blob: d8f13f3c81d484d6f75a95c92bf9fce7b64bf76b [file] [log] [blame]
/*
* Copyright 2018-2021 NXP
*
* SPDX-License-Identifier: BSD-3-Clause
*
*/
#include <assert.h>
#include <arch.h>
#include <bl31/interrupt_mgmt.h>
#include <caam.h>
#include <cassert.h>
#include <ccn.h>
#include <common/debug.h>
#include <dcfg.h>
#ifdef I2C_INIT
#include <i2c.h>
#endif
#include <lib/mmio.h>
#include <lib/xlat_tables/xlat_tables_v2.h>
#include <ls_interconnect.h>
#ifdef POLICY_FUSE_PROVISION
#include <nxp_gpio.h>
#endif
#if TRUSTED_BOARD_BOOT
#include <nxp_smmu.h>
#endif
#include <nxp_timer.h>
#include <plat_console.h>
#include <plat_gic.h>
#include <plat_tzc400.h>
#include <pmu.h>
#if defined(NXP_SFP_ENABLED)
#include <sfp.h>
#endif
#include <errata.h>
#include <ls_interrupt_mgmt.h>
#include "plat_common.h"
#ifdef NXP_NV_SW_MAINT_LAST_EXEC_DATA
#include <plat_nv_storage.h>
#endif
#ifdef NXP_WARM_BOOT
#include <plat_warm_rst.h>
#endif
#include "platform_def.h"
#include "soc.h"
static struct soc_type soc_list[] = {
/* SoC LX2160A */
SOC_ENTRY(LX2160A, LX2160A, 8, 2),
SOC_ENTRY(LX2160E, LX2160E, 8, 2),
SOC_ENTRY(LX2160C, LX2160C, 8, 2),
SOC_ENTRY(LX2160N, LX2160N, 8, 2),
SOC_ENTRY(LX2080A, LX2080A, 8, 1),
SOC_ENTRY(LX2080E, LX2080E, 8, 1),
SOC_ENTRY(LX2080C, LX2080C, 8, 1),
SOC_ENTRY(LX2080N, LX2080N, 8, 1),
SOC_ENTRY(LX2120A, LX2120A, 6, 2),
SOC_ENTRY(LX2120E, LX2120E, 6, 2),
SOC_ENTRY(LX2120C, LX2120C, 6, 2),
SOC_ENTRY(LX2120N, LX2120N, 6, 2),
/* SoC LX2162A */
SOC_ENTRY(LX2162A, LX2162A, 8, 2),
SOC_ENTRY(LX2162E, LX2162E, 8, 2),
SOC_ENTRY(LX2162C, LX2162C, 8, 2),
SOC_ENTRY(LX2162N, LX2162N, 8, 2),
SOC_ENTRY(LX2082A, LX2082A, 8, 1),
SOC_ENTRY(LX2082E, LX2082E, 8, 1),
SOC_ENTRY(LX2082C, LX2082C, 8, 1),
SOC_ENTRY(LX2082N, LX2082N, 8, 1),
SOC_ENTRY(LX2122A, LX2122A, 6, 2),
SOC_ENTRY(LX2122E, LX2122E, 6, 2),
SOC_ENTRY(LX2122C, LX2122C, 6, 2),
SOC_ENTRY(LX2122N, LX2122N, 6, 2),
};
static dcfg_init_info_t dcfg_init_data = {
.g_nxp_dcfg_addr = NXP_DCFG_ADDR,
.nxp_sysclk_freq = NXP_SYSCLK_FREQ,
.nxp_ddrclk_freq = NXP_DDRCLK_FREQ,
.nxp_plat_clk_divider = NXP_PLATFORM_CLK_DIVIDER,
};
static const unsigned char master_to_6rn_id_map[] = {
PLAT_6CLUSTER_TO_CCN_ID_MAP
};
static const unsigned char master_to_rn_id_map[] = {
PLAT_CLUSTER_TO_CCN_ID_MAP
};
CASSERT(ARRAY_SIZE(master_to_rn_id_map) == NUMBER_OF_CLUSTERS,
assert_invalid_cluster_count_for_ccn_variant);
static const ccn_desc_t plat_six_cluster_ccn_desc = {
.periphbase = NXP_CCN_ADDR,
.num_masters = ARRAY_SIZE(master_to_6rn_id_map),
.master_to_rn_id_map = master_to_6rn_id_map
};
static const ccn_desc_t plat_ccn_desc = {
.periphbase = NXP_CCN_ADDR,
.num_masters = ARRAY_SIZE(master_to_rn_id_map),
.master_to_rn_id_map = master_to_rn_id_map
};
/******************************************************************************
* Function returns the base counter frequency
* after reading the first entry at CNTFID0 (0x20 offset).
*
* Function is used by:
* 1. ARM common code for PSCI management.
* 2. ARM Generic Timer init.
*
*****************************************************************************/
unsigned int plat_get_syscnt_freq2(void)
{
unsigned int counter_base_frequency;
/*
* Below register specifies the base frequency of the system counter.
* As per NXP Board Manuals:
* The system counter always works with SYS_REF_CLK/4 frequency clock.
*
*
*/
counter_base_frequency = mmio_read_32(NXP_TIMER_ADDR + CNTFID_OFF);
return counter_base_frequency;
}
#ifdef IMAGE_BL2
#ifdef POLICY_FUSE_PROVISION
static gpio_init_info_t gpio_init_data = {
.gpio1_base_addr = NXP_GPIO1_ADDR,
.gpio2_base_addr = NXP_GPIO2_ADDR,
.gpio3_base_addr = NXP_GPIO3_ADDR,
.gpio4_base_addr = NXP_GPIO4_ADDR,
};
#endif
static void soc_interconnect_config(void)
{
unsigned long long val = 0x0U;
uint8_t num_clusters, cores_per_cluster;
get_cluster_info(soc_list, ARRAY_SIZE(soc_list),
&num_clusters, &cores_per_cluster);
if (num_clusters == 6U) {
ccn_init(&plat_six_cluster_ccn_desc);
} else {
ccn_init(&plat_ccn_desc);
}
/*
* Enable Interconnect coherency for the primary CPU's cluster.
*/
plat_ls_interconnect_enter_coherency(num_clusters);
val = ccn_read_node_reg(NODE_TYPE_HNI, 13, PCIeRC_RN_I_NODE_ID_OFFSET);
val |= (1 << 17);
ccn_write_node_reg(NODE_TYPE_HNI, 13, PCIeRC_RN_I_NODE_ID_OFFSET, val);
/* PCIe is Connected to RN-I 17 which is connected to HN-I 13. */
val = ccn_read_node_reg(NODE_TYPE_HNI, 30, PCIeRC_RN_I_NODE_ID_OFFSET);
val |= (1 << 17);
ccn_write_node_reg(NODE_TYPE_HNI, 30, PCIeRC_RN_I_NODE_ID_OFFSET, val);
val = ccn_read_node_reg(NODE_TYPE_HNI, 13, SA_AUX_CTRL_REG_OFFSET);
val |= SERIALIZE_DEV_nGnRnE_WRITES;
ccn_write_node_reg(NODE_TYPE_HNI, 13, SA_AUX_CTRL_REG_OFFSET, val);
val = ccn_read_node_reg(NODE_TYPE_HNI, 30, SA_AUX_CTRL_REG_OFFSET);
val &= ~(ENABLE_RESERVE_BIT53);
val |= SERIALIZE_DEV_nGnRnE_WRITES;
ccn_write_node_reg(NODE_TYPE_HNI, 30, SA_AUX_CTRL_REG_OFFSET, val);
val = ccn_read_node_reg(NODE_TYPE_HNI, 13, PoS_CONTROL_REG_OFFSET);
val &= ~(HNI_POS_EN);
ccn_write_node_reg(NODE_TYPE_HNI, 13, PoS_CONTROL_REG_OFFSET, val);
val = ccn_read_node_reg(NODE_TYPE_HNI, 30, PoS_CONTROL_REG_OFFSET);
val &= ~(HNI_POS_EN);
ccn_write_node_reg(NODE_TYPE_HNI, 30, PoS_CONTROL_REG_OFFSET, val);
val = ccn_read_node_reg(NODE_TYPE_HNI, 13, SA_AUX_CTRL_REG_OFFSET);
val &= ~(POS_EARLY_WR_COMP_EN);
ccn_write_node_reg(NODE_TYPE_HNI, 13, SA_AUX_CTRL_REG_OFFSET, val);
val = ccn_read_node_reg(NODE_TYPE_HNI, 30, SA_AUX_CTRL_REG_OFFSET);
val &= ~(POS_EARLY_WR_COMP_EN);
ccn_write_node_reg(NODE_TYPE_HNI, 30, SA_AUX_CTRL_REG_OFFSET, val);
#if POLICY_PERF_WRIOP
uint16_t wriop_rni = 0U;
if (POLICY_PERF_WRIOP == 1) {
wriop_rni = 7U;
} else if (POLICY_PERF_WRIOP == 2) {
wriop_rni = 23U;
} else {
ERROR("Incorrect WRIOP selected.\n");
panic();
}
val = ccn_read_node_reg(NODE_TYPE_RNI, wriop_rni,
SA_AUX_CTRL_REG_OFFSET);
val |= ENABLE_WUO;
ccn_write_node_reg(NODE_TYPE_HNI, wriop_rni, SA_AUX_CTRL_REG_OFFSET,
val);
#else
val = ccn_read_node_reg(NODE_TYPE_RNI, 17, SA_AUX_CTRL_REG_OFFSET);
val |= ENABLE_WUO;
ccn_write_node_reg(NODE_TYPE_RNI, 17, SA_AUX_CTRL_REG_OFFSET, val);
#endif
}
void soc_preload_setup(void)
{
dram_regions_info_t *info_dram_regions = get_dram_regions_info();
#if defined(NXP_WARM_BOOT)
bool warm_reset = is_warm_boot();
#endif
info_dram_regions->total_dram_size =
#if defined(NXP_WARM_BOOT)
init_ddr(warm_reset);
#else
init_ddr();
#endif
}
/*******************************************************************************
* This function implements soc specific erratas
* This is called before DDR is initialized or MMU is enabled
******************************************************************************/
void soc_early_init(void)
{
dcfg_init(&dcfg_init_data);
#ifdef POLICY_FUSE_PROVISION
gpio_init(&gpio_init_data);
sec_init(NXP_CAAM_ADDR);
#endif
#if LOG_LEVEL > 0
/* Initialize the console to provide early debug support */
plat_console_init(NXP_CONSOLE_ADDR,
NXP_UART_CLK_DIVIDER, NXP_CONSOLE_BAUDRATE);
#endif
enable_timer_base_to_cluster(NXP_PMU_ADDR);
soc_interconnect_config();
enum boot_device dev = get_boot_dev();
/* Mark the buffer for SD in OCRAM as non secure.
* The buffer is assumed to be at end of OCRAM for
* the logic below to calculate TZPC programming
*/
if (dev == BOOT_DEVICE_EMMC || dev == BOOT_DEVICE_SDHC2_EMMC) {
/* Calculate the region in OCRAM which is secure
* The buffer for SD needs to be marked non-secure
* to allow SD to do DMA operations on it
*/
uint32_t secure_region = (NXP_OCRAM_SIZE
- NXP_SD_BLOCK_BUF_SIZE);
uint32_t mask = secure_region/TZPC_BLOCK_SIZE;
mmio_write_32(NXP_OCRAM_TZPC_ADDR, mask);
/* Add the entry for buffer in MMU Table */
mmap_add_region(NXP_SD_BLOCK_BUF_ADDR, NXP_SD_BLOCK_BUF_ADDR,
NXP_SD_BLOCK_BUF_SIZE,
MT_DEVICE | MT_RW | MT_NS);
}
soc_errata();
#if (TRUSTED_BOARD_BOOT) || defined(POLICY_FUSE_PROVISION)
sfp_init(NXP_SFP_ADDR);
#endif
#if TRUSTED_BOARD_BOOT
uint32_t mode;
/* For secure boot disable SMMU.
* Later when platform security policy comes in picture,
* this might get modified based on the policy
*/
if (check_boot_mode_secure(&mode) == true) {
bypass_smmu(NXP_SMMU_ADDR);
}
/* For Mbedtls currently crypto is not supported via CAAM
* enable it when that support is there. In tbbr.mk
* the CAAM_INTEG is set as 0.
*/
#ifndef MBEDTLS_X509
/* Initialize the crypto accelerator if enabled */
if (is_sec_enabled() == false)
INFO("SEC is disabled.\n");
else
sec_init(NXP_CAAM_ADDR);
#endif
#endif
/*
* Initialize system level generic timer for Layerscape Socs.
*/
delay_timer_init(NXP_TIMER_ADDR);
i2c_init(NXP_I2C_ADDR);
}
void soc_bl2_prepare_exit(void)
{
#if defined(NXP_SFP_ENABLED) && defined(DISABLE_FUSE_WRITE)
set_sfp_wr_disable();
#endif
}
/*****************************************************************************
* This function returns the boot device based on RCW_SRC
****************************************************************************/
enum boot_device get_boot_dev(void)
{
enum boot_device src = BOOT_DEVICE_NONE;
uint32_t porsr1;
uint32_t rcw_src;
porsr1 = read_reg_porsr1();
rcw_src = (porsr1 & PORSR1_RCW_MASK) >> PORSR1_RCW_SHIFT;
switch (rcw_src) {
case FLEXSPI_NOR:
src = BOOT_DEVICE_FLEXSPI_NOR;
INFO("RCW BOOT SRC is FLEXSPI NOR\n");
break;
case FLEXSPI_NAND2K_VAL:
case FLEXSPI_NAND4K_VAL:
INFO("RCW BOOT SRC is FLEXSPI NAND\n");
src = BOOT_DEVICE_FLEXSPI_NAND;
break;
case SDHC1_VAL:
src = BOOT_DEVICE_EMMC;
INFO("RCW BOOT SRC is SD\n");
break;
case SDHC2_VAL:
src = BOOT_DEVICE_SDHC2_EMMC;
INFO("RCW BOOT SRC is EMMC\n");
break;
default:
break;
}
return src;
}
void soc_mem_access(void)
{
const devdisr5_info_t *devdisr5_info = get_devdisr5_info();
dram_regions_info_t *info_dram_regions = get_dram_regions_info();
struct tzc400_reg tzc400_reg_list[MAX_NUM_TZC_REGION];
int dram_idx, index = 0U;
for (dram_idx = 0U; dram_idx < info_dram_regions->num_dram_regions;
dram_idx++) {
if (info_dram_regions->region[dram_idx].size == 0) {
ERROR("DDR init failure, or");
ERROR("DRAM regions not populated correctly.\n");
break;
}
index = populate_tzc400_reg_list(tzc400_reg_list,
dram_idx, index,
info_dram_regions->region[dram_idx].addr,
info_dram_regions->region[dram_idx].size,
NXP_SECURE_DRAM_SIZE, NXP_SP_SHRD_DRAM_SIZE);
}
if (devdisr5_info->ddrc1_present != 0) {
INFO("DDR Controller 1.\n");
mem_access_setup(NXP_TZC_ADDR, index,
tzc400_reg_list);
mem_access_setup(NXP_TZC3_ADDR, index,
tzc400_reg_list);
}
if (devdisr5_info->ddrc2_present != 0) {
INFO("DDR Controller 2.\n");
mem_access_setup(NXP_TZC2_ADDR, index,
tzc400_reg_list);
mem_access_setup(NXP_TZC4_ADDR, index,
tzc400_reg_list);
}
}
#else
const unsigned char _power_domain_tree_desc[] = {1, 8, 2, 2, 2, 2, 2, 2, 2, 2};
CASSERT(NUMBER_OF_CLUSTERS && NUMBER_OF_CLUSTERS <= 256,
assert_invalid_lx2160a_cluster_count);
/******************************************************************************
* This function returns the SoC topology
****************************************************************************/
const unsigned char *plat_get_power_domain_tree_desc(void)
{
return _power_domain_tree_desc;
}
/*******************************************************************************
* This function returns the core count within the cluster corresponding to
* `mpidr`.
******************************************************************************/
unsigned int plat_ls_get_cluster_core_count(u_register_t mpidr)
{
return CORES_PER_CLUSTER;
}
void soc_early_platform_setup2(void)
{
dcfg_init(&dcfg_init_data);
/*
* Initialize system level generic timer for Socs
*/
delay_timer_init(NXP_TIMER_ADDR);
#if LOG_LEVEL > 0
/* Initialize the console to provide early debug support */
plat_console_init(NXP_CONSOLE_ADDR,
NXP_UART_CLK_DIVIDER, NXP_CONSOLE_BAUDRATE);
#endif
}
void soc_platform_setup(void)
{
/* Initialize the GIC driver, cpu and distributor interfaces */
static uintptr_t target_mask_array[PLATFORM_CORE_COUNT];
static interrupt_prop_t ls_interrupt_props[] = {
PLAT_LS_G1S_IRQ_PROPS(INTR_GROUP1S),
PLAT_LS_G0_IRQ_PROPS(INTR_GROUP0)
};
plat_ls_gic_driver_init(NXP_GICD_ADDR, NXP_GICR_ADDR,
PLATFORM_CORE_COUNT,
ls_interrupt_props,
ARRAY_SIZE(ls_interrupt_props),
target_mask_array,
plat_core_pos);
plat_ls_gic_init();
enable_init_timer();
#ifdef LS_SYS_TIMCTL_BASE
ls_configure_sys_timer(LS_SYS_TIMCTL_BASE,
LS_CONFIG_CNTACR,
PLAT_LS_NSTIMER_FRAME_ID);
#endif
}
/*******************************************************************************
* This function initializes the soc from the BL31 module
******************************************************************************/
void soc_init(void)
{
uint8_t num_clusters, cores_per_cluster;
get_cluster_info(soc_list, ARRAY_SIZE(soc_list),
&num_clusters, &cores_per_cluster);
/* low-level init of the soc */
soc_init_start();
_init_global_data();
soc_init_percpu();
_initialize_psci();
if (ccn_get_part0_id(NXP_CCN_ADDR) != CCN_508_PART0_ID) {
ERROR("Unrecognized CCN variant detected.");
ERROR("Only CCN-508 is supported\n");
panic();
}
if (num_clusters == 6U) {
ccn_init(&plat_six_cluster_ccn_desc);
} else {
ccn_init(&plat_ccn_desc);
}
plat_ls_interconnect_enter_coherency(num_clusters);
/* Set platform security policies */
_set_platform_security();
/* make sure any parallel init tasks are finished */
soc_init_finish();
/* Initialize the crypto accelerator if enabled */
if (is_sec_enabled() == false) {
INFO("SEC is disabled.\n");
} else {
sec_init(NXP_CAAM_ADDR);
}
}
#ifdef NXP_WDOG_RESTART
static uint64_t wdog_interrupt_handler(uint32_t id, uint32_t flags,
void *handle, void *cookie)
{
uint8_t data = WDOG_RESET_FLAG;
wr_nv_app_data(WDT_RESET_FLAG_OFFSET,
(uint8_t *)&data, sizeof(data));
mmio_write_32(NXP_RST_ADDR + RSTCNTL_OFFSET, SW_RST_REQ_INIT);
return 0;
}
#endif
void soc_runtime_setup(void)
{
#ifdef NXP_WDOG_RESTART
request_intr_type_el3(BL31_NS_WDOG_WS1, wdog_interrupt_handler);
#endif
}
#endif