_set(comphy_base + COMMON_PHY_SD_CTRL1, data, mask);
}
}
/* If PCIe clock is output and clock source from SerDes lane 5,
* need to configure the clock-source MUX.
* By default, the clock source is from lane 4
*/
if (clk_dir && clk_src && (comphy_index == COMPHY_LANE5)) {
data = DFX_DEV_GEN_PCIE_CLK_SRC_MUX <<
DFX_DEV_GEN_PCIE_CLK_SRC_OFFSET;
mask = DFX_DEV_GEN_PCIE_CLK_SRC_MASK;
reg_set(DFX_FROM_COMPHY_ADDR(comphy_base) +
DFX_DEV_GEN_CTRL12_REG, data, mask);
}
debug("stage: RFU configurations - hard reset comphy\n");
/* RFU configurations - hard reset comphy */
mask = COMMON_PHY_CFG1_PWR_UP_MASK;
data = 0x1 << COMMON_PHY_CFG1_PWR_UP_OFFSET;
mask |= COMMON_PHY_CFG1_PIPE_SELECT_MASK;
data |= 0x1 << COMMON_PHY_CFG1_PIPE_SELECT_OFFSET;
mask |= COMMON_PHY_CFG1_PWR_ON_RESET_MASK;
data |= 0x0 << COMMON_PHY_CFG1_PWR_ON_RESET_OFFSET;
mask |= COMMON_PHY_CFG1_CORE_RSTN_MASK;
data |= 0x0 << COMMON_PHY_CFG1_CORE_RSTN_OFFSET;
mask |= COMMON_PHY_PHY_MODE_MASK;
data |= 0x0 << COMMON_PHY_PHY_MODE_OFFSET;
reg_set(comphy_addr + COMMON_PHY_CFG1_REG, data, mask);
/* release from hard reset */
mask = COMMON_PHY_CFG1_PWR_ON_RESET_MASK;
data = 0x1 << COMMON_PHY_CFG1_PWR_ON_RESET_OFFSET;
mask |= COMMON_PHY_CFG1_CORE_RSTN_MASK;
data |= 0x1 << COMMON_PHY_CFG1_CORE_RSTN_OFFSET;
reg_set(comphy_addr + COMMON_PHY_CFG1_REG, data, mask);
/* Wait 1ms - until band gap and ref clock ready */
mdelay(1);
/* Start comphy Configuration */
debug("stage: Comphy configuration\n");
/* Set PIPE soft reset */
mask = HPIPE_RST_CLK_CTRL_PIPE_RST_MASK;
data = 0x1 << HPIPE_RST_CLK_CTRL_PIPE_RST_OFFSET;
/* Set PHY datapath width mode for V0 */
mask |= HPIPE_RST_CLK_CTRL_FIXED_PCLK_MASK;
data |= 0x1 << HPIPE_RST_CLK_CTRL_FIXED_PCLK_OFFSET;
/* Set Data bus width USB mode for V0 */
mask |= HPIPE_RST_CLK_CTRL_PIPE_WIDTH_MASK;
data |= 0x0 << HPIPE_RST_CLK_CTRL_PIPE_WIDTH_OFFSET;
/* Set CORE_CLK output frequency for 250Mhz */
mask |= HPIPE_RST_CLK_CTRL_CORE_FREQ_SEL_MASK;
data |= 0x0 << HPIPE_RST_CLK_CTRL_CORE_FREQ_SEL_OFFSET;
reg_set(hpipe_addr + HPIPE_RST_CLK_CTRL_REG, data, mask);
/* Set PLL ready delay for 0x2 */
data = 0x2 << HPIPE_CLK_SRC_LO_PLL_RDY_DL_OFFSET;
mask = HPIPE_CLK_SRC_LO_PLL_RDY_DL_MASK;
if (pcie_width != PCIE_LNK_X1) {
data |= 0x1 << HPIPE_CLK_SRC_LO_BUNDLE_PERIOD_SEL_OFFSET;
mask |= HPIPE_CLK_SRC_LO_BUNDLE_PERIOD_SEL_MASK;
data |= 0x1 << HPIPE_CLK_SRC_LO_BUNDLE_PERIOD_SCALE_OFFSET;
mask |= HPIPE_CLK_SRC_LO_BUNDLE_PERIOD_SCALE_MASK;
}
reg_set(hpipe_addr + HPIPE_CLK_SRC_LO_REG, data, mask);
/* Set PIPE mode interface to PCIe3 - 0x1 & set lane order */
data = 0x1 << HPIPE_CLK_SRC_HI_MODE_PIPE_OFFSET;
mask = HPIPE_CLK_SRC_HI_MODE_PIPE_MASK;
if (pcie_width != PCIE_LNK_X1) {
mask |= HPIPE_CLK_SRC_HI_LANE_STRT_MASK;
mask |= HPIPE_CLK_SRC_HI_LANE_MASTER_MASK;
mask |= HPIPE_CLK_SRC_HI_LANE_BREAK_MASK;
if (comphy_index == 0) {
data |= 0x1 << HPIPE_CLK_SRC_HI_LANE_STRT_OFFSET;
data |= 0x1 << HPIPE_CLK_SRC_HI_LANE_MASTER_OFFSET;
} else if (comphy_index == (pcie_width - 1)) {
data |= 0x1 << HPIPE_CLK_SRC_HI_LANE_BREAK_OFFSET;
}
}
reg_set(hpipe_addr + HPIPE_CLK_SRC_HI_REG, data, mask);
/* Config update polarity equalization */
data = 0x1 << HPIPE_CFG_UPDATE_POLARITY_OFFSET;
mask = HPIPE_CFG_UPDATE_POLARITY_MASK;
reg_set(hpipe_addr + HPIPE_LANE_EQ_CFG1_REG, data, mask);
/* Set PIPE version 4 to mode enable */
data = 0x1 << HPIPE_DFE_CTRL_28_PIPE4_OFFSET;
mask = HPIPE_DFE_CTRL_28_PIPE4_MASK;
reg_set(hpipe_addr + HPIPE_DFE_CTRL_28_REG, data, mask);
/* TODO: check if pcie clock is output/input - for bringup use input*/
/* Enable PIN clock 100M_125M */
mask = 0;
data = 0;
/* Only if clock is output, configure the clock-source mux */
if (clk_dir) {
mask |= HPIPE_MISC_CLK100M_125M_MASK;
data |= 0x1 << HPIPE_MISC_CLK100M_125M_OFFSET;
}
/* Set PIN_TXDCLK_2X Clock Freq. Selection for outputs 500MHz clock */
mask |= HPIPE_MISC_TXDCLK_2X_MASK;
data |= 0x0 << HPIPE_MISC_TXDCLK_2X_OFFSET;
/* Enable 500MHz Clock */
mask |= HPIPE_MISC_CLK500_EN_MASK;
data |= 0x1 << HPIPE_MISC_CLK500_EN_OFFSET;
if (clk_dir) { /* output */
/* Set reference clock comes from group 1 */
mask |= HPIPE_MISC_REFCLK_SEL_MASK;
data |= 0x0 << HPIPE_MISC_REFCLK_SEL_OFFSET;
} else {
/* Set reference clock comes from group 2 */
mask |= HPIPE_MISC_REFCLK_SEL_MASK;
data |= 0x1 << HPIPE_MISC_REFCLK_SEL_OFFSET;
}
mask |= HPIPE_MISC_ICP_FORCE_MASK;
data |= 0x1 << HPIPE_MISC_ICP_FORCE_OFFSET;
reg_set(hpipe_addr + HPIPE_MISC_REG, data, mask);
if (clk_dir) { /* output */
/* Set reference frequcency select - 0x2 for 25MHz*/
mask = HPIPE_PWR_PLL_REF_FREQ_MASK;
data = 0x2 << HPIPE_PWR_PLL_REF_FREQ_OFFSET;
} else {
/* Set reference frequcency select - 0x0 for 100MHz*/
mask = HPIPE_PWR_PLL_REF_FREQ_MASK;
data = 0x0 << HPIPE_PWR_PLL_REF_FREQ_OFFSET;
}
/* Set PHY mode to PCIe */
mask |= HPIPE_PWR_PLL_PHY_MODE_MASK;
data |= 0x3 << HPIPE_PWR_PLL_PHY_MODE_OFFSET;
reg_set(hpipe_addr + HPIPE_PWR_PLL_REG, data, mask);
/* ref clock alignment */
if (pcie_width != PCIE_LNK_X1) {
mask = HPIPE_LANE_ALIGN_OFF_MASK;
data = 0x0 << HPIPE_LANE_ALIGN_OFF_OFFSET;
reg_set(hpipe_addr + HPIPE_LANE_ALIGN_REG, data, mask);
}
/* Set the amount of time spent in the LoZ state - set for 0x7 only if
* the PCIe clock is output
*/
if (clk_dir)
reg_set(hpipe_addr + HPIPE_GLOBAL_PM_CTRL,
0x7 << HPIPE_GLOBAL_PM_RXDLOZ_WAIT_OFFSET,
HPIPE_GLOBAL_PM_RXDLOZ_WAIT_MASK);
/* Set Maximal PHY Generation Setting(8Gbps) */
mask = HPIPE_INTERFACE_GEN_MAX_MASK;
data = 0x2 << HPIPE_INTERFACE_GEN_MAX_OFFSET;
/* Bypass frame detection and sync detection for RX DATA */
mask |= HPIPE_INTERFACE_DET_BYPASS_MASK;
data |= 0x1 << HPIPE_INTERFACE_DET_BYPASS_OFFSET;
/* Set Link Train Mode (Tx training control pins are used) */
mask |= HPIPE_INTERFACE_LINK_TRAIN_MASK;
data |= 0x1 << HPIPE_INTERFACE_LINK_TRAIN_OFFSET;
reg_set(hpipe_addr + HPIPE_INTERFACE_REG, data, mask);
/* Set Idle_sync enable */
mask = HPIPE_PCIE_IDLE_SYNC_MASK;
data = 0x1 << HPIPE_PCIE_IDLE_SYNC_OFFSET;
/* Select bits for PCIE Gen3(32bit) */
mask |= HPIPE_PCIE_SEL_BITS_MASK;
data |= 0x2 << HPIPE_PCIE_SEL_BITS_OFFSET;
reg_set(hpipe_addr + HPIPE_PCIE_REG0, data, mask);
/* Enable Tx_adapt_g1 */
mask = HPIPE_TX_TRAIN_CTRL_G1_MASK;
data = 0x1 << HPIPE_TX_TRAIN_CTRL_G1_OFFSET;
/* Enable Tx_adapt_gn1 */
mask |= HPIPE_TX_TRAIN_CTRL_GN1_MASK;
data |= 0x1 << HPIPE_TX_TRAIN_CTRL_GN1_OFFSET;
/* Disable Tx_adapt_g0 */
mask |= HPIPE_TX_TRAIN_CTRL_G0_MASK;
data |= 0x0 << HPIPE_TX_TRAIN_CTRL_G0_OFFSET;
reg_set(hpipe_addr + HPIPE_TX_TRAIN_CTRL_REG, data, mask);
/* Set reg_tx_train_chk_init */
mask = HPIPE_TX_TRAIN_CHK_INIT_MASK;
data = 0x0 << HPIPE_TX_TRAIN_CHK_INIT_OFFSET;
/* Enable TX_COE_FM_PIN_PCIE3_EN */
mask |= HPIPE_TX_TRAIN_COE_FM_PIN_PCIE3_MASK;
data |= 0x1 << HPIPE_TX_TRAIN_COE_FM_PIN_PCIE3_OFFSET;
reg_set(hpipe_addr + HPIPE_TX_TRAIN_REG, data, mask);
debug("stage: TRx training parameters\n");
/* Set Preset sweep configurations */
mask = HPIPE_TX_TX_STATUS_CHECK_MODE_MASK;
data = 0x1 << HPIPE_TX_STATUS_CHECK_MODE_OFFSET;
mask |= HPIPE_TX_NUM_OF_PRESET_MASK;
data |= 0x7 << HPIPE_TX_NUM_OF_PRESET_OFFSET;
mask |= HPIPE_TX_SWEEP_PRESET_EN_MASK;
data |= 0x1 << HPIPE_TX_SWEEP_PRESET_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_TX_TRAIN_CTRL_11_REG, data, mask);
/* Tx train start configuration */
mask = HPIPE_TX_TRAIN_START_SQ_EN_MASK;
data = 0x1 << HPIPE_TX_TRAIN_START_SQ_EN_OFFSET;
mask |= HPIPE_TX_TRAIN_START_FRM_DET_EN_MASK;
data |= 0x0 << HPIPE_TX_TRAIN_START_FRM_DET_EN_OFFSET;
mask |= HPIPE_TX_TRAIN_START_FRM_LOCK_EN_MASK;
data |= 0x0 << HPIPE_TX_TRAIN_START_FRM_LOCK_EN_OFFSET;
mask |= HPIPE_TX_TRAIN_WAIT_TIME_EN_MASK;
data |= 0x1 << HPIPE_TX_TRAIN_WAIT_TIME_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_TX_TRAIN_CTRL_5_REG, data, mask);
/* Enable Tx train P2P */
mask = HPIPE_TX_TRAIN_P2P_HOLD_MASK;
data = 0x1 << HPIPE_TX_TRAIN_P2P_HOLD_OFFSET;
reg_set(hpipe_addr + HPIPE_TX_TRAIN_CTRL_0_REG, data, mask);
/* Configure Tx train timeout */
mask = HPIPE_TRX_TRAIN_TIMER_MASK;
data = 0x17 << HPIPE_TRX_TRAIN_TIMER_OFFSET;
reg_set(hpipe_addr + HPIPE_TX_TRAIN_CTRL_4_REG, data, mask);
/* Disable G0/G1/GN1 adaptation */
mask = HPIPE_TX_TRAIN_CTRL_G1_MASK | HPIPE_TX_TRAIN_CTRL_GN1_MASK
| HPIPE_TX_TRAIN_CTRL_G0_OFFSET;
data = 0;
reg_set(hpipe_addr + HPIPE_TX_TRAIN_CTRL_REG, data, mask);
/* Disable DTL frequency loop */
mask = HPIPE_PWR_CTR_DTL_FLOOP_EN_MASK;
data = 0x0 << HPIPE_PWR_CTR_DTL_FLOOP_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_PWR_CTR_DTL_REG, data, mask);
/* Configure G3 DFE */
mask = HPIPE_G3_DFE_RES_MASK;
data = 0x3 << HPIPE_G3_DFE_RES_OFFSET;
reg_set(hpipe_addr + HPIPE_G3_SETTING_4_REG, data, mask);
/* Use TX/RX training result for DFE */
mask = HPIPE_DFE_RES_FORCE_MASK;
data = 0x0 << HPIPE_DFE_RES_FORCE_OFFSET;
reg_set(hpipe_addr + HPIPE_DFE_REG0, data, mask);
/* Configure initial and final coefficient value for receiver */
mask = HPIPE_G3_SET_1_G3_RX_SELMUPI_MASK;
data = 0x1 << HPIPE_G3_SET_1_G3_RX_SELMUPI_OFFSET;
mask |= HPIPE_G3_SET_1_G3_RX_SELMUPF_MASK;
data |= 0x1 << HPIPE_G3_SET_1_G3_RX_SELMUPF_OFFSET;
mask |= HPIPE_G3_SET_1_G3_SAMPLER_INPAIRX2_EN_MASK;
data |= 0x0 << HPIPE_G3_SET_1_G3_SAMPLER_INPAIRX2_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_G3_SET_1_REG, data, mask);
/* Trigger sampler enable pulse */
mask = HPIPE_SMAPLER_MASK;
data = 0x1 << HPIPE_SMAPLER_OFFSET;
reg_set(hpipe_addr + HPIPE_SAMPLER_N_PROC_CALIB_CTRL_REG, data, mask);
udelay(5);
reg_set(hpipe_addr + HPIPE_SAMPLER_N_PROC_CALIB_CTRL_REG, 0, mask);
/* FFE resistor tuning for different bandwidth */
mask = HPIPE_G3_FFE_DEG_RES_LEVEL_MASK;
data = 0x1 << HPIPE_G3_FFE_DEG_RES_LEVEL_OFFSET;
mask |= HPIPE_G3_FFE_LOAD_RES_LEVEL_MASK;
data |= 0x3 << HPIPE_G3_FFE_LOAD_RES_LEVEL_OFFSET;
reg_set(hpipe_addr + HPIPE_G3_SETTING_3_REG, data, mask);
/* Pattern lock lost timeout disable */
mask = HPIPE_PATTERN_LOCK_LOST_TIMEOUT_EN_MASK;
data = 0x0 << HPIPE_PATTERN_LOCK_LOST_TIMEOUT_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_FRAME_DETECT_CTRL_3_REG, data, mask);
/* Configure DFE adaptations */
mask = HPIPE_CDR_RX_MAX_DFE_ADAPT_0_MASK;
data = 0x0 << HPIPE_CDR_RX_MAX_DFE_ADAPT_0_OFFSET;
mask |= HPIPE_CDR_RX_MAX_DFE_ADAPT_1_MASK;
data |= 0x0 << HPIPE_CDR_RX_MAX_DFE_ADAPT_1_OFFSET;
mask |= HPIPE_CDR_MAX_DFE_ADAPT_0_MASK;
data |= 0x0 << HPIPE_CDR_MAX_DFE_ADAPT_0_OFFSET;
mask |= HPIPE_CDR_MAX_DFE_ADAPT_1_MASK;
data |= 0x1 << HPIPE_CDR_MAX_DFE_ADAPT_1_OFFSET;
reg_set(hpipe_addr + HPIPE_CDR_CONTROL_REG, data, mask);
mask = HPIPE_DFE_TX_MAX_DFE_ADAPT_MASK;
data = 0x0 << HPIPE_DFE_TX_MAX_DFE_ADAPT_OFFSET;
reg_set(hpipe_addr + HPIPE_DFE_CONTROL_REG, data, mask);
/* Genration 2 setting 1*/
mask = HPIPE_G2_SET_1_G2_RX_SELMUPI_MASK;
data = 0x0 << HPIPE_G2_SET_1_G2_RX_SELMUPI_OFFSET;
mask |= HPIPE_G2_SET_1_G2_RX_SELMUPF_MASK;
data |= 0x1 << HPIPE_G2_SET_1_G2_RX_SELMUPF_OFFSET;
mask |= HPIPE_G2_SET_1_G2_RX_SELMUFI_MASK;
data |= 0x0 << HPIPE_G2_SET_1_G2_RX_SELMUFI_OFFSET;
reg_set(hpipe_addr + HPIPE_G2_SET_1_REG, data, mask);
/* DFE enable */
mask = HPIPE_G2_DFE_RES_MASK;
data = 0x3 << HPIPE_G2_DFE_RES_OFFSET;
reg_set(hpipe_addr + HPIPE_G2_SETTINGS_4_REG, data, mask);
/* Configure DFE Resolution */
mask = HPIPE_LANE_CFG4_DFE_EN_SEL_MASK;
data = 0x1 << HPIPE_LANE_CFG4_DFE_EN_SEL_OFFSET;
reg_set(hpipe_addr + HPIPE_LANE_CFG4_REG, data, mask);
/* VDD calibration control */
mask = HPIPE_EXT_SELLV_RXSAMPL_MASK;
data = 0x16 << HPIPE_EXT_SELLV_RXSAMPL_OFFSET;
reg_set(hpipe_addr + HPIPE_VDD_CAL_CTRL_REG, data, mask);
/* Set PLL Charge-pump Current Control */
mask = HPIPE_G3_SETTING_5_G3_ICP_MASK;
data = 0x4 << HPIPE_G3_SETTING_5_G3_ICP_OFFSET;
reg_set(hpipe_addr + HPIPE_G3_SETTING_5_REG, data, mask);
/* Set lane rqualization remote setting */
mask = HPIPE_LANE_CFG_FOM_DIRN_OVERRIDE_MASK;
data = 0x1 << HPIPE_LANE_CFG_FOM_DIRN_OVERRIDE_OFFSET;
mask |= HPIPE_LANE_CFG_FOM_ONLY_MODE_MASK;
data |= 0x1 << HPIPE_LANE_CFG_FOM_ONLY_MODE_OFFFSET;
mask |= HPIPE_LANE_CFG_FOM_PRESET_VECTOR_MASK;
data |= 0x6 << HPIPE_LANE_CFG_FOM_PRESET_VECTOR_OFFSET;
reg_set(hpipe_addr + HPIPE_LANE_EQ_REMOTE_SETTING_REG, data, mask);
mask = HPIPE_CFG_EQ_BUNDLE_DIS_MASK;
data = 0x1 << HPIPE_CFG_EQ_BUNDLE_DIS_OFFSET;
reg_set(hpipe_addr + HPIPE_LANE_EQ_CFG2_REG, data, mask);
debug("stage: Comphy power up\n");
/* For PCIe X4 or X2:
* release from reset only after finish to configure all lanes
*/
if ((pcie_width == PCIE_LNK_X1) || (comphy_index == (pcie_width - 1))) {
uint32_t i, start_lane, end_lane;
if (pcie_width != PCIE_LNK_X1) {
/* allows writing to all lanes in one write */
data = 0x0;
if (pcie_width == PCIE_LNK_X2)
mask = COMMON_PHY_SD_CTRL1_COMPHY_0_1_PORT_MASK;
else if (pcie_width == PCIE_LNK_X4)
mask = COMMON_PHY_SD_CTRL1_COMPHY_0_3_PORT_MASK;
reg_set(comphy_base + COMMON_PHY_SD_CTRL1, data, mask);
start_lane = 0;
end_lane = pcie_width;
/* Release from PIPE soft reset
* For PCIe by4 or by2:
* release from soft reset all lanes - can't use
* read modify write
*/
reg_set(HPIPE_ADDR(
COMPHY_PIPE_FROM_COMPHY_ADDR(comphy_base), 0) +
HPIPE_RST_CLK_CTRL_REG, 0x24, 0xffffffff);
} else {
start_lane = comphy_index;
end_lane = comphy_index + 1;
/* Release from PIPE soft reset
* for PCIe by4 or by2:
* release from soft reset all lanes
*/
reg_set(hpipe_addr + HPIPE_RST_CLK_CTRL_REG,
0x0 << HPIPE_RST_CLK_CTRL_PIPE_RST_OFFSET,
HPIPE_RST_CLK_CTRL_PIPE_RST_MASK);
}
if (pcie_width != PCIE_LNK_X1) {
/* disable writing to all lanes with one write */
if (pcie_width == PCIE_LNK_X2) {
data = (COMPHY_LANE0 <<
COMMON_PHY_SD_CTRL1_COMPHY_0_PORT_OFFSET) |
(COMPHY_LANE1 <<
COMMON_PHY_SD_CTRL1_COMPHY_1_PORT_OFFSET);
mask = COMMON_PHY_SD_CTRL1_COMPHY_0_1_PORT_MASK;
} else if (pcie_width == PCIE_LNK_X4) {
data = (COMPHY_LANE0 <<
COMMON_PHY_SD_CTRL1_COMPHY_0_PORT_OFFSET) |
(COMPHY_LANE1 <<
COMMON_PHY_SD_CTRL1_COMPHY_1_PORT_OFFSET) |
(COMPHY_LANE2 <<
COMMON_PHY_SD_CTRL1_COMPHY_2_PORT_OFFSET) |
(COMPHY_LANE3 <<
COMMON_PHY_SD_CTRL1_COMPHY_3_PORT_OFFSET);
mask = COMMON_PHY_SD_CTRL1_COMPHY_0_3_PORT_MASK;
}
reg_set(comphy_base + COMMON_PHY_SD_CTRL1,
data, mask);
}
debug("stage: Check PLL\n");
/* Read lane status */
for (i = start_lane; i < end_lane; i++) {
addr = HPIPE_ADDR(
COMPHY_PIPE_FROM_COMPHY_ADDR(comphy_base), i) +
HPIPE_LANE_STATUS1_REG;
data = HPIPE_LANE_STATUS1_PCLK_EN_MASK;
mask = data;
ret = polling_with_timeout(addr, data, mask,
PLL_LOCK_TIMEOUT,
REG_32BIT);
if (ret)
ERROR("Failed to lock PCIE PLL\n");
}
}
debug_exit();
return ret;
}
static int mvebu_cp110_comphy_rxaui_power_on(uint64_t comphy_base,
uint8_t comphy_index, uint32_t comphy_mode)
{
uintptr_t hpipe_addr, sd_ip_addr, comphy_addr, addr;
uint32_t mask, data;
int ret = 0;
debug_enter();
hpipe_addr = HPIPE_ADDR(COMPHY_PIPE_FROM_COMPHY_ADDR(comphy_base),
comphy_index);
comphy_addr = COMPHY_ADDR(comphy_base, comphy_index);
sd_ip_addr = SD_ADDR(COMPHY_PIPE_FROM_COMPHY_ADDR(comphy_base),
comphy_index);
/* configure phy selector for RXAUI */
mvebu_cp110_comphy_set_phy_selector(comphy_base, comphy_index,
comphy_mode);
/* RFU configurations - hard reset comphy */
mask = COMMON_PHY_CFG1_PWR_UP_MASK;
data = 0x1 << COMMON_PHY_CFG1_PWR_UP_OFFSET;
mask |= COMMON_PHY_CFG1_PIPE_SELECT_MASK;
data |= 0x0 << COMMON_PHY_CFG1_PIPE_SELECT_OFFSET;
reg_set(comphy_addr + COMMON_PHY_CFG1_REG, data, mask);
if (comphy_index == 2) {
reg_set(comphy_base + COMMON_PHY_SD_CTRL1,
0x1 << COMMON_PHY_SD_CTRL1_RXAUI0_OFFSET,
COMMON_PHY_SD_CTRL1_RXAUI0_MASK);
}
if (comphy_index == 4) {
reg_set(comphy_base + COMMON_PHY_SD_CTRL1,
0x1 << COMMON_PHY_SD_CTRL1_RXAUI1_OFFSET,
COMMON_PHY_SD_CTRL1_RXAUI1_MASK);
}
/* Select Baud Rate of Comphy And PD_PLL/Tx/Rx */
mask = SD_EXTERNAL_CONFIG0_SD_PU_PLL_MASK;
data = 0x0 << SD_EXTERNAL_CONFIG0_SD_PU_PLL_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PHY_GEN_RX_MASK;
data |= 0xB << SD_EXTERNAL_CONFIG0_SD_PHY_GEN_RX_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PHY_GEN_TX_MASK;
data |= 0xB << SD_EXTERNAL_CONFIG0_SD_PHY_GEN_TX_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PU_RX_MASK;
data |= 0x0 << SD_EXTERNAL_CONFIG0_SD_PU_RX_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PU_TX_MASK;
data |= 0x0 << SD_EXTERNAL_CONFIG0_SD_PU_TX_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_HALF_BUS_MODE_MASK;
data |= 0x0 << SD_EXTERNAL_CONFIG0_HALF_BUS_MODE_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_MEDIA_MODE_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG0_MEDIA_MODE_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG0_REG, data, mask);
/* release from hard reset */
mask = SD_EXTERNAL_CONFIG1_RESET_IN_MASK;
data = 0x0 << SD_EXTERNAL_CONFIG1_RESET_IN_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RESET_CORE_MASK;
data |= 0x0 << SD_EXTERNAL_CONFIG1_RESET_CORE_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RF_RESET_IN_MASK;
data |= 0x0 << SD_EXTERNAL_CONFIG1_RF_RESET_IN_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG, data, mask);
mask = SD_EXTERNAL_CONFIG1_RESET_IN_MASK;
data = 0x1 << SD_EXTERNAL_CONFIG1_RESET_IN_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RESET_CORE_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG1_RESET_CORE_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG, data, mask);
/* Wait 1ms - until band gap and ref clock ready */
mdelay(1);
/* Start comphy Configuration */
debug("stage: Comphy configuration\n");
/* set reference clock */
reg_set(hpipe_addr + HPIPE_MISC_REG,
0x0 << HPIPE_MISC_REFCLK_SEL_OFFSET,
HPIPE_MISC_REFCLK_SEL_MASK);
/* Power and PLL Control */
mask = HPIPE_PWR_PLL_REF_FREQ_MASK;
data = 0x1 << HPIPE_PWR_PLL_REF_FREQ_OFFSET;
mask |= HPIPE_PWR_PLL_PHY_MODE_MASK;
data |= 0x4 << HPIPE_PWR_PLL_PHY_MODE_OFFSET;
reg_set(hpipe_addr + HPIPE_PWR_PLL_REG, data, mask);
/* Loopback register */
reg_set(hpipe_addr + HPIPE_LOOPBACK_REG,
0x1 << HPIPE_LOOPBACK_SEL_OFFSET, HPIPE_LOOPBACK_SEL_MASK);
/* rx control 1 */
mask = HPIPE_RX_CONTROL_1_RXCLK2X_SEL_MASK;
data = 0x1 << HPIPE_RX_CONTROL_1_RXCLK2X_SEL_OFFSET;
mask |= HPIPE_RX_CONTROL_1_CLK8T_EN_MASK;
data |= 0x1 << HPIPE_RX_CONTROL_1_CLK8T_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_RX_CONTROL_1_REG, data, mask);
/* DTL Control */
reg_set(hpipe_addr + HPIPE_PWR_CTR_DTL_REG,
0x0 << HPIPE_PWR_CTR_DTL_FLOOP_EN_OFFSET,
HPIPE_PWR_CTR_DTL_FLOOP_EN_MASK);
/* Set analog parameters from ETP(HW) */
debug("stage: Analog parameters from ETP(HW)\n");
/* SERDES External Configuration 2 */
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG2_REG,
0x1 << SD_EXTERNAL_CONFIG2_PIN_DFE_EN_OFFSET,
SD_EXTERNAL_CONFIG2_PIN_DFE_EN_MASK);
/* 0x7-DFE Resolution control */
reg_set(hpipe_addr + HPIPE_DFE_REG0, 0x1 << HPIPE_DFE_RES_FORCE_OFFSET,
HPIPE_DFE_RES_FORCE_MASK);
/* 0xd-G1_Setting_0 */
reg_set(hpipe_addr + HPIPE_G1_SET_0_REG,
0xd << HPIPE_G1_SET_0_G1_TX_EMPH1_OFFSET,
HPIPE_G1_SET_0_G1_TX_EMPH1_MASK);
/* 0xE-G1_Setting_1 */
mask = HPIPE_G1_SET_1_G1_RX_SELMUPI_MASK;
data = 0x1 << HPIPE_G1_SET_1_G1_RX_SELMUPI_OFFSET;
mask |= HPIPE_G1_SET_1_G1_RX_SELMUPF_MASK;
data |= 0x1 << HPIPE_G1_SET_1_G1_RX_SELMUPF_OFFSET;
mask |= HPIPE_G1_SET_1_G1_RX_DFE_EN_MASK;
data |= 0x1 << HPIPE_G1_SET_1_G1_RX_DFE_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_G1_SET_1_REG, data, mask);
/* 0xA-DFE_Reg3 */
mask = HPIPE_DFE_F3_F5_DFE_EN_MASK;
data = 0x0 << HPIPE_DFE_F3_F5_DFE_EN_OFFSET;
mask |= HPIPE_DFE_F3_F5_DFE_CTRL_MASK;
data |= 0x0 << HPIPE_DFE_F3_F5_DFE_CTRL_OFFSET;
reg_set(hpipe_addr + HPIPE_DFE_F3_F5_REG, data, mask);
/* 0x111-G1_Setting_4 */
mask = HPIPE_G1_SETTINGS_4_G1_DFE_RES_MASK;
data = 0x1 << HPIPE_G1_SETTINGS_4_G1_DFE_RES_OFFSET;
reg_set(hpipe_addr + HPIPE_G1_SETTINGS_4_REG, data, mask);
debug("stage: RFU configurations- Power Up PLL,Tx,Rx\n");
/* SERDES External Configuration */
mask = SD_EXTERNAL_CONFIG0_SD_PU_PLL_MASK;
data = 0x1 << SD_EXTERNAL_CONFIG0_SD_PU_PLL_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PU_RX_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG0_SD_PU_RX_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PU_TX_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG0_SD_PU_TX_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG0_REG, data, mask);
/* check PLL rx & tx ready */
addr = sd_ip_addr + SD_EXTERNAL_STATUS0_REG;
data = SD_EXTERNAL_STATUS0_PLL_RX_MASK |
SD_EXTERNAL_STATUS0_PLL_TX_MASK;
mask = data;
data = polling_with_timeout(addr, data, mask, 15000, REG_32BIT);
if (data != 0) {
debug("Read from reg = %lx - value = 0x%x\n",
sd_ip_addr + SD_EXTERNAL_STATUS0_REG, data);
ERROR("SD_EXTERNAL_STATUS0_PLL_RX is %d, -\"-_PLL_TX is %d\n",
(data & SD_EXTERNAL_STATUS0_PLL_RX_MASK),
(data & SD_EXTERNAL_STATUS0_PLL_TX_MASK));
ret = -ETIMEDOUT;
}
/* RX init */
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG,
0x1 << SD_EXTERNAL_CONFIG1_RX_INIT_OFFSET,
SD_EXTERNAL_CONFIG1_RX_INIT_MASK);
/* check that RX init done */
addr = sd_ip_addr + SD_EXTERNAL_STATUS0_REG;
data = SD_EXTERNAL_STATUS0_RX_INIT_MASK;
mask = data;
data = polling_with_timeout(addr, data, mask, 100, REG_32BIT);
if (data != 0) {
debug("Read from reg = %lx - value = 0x%x\n",
sd_ip_addr + SD_EXTERNAL_STATUS0_REG, data);
ERROR("SD_EXTERNAL_STATUS0_RX_INIT is 0\n");
ret = -ETIMEDOUT;
}
debug("stage: RF Reset\n");
/* RF Reset */
mask = SD_EXTERNAL_CONFIG1_RX_INIT_MASK;
data = 0x0 << SD_EXTERNAL_CONFIG1_RX_INIT_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RF_RESET_IN_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG1_RF_RESET_IN_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG, data, mask);
debug_exit();
return ret;
}
static int mvebu_cp110_comphy_usb3_power_on(uint64_t comphy_base,
uint8_t comphy_index, uint32_t comphy_mode)
{
uintptr_t hpipe_addr, comphy_addr, addr;
uint32_t mask, data;
int ret = 0;
debug_enter();
/* Configure PIPE selector for USB3 */
mvebu_cp110_comphy_set_pipe_selector(comphy_base, comphy_index,
comphy_mode);
hpipe_addr = HPIPE_ADDR(COMPHY_PIPE_FROM_COMPHY_ADDR(comphy_base),
comphy_index);
comphy_addr = COMPHY_ADDR(comphy_base, comphy_index);
debug("stage: RFU configurations - hard reset comphy\n");
/* RFU configurations - hard reset comphy */
mask = COMMON_PHY_CFG1_PWR_UP_MASK;
data = 0x1 << COMMON_PHY_CFG1_PWR_UP_OFFSET;
mask |= COMMON_PHY_CFG1_PIPE_SELECT_MASK;
data |= 0x1 << COMMON_PHY_CFG1_PIPE_SELECT_OFFSET;
mask |= COMMON_PHY_CFG1_PWR_ON_RESET_MASK;
data |= 0x0 << COMMON_PHY_CFG1_PWR_ON_RESET_OFFSET;
mask |= COMMON_PHY_CFG1_CORE_RSTN_MASK;
data |= 0x0 << COMMON_PHY_CFG1_CORE_RSTN_OFFSET;
mask |= COMMON_PHY_PHY_MODE_MASK;
data |= 0x1 << COMMON_PHY_PHY_MODE_OFFSET;
reg_set(comphy_addr + COMMON_PHY_CFG1_REG, data, mask);
/* release from hard reset */
mask = COMMON_PHY_CFG1_PWR_ON_RESET_MASK;
data = 0x1 << COMMON_PHY_CFG1_PWR_ON_RESET_OFFSET;
mask |= COMMON_PHY_CFG1_CORE_RSTN_MASK;
data |= 0x1 << COMMON_PHY_CFG1_CORE_RSTN_OFFSET;
reg_set(comphy_addr + COMMON_PHY_CFG1_REG, data, mask);
/* Wait 1ms - until band gap and ref clock ready */
mdelay(1);
/* Start comphy Configuration */
debug("stage: Comphy configuration\n");
/* Set PIPE soft reset */
mask = HPIPE_RST_CLK_CTRL_PIPE_RST_MASK;
data = 0x1 << HPIPE_RST_CLK_CTRL_PIPE_RST_OFFSET;
/* Set PHY datapath width mode for V0 */
mask |= HPIPE_RST_CLK_CTRL_FIXED_PCLK_MASK;
data |= 0x0 << HPIPE_RST_CLK_CTRL_FIXED_PCLK_OFFSET;
/* Set Data bus width USB mode for V0 */
mask |= HPIPE_RST_CLK_CTRL_PIPE_WIDTH_MASK;
data |= 0x0 << HPIPE_RST_CLK_CTRL_PIPE_WIDTH_OFFSET;
/* Set CORE_CLK output frequency for 250Mhz */
mask |= HPIPE_RST_CLK_CTRL_CORE_FREQ_SEL_MASK;
data |= 0x0 << HPIPE_RST_CLK_CTRL_CORE_FREQ_SEL_OFFSET;
reg_set(hpipe_addr + HPIPE_RST_CLK_CTRL_REG, data, mask);
/* Set PLL ready delay for 0x2 */
reg_set(hpipe_addr + HPIPE_CLK_SRC_LO_REG,
0x2 << HPIPE_CLK_SRC_LO_PLL_RDY_DL_OFFSET,
HPIPE_CLK_SRC_LO_PLL_RDY_DL_MASK);
/* Set reference clock to come from group 1 - 25Mhz */
reg_set(hpipe_addr + HPIPE_MISC_REG,
0x0 << HPIPE_MISC_REFCLK_SEL_OFFSET,
HPIPE_MISC_REFCLK_SEL_MASK);
/* Set reference frequcency select - 0x2 */
mask = HPIPE_PWR_PLL_REF_FREQ_MASK;
data = 0x2 << HPIPE_PWR_PLL_REF_FREQ_OFFSET;
/* Set PHY mode to USB - 0x5 */
mask |= HPIPE_PWR_PLL_PHY_MODE_MASK;
data |= 0x5 << HPIPE_PWR_PLL_PHY_MODE_OFFSET;
reg_set(hpipe_addr + HPIPE_PWR_PLL_REG, data, mask);
/* Set the amount of time spent in the LoZ state - set for 0x7 */
reg_set(hpipe_addr + HPIPE_GLOBAL_PM_CTRL,
0x7 << HPIPE_GLOBAL_PM_RXDLOZ_WAIT_OFFSET,
HPIPE_GLOBAL_PM_RXDLOZ_WAIT_MASK);
/* Set max PHY generation setting - 5Gbps */
reg_set(hpipe_addr + HPIPE_INTERFACE_REG,
0x1 << HPIPE_INTERFACE_GEN_MAX_OFFSET,
HPIPE_INTERFACE_GEN_MAX_MASK);
/* Set select data width 20Bit (SEL_BITS[2:0]) */
reg_set(hpipe_addr + HPIPE_LOOPBACK_REG,
0x1 << HPIPE_LOOPBACK_SEL_OFFSET,
HPIPE_LOOPBACK_SEL_MASK);
/* select de-emphasize 3.5db */
reg_set(hpipe_addr + HPIPE_LANE_CONFIG0_REG,
0x1 << HPIPE_LANE_CONFIG0_TXDEEMPH0_OFFSET,
HPIPE_LANE_CONFIG0_TXDEEMPH0_MASK);
/* override tx margining from the MAC */
reg_set(hpipe_addr + HPIPE_TST_MODE_CTRL_REG,
0x1 << HPIPE_TST_MODE_CTRL_MODE_MARGIN_OFFSET,
HPIPE_TST_MODE_CTRL_MODE_MARGIN_MASK);
/* Start analog parameters from ETP(HW) */
debug("stage: Analog parameters from ETP(HW)\n");
/* Set Pin DFE_PAT_DIS -> Bit[1]: PIN_DFE_PAT_DIS = 0x0 */
mask = HPIPE_LANE_CFG4_DFE_CTRL_MASK;
data = 0x1 << HPIPE_LANE_CFG4_DFE_CTRL_OFFSET;
/* Set Override PHY DFE control pins for 0x1 */
mask |= HPIPE_LANE_CFG4_DFE_OVER_MASK;
data |= 0x1 << HPIPE_LANE_CFG4_DFE_OVER_OFFSET;
/* Set Spread Spectrum Clock Enable fot 0x1 */
mask |= HPIPE_LANE_CFG4_SSC_CTRL_MASK;
data |= 0x1 << HPIPE_LANE_CFG4_SSC_CTRL_OFFSET;
reg_set(hpipe_addr + HPIPE_LANE_CFG4_REG, data, mask);
/* Confifure SSC amplitude */
mask = HPIPE_G2_TX_SSC_AMP_MASK;
data = 0x1f << HPIPE_G2_TX_SSC_AMP_OFFSET;
reg_set(hpipe_addr + HPIPE_G2_SET_2_REG, data, mask);
/* End of analog parameters */
debug("stage: Comphy power up\n");
/* Release from PIPE soft reset */
reg_set(hpipe_addr + HPIPE_RST_CLK_CTRL_REG,
0x0 << HPIPE_RST_CLK_CTRL_PIPE_RST_OFFSET,
HPIPE_RST_CLK_CTRL_PIPE_RST_MASK);
/* wait 15ms - for comphy calibration done */
debug("stage: Check PLL\n");
/* Read lane status */
addr = hpipe_addr + HPIPE_LANE_STATUS1_REG;
data = HPIPE_LANE_STATUS1_PCLK_EN_MASK;
mask = data;
data = polling_with_timeout(addr, data, mask, 15000, REG_32BIT);
if (data != 0) {
debug("Read from reg = %lx - value = 0x%x\n",
hpipe_addr + HPIPE_LANE_STATUS1_REG, data);
ERROR("HPIPE_LANE_STATUS1_PCLK_EN_MASK is 0\n");
ret = -ETIMEDOUT;
}
debug_exit();
return ret;
}
int mvebu_cp110_comphy_xfi_rx_training(uint64_t comphy_base,
uint8_t comphy_index)
{
uint32_t mask, data, timeout;
uint32_t g1_ffe_cap_sel, g1_ffe_res_sel, align90, g1_dfe_res;
uintptr_t hpipe_addr, sd_ip_addr;
uint8_t ap_nr, cp_nr;
mvebu_cp110_get_ap_and_cp_nr(&ap_nr, &cp_nr, comphy_base);
hpipe_addr = HPIPE_ADDR(COMPHY_PIPE_FROM_COMPHY_ADDR(comphy_base),
comphy_index);
sd_ip_addr = SD_ADDR(COMPHY_PIPE_FROM_COMPHY_ADDR(comphy_base),
comphy_index);
debug_enter();
debug("stage: RF Reset\n");
/* Release from hard reset */
mask = SD_EXTERNAL_CONFIG1_RESET_IN_MASK;
data = 0x0 << SD_EXTERNAL_CONFIG1_RESET_IN_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RESET_CORE_MASK;
data |= 0x0 << SD_EXTERNAL_CONFIG1_RESET_CORE_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RF_RESET_IN_MASK;
data |= 0x0 << SD_EXTERNAL_CONFIG1_RF_RESET_IN_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG, data, mask);
mask = SD_EXTERNAL_CONFIG1_RESET_IN_MASK;
data = 0x1 << SD_EXTERNAL_CONFIG1_RESET_IN_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RESET_CORE_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG1_RESET_CORE_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG, data, mask);
/* Wait 50ms - until band gap and ref clock ready */
mdelay(50);
debug("Preparation for rx_training\n\n");
/* Use the FFE table */
mask = HPIPE_G1_SETTINGS_3_G1_FFE_SETTING_FORCE_MASK;
data = 0 << HPIPE_G1_SETTINGS_3_G1_FFE_SETTING_FORCE_OFFSET;
reg_set(hpipe_addr + HPIPE_G1_SETTINGS_3_REG, data, mask);
/* Use auto-calibration value */
mask = HPIPE_CAL_RXCLKALIGN_90_EXT_EN_MASK;
data = 0 << HPIPE_CAL_RXCLKALIGN_90_EXT_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_RX_CLK_ALIGN90_AND_TX_IDLE_CALIB_CTRL_REG,
data, mask);
/* Use Tx/Rx training results */
mask = HPIPE_DFE_RES_FORCE_MASK;
data = 0 << HPIPE_DFE_RES_FORCE_OFFSET;
reg_set(hpipe_addr + HPIPE_DFE_REG0, data, mask);
debug("PRBS31 loppback\n\n");
/* Configure PRBS counters */
mask = HPIPE_PHY_TEST_PATTERN_SEL_MASK;
data = 0xe << HPIPE_PHY_TEST_PATTERN_SEL_OFFSET;
reg_set(hpipe_addr + HPIPE_PHY_TEST_CONTROL_REG, data, mask);
mask = HPIPE_PHY_TEST_DATA_MASK;
data = 0xc4 << HPIPE_PHY_TEST_DATA_OFFSET;
reg_set(hpipe_addr + HPIPE_PHY_TEST_DATA_REG, data, mask);
mask = HPIPE_PHY_TEST_EN_MASK;
data = 0x1 << HPIPE_PHY_TEST_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_PHY_TEST_CONTROL_REG, data, mask);
mdelay(10);
debug("Enable TX/RX training\n\n");
mask = HPIPE_TRX_RX_TRAIN_EN_MASK;
data = 0x1 << HPIPE_TRX_RX_TRAIN_EN_OFFSET;
mask |= HPIPE_TRX_RX_ANA_IF_CLK_ENE_MASK;
data |= 0x1 << HPIPE_TRX_RX_ANA_IF_CLK_ENE_OFFSET;
mask |= HPIPE_TRX_TX_CTRL_CLK_EN_MASK;
data |= 0x1 << HPIPE_TRX_TX_CTRL_CLK_EN_OFFSET;
mask |= HPIPE_TRX_UPDATE_THEN_HOLD_MASK;
data |= 0x1 << HPIPE_TRX_UPDATE_THEN_HOLD_OFFSET;
mask |= HPIPE_TRX_TX_F0T_EO_BASED_MASK;
data |= 0x1 << HPIPE_TRX_TX_F0T_EO_BASED_OFFSET;
reg_set(hpipe_addr + HPIPE_TRX_TRAIN_CTRL_0_REG, data, mask);
/* Check the result of RX training */
timeout = RX_TRAINING_TIMEOUT;
mask = HPIPE_INTERRUPT_TRX_TRAIN_DONE_OFFSET |
HPIPE_INTERRUPT_DFE_DONE_INT_OFFSET |
HPIPE_INTERRUPT_RX_TRAIN_COMPLETE_INT_MASK;
while (timeout) {
data = mmio_read_32(hpipe_addr + HPIPE_INTERRUPT_1_REGISTER);
if (data & mask)
break;
mdelay(1);
timeout--;
}
debug("RX training result: interrupt reg 0x%lx = 0x%x\n\n",
hpipe_addr + HPIPE_INTERRUPT_1_REGISTER, data);
if (timeout == 0 || data & HPIPE_TRX_TRAIN_TIME_OUT_INT_MASK) {
ERROR("Rx training timeout...\n");
return -ETIMEDOUT;
}
if (data & HPIPE_TRX_TRAIN_FAILED_MASK) {
ERROR("Rx training failed...\n");
return -EINVAL;
}
mask = HPIPE_TRX_RX_TRAIN_EN_MASK;
data = 0x0 << HPIPE_TRX_RX_TRAIN_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_TRX_TRAIN_CTRL_0_REG, data, mask);
debug("Training done, reading results...\n\n");
mask = HPIPE_ADAPTED_FFE_ADAPTED_FFE_RES_MASK;
g1_ffe_res_sel = ((mmio_read_32(hpipe_addr +
HPIPE_ADAPTED_FFE_CAPACITOR_COUNTER_CTRL_REG)
& mask) >> HPIPE_ADAPTED_FFE_ADAPTED_FFE_RES_OFFSET);
mask = HPIPE_ADAPTED_FFE_ADAPTED_FFE_CAP_MASK;
g1_ffe_cap_sel = ((mmio_read_32(hpipe_addr +
HPIPE_ADAPTED_FFE_CAPACITOR_COUNTER_CTRL_REG)
& mask) >> HPIPE_ADAPTED_FFE_ADAPTED_FFE_CAP_OFFSET);
mask = HPIPE_DATA_PHASE_ADAPTED_OS_PH_MASK;
align90 = ((mmio_read_32(hpipe_addr + HPIPE_DATA_PHASE_OFF_CTRL_REG)
& mask) >> HPIPE_DATA_PHASE_ADAPTED_OS_PH_OFFSET);
mask = HPIPE_ADAPTED_DFE_RES_MASK;
g1_dfe_res = ((mmio_read_32(hpipe_addr +
HPIPE_ADAPTED_DFE_COEFFICIENT_1_REG)
& mask) >> HPIPE_ADAPTED_DFE_RES_OFFSET);
debug("================================================\n");
debug("Switching to static configuration:\n");
debug("FFE_RES = 0x%x FFE_CAP = 0x%x align90 = 0x%x g1_dfe_res 0x%x\n",
g1_ffe_res_sel, g1_ffe_cap_sel, align90, g1_dfe_res);
debug("Result after training: 0x%lx= 0x%x, 0x%lx= 0x%x, 0x%lx = 0x%x\n",
(hpipe_addr + HPIPE_ADAPTED_FFE_CAPACITOR_COUNTER_CTRL_REG),
mmio_read_32(hpipe_addr +
HPIPE_ADAPTED_FFE_CAPACITOR_COUNTER_CTRL_REG),
(hpipe_addr + HPIPE_DATA_PHASE_OFF_CTRL_REG),
mmio_read_32(hpipe_addr + HPIPE_DATA_PHASE_OFF_CTRL_REG),
(hpipe_addr + HPIPE_ADAPTED_DFE_COEFFICIENT_1_REG),
mmio_read_32(hpipe_addr + HPIPE_ADAPTED_DFE_COEFFICIENT_1_REG));
debug("================================================\n");
/* Update FFE_RES */
mask = HPIPE_G1_SETTINGS_3_G1_FFE_RES_SEL_MASK;
data = g1_ffe_res_sel << HPIPE_G1_SETTINGS_3_G1_FFE_RES_SEL_OFFSET;
reg_set(hpipe_addr + HPIPE_G1_SETTINGS_3_REG, data, mask);
/* Update FFE_CAP */
mask = HPIPE_G1_SETTINGS_3_G1_FFE_CAP_SEL_MASK;
data = g1_ffe_cap_sel << HPIPE_G1_SETTINGS_3_G1_FFE_CAP_SEL_OFFSET;
reg_set(hpipe_addr + HPIPE_G1_SETTINGS_3_REG, data, mask);
/* Bypass the FFE table settings and use the FFE settings directly from
* registers FFE_RES_SEL and FFE_CAP_SEL
*/
mask = HPIPE_G1_SETTINGS_3_G1_FFE_SETTING_FORCE_MASK;
data = 1 << HPIPE_G1_SETTINGS_3_G1_FFE_SETTING_FORCE_OFFSET;
reg_set(hpipe_addr + HPIPE_G1_SETTINGS_3_REG, data, mask);
/* Use the value from CAL_OS_PH_EXT */
mask = HPIPE_CAL_RXCLKALIGN_90_EXT_EN_MASK;
data = 1 << HPIPE_CAL_RXCLKALIGN_90_EXT_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_RX_CLK_ALIGN90_AND_TX_IDLE_CALIB_CTRL_REG,
data, mask);
/* Update align90 */
mask = HPIPE_CAL_OS_PH_EXT_MASK;
data = align90 << HPIPE_CAL_OS_PH_EXT_OFFSET;
reg_set(hpipe_addr + HPIPE_RX_CLK_ALIGN90_AND_TX_IDLE_CALIB_CTRL_REG,
data, mask);
/* Force DFE resolution (use gen table value) */
mask = HPIPE_DFE_RES_FORCE_MASK;
data = 0x0 << HPIPE_DFE_RES_FORCE_OFFSET;
reg_set(hpipe_addr + HPIPE_DFE_REG0, data, mask);
/* 0x111-G1 DFE_Setting_4 */
mask = HPIPE_G1_SETTINGS_4_G1_DFE_RES_MASK;
data = g1_dfe_res << HPIPE_G1_SETTINGS_4_G1_DFE_RES_OFFSET;
reg_set(hpipe_addr + HPIPE_G1_SETTINGS_4_REG, data, mask);
debug("PRBS31 loppback\n\n");
mask = HPIPE_PHY_TEST_PT_TESTMODE_MASK;
data = 0x1 << HPIPE_PHY_TEST_PT_TESTMODE_OFFSET;
reg_set(hpipe_addr + HPIPE_PHY_TEST_OOB_0_REGISTER, data, mask);
/* Configure PRBS counters */
mask = HPIPE_PHY_TEST_PATTERN_SEL_MASK;
data = 0xe << HPIPE_PHY_TEST_PATTERN_SEL_OFFSET;
reg_set(hpipe_addr + HPIPE_PHY_TEST_CONTROL_REG, data, mask);
mask = HPIPE_PHY_TEST_DATA_MASK;
data = 0xc4 << HPIPE_PHY_TEST_DATA_OFFSET;
reg_set(hpipe_addr + HPIPE_PHY_TEST_DATA_REG, data, mask);
mask = HPIPE_PHY_TEST_EN_MASK;
data = 0x1 << HPIPE_PHY_TEST_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_PHY_TEST_CONTROL_REG, data, mask);
/* Reset PRBS error counter */
mask = HPIPE_PHY_TEST_PATTERN_SEL_MASK;
data = 0x1 << HPIPE_PHY_TEST_RESET_OFFSET;
reg_set(hpipe_addr + HPIPE_PHY_TEST_CONTROL_REG, data, mask);
mask = HPIPE_PHY_TEST_PATTERN_SEL_MASK;
data = 0x0 << HPIPE_PHY_TEST_RESET_OFFSET;
reg_set(hpipe_addr + HPIPE_PHY_TEST_CONTROL_REG, data, mask);
mask = HPIPE_PHY_TEST_PT_TESTMODE_MASK;
data = 0x1 << HPIPE_PHY_TEST_PT_TESTMODE_OFFSET;
reg_set(hpipe_addr + HPIPE_PHY_TEST_OOB_0_REGISTER, data, mask);
printf("########################################################\n");
printf("# To use trained values update the ATF sources:\n");
printf("# plat/marvell/armada/a8k/<board_type>/board/phy-porting-layer.h ");
printf("file\n# with new values as below (for appropriate AP nr %d",
ap_nr);
printf("and CP nr: %d comphy_index %d\n\n",
cp_nr, comphy_index);
printf("static struct xfi_params xfi_static_values_tab[AP_NUM]");
printf("[CP_NUM][MAX_LANE_NR] = {\n");
printf("\t...\n");
printf("\t.g1_ffe_res_sel = 0x%x,\n", g1_ffe_res_sel);
printf("\t.g1_ffe_cap_sel = 0x%x,\n", g1_ffe_cap_sel);
printf("\t.align90 = 0x%x,\n", align90);
printf("\t.g1_dfe_res = 0x%x\n", g1_dfe_res);
printf("\t...\n");
printf("};\n\n");
printf("########################################################\n");
/* check */
debug("PRBS error counter[0x%lx] 0x%x\n\n",
hpipe_addr + HPIPE_PHY_TEST_PRBS_ERROR_COUNTER_1_REG,
mmio_read_32(hpipe_addr +
HPIPE_PHY_TEST_PRBS_ERROR_COUNTER_1_REG));
rx_trainng_done[ap_nr][cp_nr][comphy_index] = 1;
return 0;
}
/* During AP the proper mode is auto-negotiated and the mac, pcs and serdes
* configuration are done by the firmware loaded to the MG's CM3 for appropriate
* negotiated mode. Therefore there is no need to configure the mac, pcs and
* serdes from u-boot. The only thing that need to be setup is powering up
* the comphy, which is done through Common PHY<n> Configuration 1 Register
* (CP0: 0xF2441000, CP1: 0xF4441000). This step can't be done by MG's CM3,
* since it doesn't have an access to this register-set (but it has access to
* the network registers like: MG, AP, MAC, PCS, Serdes etc.)
*/
static int mvebu_cp110_comphy_ap_power_on(uint64_t comphy_base,
uint8_t comphy_index)
{
uint32_t mask, data;
uintptr_t comphy_addr = comphy_addr =
COMPHY_ADDR(comphy_base, comphy_index);
debug_enter();
debug("stage: RFU configurations - hard reset comphy\n");
/* RFU configurations - hard reset comphy */
mask = COMMON_PHY_CFG1_PWR_UP_MASK;
data = 0x1 << COMMON_PHY_CFG1_PWR_UP_OFFSET;
mask |= COMMON_PHY_CFG1_PIPE_SELECT_MASK;
data |= 0x0 << COMMON_PHY_CFG1_PIPE_SELECT_OFFSET;
reg_set(comphy_addr + COMMON_PHY_CFG1_REG, data, mask);
debug_exit();
return 0;
}
/*
* This function allows to reset the digital synchronizers between
* the MAC and the PHY, it is required when the MAC changes its state.
*/
int mvebu_cp110_comphy_digital_reset(uint64_t comphy_base,
uint8_t comphy_index,
uint32_t comphy_mode, uint32_t command)
{
int mode = COMPHY_GET_MODE(comphy_mode);
uintptr_t sd_ip_addr;
uint32_t mask, data;
sd_ip_addr = SD_ADDR(COMPHY_PIPE_FROM_COMPHY_ADDR(comphy_base),
comphy_index);
switch (mode) {
case (COMPHY_SGMII_MODE):
case (COMPHY_HS_SGMII_MODE):
case (COMPHY_XFI_MODE):
case (COMPHY_SFI_MODE):
case (COMPHY_RXAUI_MODE):
mask = SD_EXTERNAL_CONFIG1_RF_RESET_IN_MASK;
data = ((command == COMPHY_COMMAND_DIGITAL_PWR_OFF) ?
0x0 : 0x1) << SD_EXTERNAL_CONFIG1_RF_RESET_IN_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG, data, mask);
break;
default:
ERROR("comphy%d: Digital PWR ON/OFF is not supported\n",
comphy_index);
return -EINVAL;
}
return 0;
}
int mvebu_cp110_comphy_power_on(uint64_t comphy_base, uint8_t comphy_index,
uint64_t comphy_mode)
{
int mode = COMPHY_GET_MODE(comphy_mode);
int err = 0;
debug_enter();
switch (mode) {
case(COMPHY_SATA_MODE):
err = mvebu_cp110_comphy_sata_power_on(comphy_base,
comphy_index,
comphy_mode);
break;
case(COMPHY_SGMII_MODE):
case(COMPHY_HS_SGMII_MODE):
err = mvebu_cp110_comphy_sgmii_power_on(comphy_base,
comphy_index,
comphy_mode);
break;
/* From comphy perspective, XFI and SFI are the same */
case (COMPHY_XFI_MODE):
case (COMPHY_SFI_MODE):
err = mvebu_cp110_comphy_xfi_power_on(comphy_base,
comphy_index,
comphy_mode);
break;
case (COMPHY_PCIE_MODE):
err = mvebu_cp110_comphy_pcie_power_on(comphy_base,
comphy_index,
comphy_mode);
break;
case (COMPHY_RXAUI_MODE):
err = mvebu_cp110_comphy_rxaui_power_on(comphy_base,
comphy_index,
comphy_mode);
break;
case (COMPHY_USB3H_MODE):
case (COMPHY_USB3D_MODE):
err = mvebu_cp110_comphy_usb3_power_on(comphy_base,
comphy_index,
comphy_mode);
break;
case (COMPHY_AP_MODE):
err = mvebu_cp110_comphy_ap_power_on(comphy_base, comphy_index);
break;
default:
ERROR("comphy%d: unsupported comphy mode\n", comphy_index);
err = -EINVAL;
break;
}
debug_exit();
return err;
}
int mvebu_cp110_comphy_power_off(uint64_t comphy_base, uint8_t comphy_index,
uint64_t comphy_mode)
{
uintptr_t sd_ip_addr, comphy_ip_addr;
uint32_t mask, data;
uint8_t ap_nr, cp_nr;
_Bool called_from_uboot = COMPHY_GET_CALLER(comphy_mode);
debug_enter();
/* Power-off might happen because of 2 things:
* 1. Bootloader turns off unconnected lanes
* 2. Linux turns off all lanes during boot
* (and then reconfigure it).
*
* For PCIe, there's a problem:
* In Armada 8K DB boards, PCIe initialization can be executed
* only once (PCIe reset performed during chip power on and
* it cannot be executed via GPIO later) so a lane configured to
* PCIe should not be powered off by Linux.
*
* So, check 2 things:
* 1. Is Linux called for power-off?
* 2. Is the comphy configured to PCIe?
* If the answer is YES for both 1 and 2, skip the power-off.
*
* TODO: In MacciatoBIN, PCIe reset is connected via GPIO,
* so after GPIO reset is added to Linux Kernel, it can be
* powered-off.
*/
if (!called_from_uboot) {
data = mmio_read_32(comphy_base +
COMMON_SELECTOR_PIPE_REG_OFFSET);
data >>= (COMMON_SELECTOR_COMPHYN_FIELD_WIDTH * comphy_index);
data &= COMMON_SELECTOR_COMPHY_MASK;
if (data == COMMON_SELECTOR_PIPE_COMPHY_PCIE)
return 0;
}
mvebu_cp110_get_ap_and_cp_nr(&ap_nr, &cp_nr, comphy_base);
if (rx_trainng_done[ap_nr][cp_nr][comphy_index]) {
debug("Skip %s for comphy[%d][%d][%d], due to rx training\n",
__func__, ap_nr, cp_nr, comphy_index);
return 0;
}
sd_ip_addr = SD_ADDR(COMPHY_PIPE_FROM_COMPHY_ADDR(comphy_base),
comphy_index);
comphy_ip_addr = COMPHY_ADDR(comphy_base, comphy_index);
/* Hard reset the comphy, for Ethernet modes and Sata */
mask = SD_EXTERNAL_CONFIG1_RESET_IN_MASK;
data = 0x0 << SD_EXTERNAL_CONFIG1_RESET_IN_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RESET_CORE_MASK;
data |= 0x0 << SD_EXTERNAL_CONFIG1_RESET_CORE_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RF_RESET_IN_MASK;
data |= 0x0 << SD_EXTERNAL_CONFIG1_RF_RESET_IN_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG, data, mask);
/* PCIe reset */
spin_lock(&cp110_mac_reset_lock);
/* The mvebu_cp110_comphy_power_off will be called only from Linux (to
* override settings done by bootloader) and it will be relevant only
* to PCIe (called before check if to skip pcie power off or not).
*/
data = mmio_read_32(SYS_CTRL_FROM_COMPHY_ADDR(comphy_base) +
SYS_CTRL_UINIT_SOFT_RESET_REG);
switch (comphy_index) {
case COMPHY_LANE0:
data &= ~PCIE_MAC_RESET_MASK_PORT0;
break;
case COMPHY_LANE4:
data &= ~PCIE_MAC_RESET_MASK_PORT1;
break;
case COMPHY_LANE5:
data &= ~PCIE_MAC_RESET_MASK_PORT2;
break;
}
mmio_write_32(SYS_CTRL_FROM_COMPHY_ADDR(comphy_base) +
SYS_CTRL_UINIT_SOFT_RESET_REG, data);
spin_unlock(&cp110_mac_reset_lock);
/* Hard reset the comphy, for PCIe and usb3 */
mask = COMMON_PHY_CFG1_PWR_ON_RESET_MASK;
data = 0x0 << COMMON_PHY_CFG1_PWR_ON_RESET_OFFSET;
mask |= COMMON_PHY_CFG1_CORE_RSTN_MASK;
data |= 0x0 << COMMON_PHY_CFG1_CORE_RSTN_OFFSET;
reg_set(comphy_ip_addr + COMMON_PHY_CFG1_REG, data, mask);
/* Clear comphy PHY and PIPE selector, can't rely on previous config. */
mvebu_cp110_comphy_clr_phy_selector(comphy_base, comphy_index);
mvebu_cp110_comphy_clr_pipe_selector(comphy_base, comphy_index);
debug_exit();
return 0;
}