blob: 26155abe09bbae41fbf7942ab8fb19df27c33295 [file] [log] [blame]
/*
* Copyright 2021 NXP
*
* SPDX-License-Identifier: BSD-3-Clause
*
*/
#include <errno.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <common/debug.h>
#include <ddr.h>
#include <lib/utils.h>
static inline unsigned int cal_cwl(const unsigned long clk)
{
const unsigned int mclk_ps = get_memory_clk_ps(clk);
return mclk_ps >= 1250U ? 9U :
(mclk_ps >= 1070U ? 10U :
(mclk_ps >= 935U ? 11U :
(mclk_ps >= 833U ? 12U :
(mclk_ps >= 750U ? 14U :
(mclk_ps >= 625U ? 16U : 18U)))));
}
static void cal_csn_config(int i,
struct ddr_cfg_regs *regs,
const struct memctl_opt *popts,
const struct dimm_params *pdimm)
{
unsigned int intlv_en = 0U;
unsigned int intlv_ctl = 0U;
const unsigned int cs_n_en = 1U;
const unsigned int ap_n_en = popts->cs_odt[i].auto_precharge;
const unsigned int odt_rd_cfg = popts->cs_odt[i].odt_rd_cfg;
const unsigned int odt_wr_cfg = popts->cs_odt[i].odt_wr_cfg;
const unsigned int ba_bits_cs_n = pdimm->bank_addr_bits;
const unsigned int row_bits_cs_n = pdimm->n_row_addr - 12U;
const unsigned int col_bits_cs_n = pdimm->n_col_addr - 8U;
const unsigned int bg_bits_cs_n = pdimm->bank_group_bits;
if (i == 0) {
/* These fields only available in CS0_CONFIG */
if (popts->ctlr_intlv != 0) {
switch (popts->ctlr_intlv_mode) {
case DDR_256B_INTLV:
intlv_en = popts->ctlr_intlv;
intlv_ctl = popts->ctlr_intlv_mode;
break;
default:
break;
}
}
}
regs->cs[i].config = ((cs_n_en & 0x1) << 31) |
((intlv_en & 0x3) << 29) |
((intlv_ctl & 0xf) << 24) |
((ap_n_en & 0x1) << 23) |
((odt_rd_cfg & 0x7) << 20) |
((odt_wr_cfg & 0x7) << 16) |
((ba_bits_cs_n & 0x3) << 14) |
((row_bits_cs_n & 0x7) << 8) |
((bg_bits_cs_n & 0x3) << 4) |
((col_bits_cs_n & 0x7) << 0);
debug("cs%d\n", i);
debug(" _config = 0x%x\n", regs->cs[i].config);
}
static inline int avoid_odt_overlap(const struct ddr_conf *conf,
const struct dimm_params *pdimm)
{
if ((conf->cs_in_use == 0xf) != 0) {
return 2;
}
#if DDRC_NUM_DIMM >= 2
if (conf->dimm_in_use[0] != 0 && conf->dimm_in_use[1] != 0) {
return 1;
}
#endif
return 0;
}
/* Requires rcw2 set first */
static void cal_timing_cfg(const unsigned long clk,
struct ddr_cfg_regs *regs,
const struct memctl_opt *popts,
const struct dimm_params *pdimm,
const struct ddr_conf *conf,
unsigned int cas_latency,
unsigned int additive_latency)
{
const unsigned int mclk_ps = get_memory_clk_ps(clk);
/* tXP=max(4nCK, 6ns) */
const int txp = max((int)mclk_ps * 4, 6000);
/* DDR4 supports 10, 12, 14, 16, 18, 20, 24 */
static const int wrrec_table[] = {
10, 10, 10, 10, 10,
10, 10, 10, 10, 10,
12, 12, 14, 14, 16,
16, 18, 18, 20, 20,
24, 24, 24, 24,
};
int trwt_mclk = (clk / 1000000 > 1900) ? 3 : 2;
int twrt_mclk;
int trrt_mclk;
int twwt_mclk;
const int act_pd_exit_mclk = picos_to_mclk(clk, txp);
const int pre_pd_exit_mclk = act_pd_exit_mclk;
const int taxpd_mclk = 0;
/*
* MRS_CYC = max(tMRD, tMOD)
* tMRD = 8nCK, tMOD = max(24nCK, 15ns)
*/
const int tmrd_mclk = max(24U, picos_to_mclk(clk, 15000));
const int pretoact_mclk = picos_to_mclk(clk, pdimm->trp_ps);
const int acttopre_mclk = picos_to_mclk(clk, pdimm->tras_ps);
const int acttorw_mclk = picos_to_mclk(clk, pdimm->trcd_ps);
const int caslat_ctrl = (cas_latency - 1) << 1;
const int trfc1_min = pdimm->die_density >= 0x3 ? 16000 :
(pdimm->die_density == 0x4 ? 26000 :
(pdimm->die_density == 0x5 ? 35000 :
55000));
const int refrec_ctrl = picos_to_mclk(clk,
pdimm->trfc1_ps) - 8;
int wrrec_mclk = picos_to_mclk(clk, pdimm->twr_ps);
const int acttoact_mclk = max(picos_to_mclk(clk,
pdimm->trrds_ps),
4U);
int wrtord_mclk = max(2U, picos_to_mclk(clk, 2500));
const unsigned int cpo = 0U;
const int wr_lat = cal_cwl(clk);
int rd_to_pre = picos_to_mclk(clk, 7500);
const int wr_data_delay = popts->wr_data_delay;
const int cke_pls = max(3U, picos_to_mclk(clk, 5000));
#ifdef ERRATA_DDR_A050450
const unsigned short four_act = ((popts->twot_en == 0) &&
(popts->threet_en == 0) &&
(popts->tfaw_ps % 2 == 0)) ?
(picos_to_mclk(clk, popts->tfaw_ps) + 1) :
picos_to_mclk(clk, popts->tfaw_ps);
#else
const unsigned short four_act = picos_to_mclk(clk,
popts->tfaw_ps);
#endif
const unsigned int cntl_adj = 0U;
const unsigned int ext_pretoact = picos_to_mclk(clk,
pdimm->trp_ps) >> 4U;
const unsigned int ext_acttopre = picos_to_mclk(clk,
pdimm->tras_ps) >> 4U;
const unsigned int ext_acttorw = picos_to_mclk(clk,
pdimm->trcd_ps) >> 4U;
const unsigned int ext_caslat = (2U * cas_latency - 1U) >> 4U;
const unsigned int ext_add_lat = additive_latency >> 4U;
const unsigned int ext_refrec = (picos_to_mclk(clk,
pdimm->trfc1_ps) - 8U) >> 4U;
const unsigned int ext_wrrec = (picos_to_mclk(clk, pdimm->twr_ps) +
(popts->otf_burst_chop_en ? 2U : 0U)) >> 4U;
const unsigned int rwt_same_cs = 0U;
const unsigned int wrt_same_cs = 0U;
const unsigned int rrt_same_cs = popts->burst_length == DDR_BL8 ? 0U : 2U;
const unsigned int wwt_same_cs = popts->burst_length == DDR_BL8 ? 0U : 2U;
const unsigned int dll_lock = 2U;
unsigned int rodt_on = 0U;
const unsigned int rodt_off = 4U;
const unsigned int wodt_on = 1U;
const unsigned int wodt_off = 4U;
const unsigned int hs_caslat = 0U;
const unsigned int hs_wrlat = 0U;
const unsigned int hs_wrrec = 0U;
const unsigned int hs_clkadj = 0U;
const unsigned int hs_wrlvl_start = 0U;
const unsigned int txpr = max(5U,
picos_to_mclk(clk,
pdimm->trfc1_ps + 10000U));
const unsigned int tcksre = max(5U, picos_to_mclk(clk, 10000U));
const unsigned int tcksrx = max(5U, picos_to_mclk(clk, 10000U));
const unsigned int cs_to_cmd = 0U;
const unsigned int cke_rst = txpr <= 200U ? 0U :
(txpr <= 256U ? 1U :
(txpr <= 512U ? 2U : 3U));
const unsigned int cksre = tcksre <= 19U ? tcksre - 5U : 15U;
const unsigned int cksrx = tcksrx <= 19U ? tcksrx - 5U : 15U;
unsigned int par_lat = 0U;
const int tccdl = max(5U, picos_to_mclk(clk, pdimm->tccdl_ps));
int rwt_bg = cas_latency + 2 + 4 - wr_lat;
int wrt_bg = wr_lat + 4 + 1 - cas_latency;
const int rrt_bg = popts->burst_length == DDR_BL8 ?
tccdl - 4 : tccdl - 2;
const int wwt_bg = popts->burst_length == DDR_BL8 ?
tccdl - 4 : tccdl - 2;
const unsigned int acttoact_bg = picos_to_mclk(clk, pdimm->trrdl_ps);
const unsigned int wrtord_bg = max(4U, picos_to_mclk(clk, 7500)) +
(popts->otf_burst_chop_en ? 2 : 0);
const unsigned int pre_all_rec = 0;
const unsigned int refrec_cid_mclk = pdimm->package_3ds ?
picos_to_mclk(clk, pdimm->trfc_slr_ps) : 0;
const unsigned int acttoact_cid_mclk = pdimm->package_3ds ? 4U : 0;
/* for two dual-rank DIMMs to avoid ODT overlap */
if (avoid_odt_overlap(conf, pdimm) == 2) {
twrt_mclk = 2;
twwt_mclk = 2;
trrt_mclk = 2;
} else {
twrt_mclk = 1;
twwt_mclk = 1;
trrt_mclk = 0;
}
if (popts->trwt_override != 0) {
trwt_mclk = popts->trwt;
if (popts->twrt != 0) {
twrt_mclk = popts->twrt;
}
if (popts->trrt != 0) {
trrt_mclk = popts->trrt;
}
if (popts->twwt != 0) {
twwt_mclk = popts->twwt;
}
}
regs->timing_cfg[0] = (((trwt_mclk & 0x3) << 30) |
((twrt_mclk & 0x3) << 28) |
((trrt_mclk & 0x3) << 26) |
((twwt_mclk & 0x3) << 24) |
((act_pd_exit_mclk & 0xf) << 20) |
((pre_pd_exit_mclk & 0xF) << 16) |
((taxpd_mclk & 0xf) << 8) |
((tmrd_mclk & 0x1f) << 0));
debug("timing_cfg[0] = 0x%x\n", regs->timing_cfg[0]);
if ((wrrec_mclk < 1) || (wrrec_mclk > 24)) {
ERROR("WRREC doesn't support clock %d\n", wrrec_mclk);
} else {
wrrec_mclk = wrrec_table[wrrec_mclk - 1];
}
if (popts->otf_burst_chop_en != 0) {
wrrec_mclk += 2;
wrtord_mclk += 2;
}
if (pdimm->trfc1_ps < trfc1_min) {
ERROR("trfc1_ps (%d) < %d\n", pdimm->trfc1_ps, trfc1_min);
}
regs->timing_cfg[1] = (((pretoact_mclk & 0x0F) << 28) |
((acttopre_mclk & 0x0F) << 24) |
((acttorw_mclk & 0xF) << 20) |
((caslat_ctrl & 0xF) << 16) |
((refrec_ctrl & 0xF) << 12) |
((wrrec_mclk & 0x0F) << 8) |
((acttoact_mclk & 0x0F) << 4) |
((wrtord_mclk & 0x0F) << 0));
debug("timing_cfg[1] = 0x%x\n", regs->timing_cfg[1]);
if (rd_to_pre < 4) {
rd_to_pre = 4;
}
if (popts->otf_burst_chop_en) {
rd_to_pre += 2;
}
regs->timing_cfg[2] = (((additive_latency & 0xf) << 28) |
((cpo & 0x1f) << 23) |
((wr_lat & 0xf) << 19) |
(((wr_lat & 0x10) >> 4) << 18) |
((rd_to_pre & 0xf) << 13) |
((wr_data_delay & 0xf) << 9) |
((cke_pls & 0x7) << 6) |
((four_act & 0x3f) << 0));
debug("timing_cfg[2] = 0x%x\n", regs->timing_cfg[2]);
regs->timing_cfg[3] = (((ext_pretoact & 0x1) << 28) |
((ext_acttopre & 0x3) << 24) |
((ext_acttorw & 0x1) << 22) |
((ext_refrec & 0x3F) << 16) |
((ext_caslat & 0x3) << 12) |
((ext_add_lat & 0x1) << 10) |
((ext_wrrec & 0x1) << 8) |
((cntl_adj & 0x7) << 0));
debug("timing_cfg[3] = 0x%x\n", regs->timing_cfg[3]);
regs->timing_cfg[4] = (((rwt_same_cs & 0xf) << 28) |
((wrt_same_cs & 0xf) << 24) |
((rrt_same_cs & 0xf) << 20) |
((wwt_same_cs & 0xf) << 16) |
((trwt_mclk & 0xc) << 12) |
((twrt_mclk & 0x4) << 10) |
((trrt_mclk & 0x4) << 8) |
((twwt_mclk & 0x4) << 6) |
(dll_lock & 0x3));
debug("timing_cfg[4] = 0x%x\n", regs->timing_cfg[4]);
/* rodt_on = timing_cfg_1[caslat] - timing_cfg_2[wrlat] + 1 */
if (cas_latency >= wr_lat) {
rodt_on = cas_latency - wr_lat + 1;
}
regs->timing_cfg[5] = (((rodt_on & 0x1f) << 24) |
((rodt_off & 0x7) << 20) |
((wodt_on & 0x1f) << 12) |
(wodt_off & 0x7) << 8);
debug("timing_cfg[5] = 0x%x\n", regs->timing_cfg[5]);
regs->timing_cfg[6] = (((hs_caslat & 0x1f) << 24) |
((hs_wrlat & 0x1f) << 19) |
((hs_wrrec & 0x1f) << 12) |
((hs_clkadj & 0x1f) << 6) |
((hs_wrlvl_start & 0x1f) << 0));
debug("timing_cfg[6] = 0x%x\n", regs->timing_cfg[6]);
if (popts->ap_en != 0) {
par_lat = (regs->sdram_rcw[1] & 0xf) + 1;
debug("PAR_LAT = 0x%x\n", par_lat);
}
regs->timing_cfg[7] = (((cke_rst & 0x3) << 28) |
((cksre & 0xf) << 24) |
((cksrx & 0xf) << 20) |
((par_lat & 0xf) << 16) |
((cs_to_cmd & 0xf) << 4));
debug("timing_cfg[7] = 0x%x\n", regs->timing_cfg[7]);
if (rwt_bg < tccdl) {
rwt_bg = tccdl - rwt_bg;
} else {
rwt_bg = 0;
}
if (wrt_bg < tccdl) {
wrt_bg = tccdl - wrt_bg;
} else {
wrt_bg = 0;
}
regs->timing_cfg[8] = (((rwt_bg & 0xf) << 28) |
((wrt_bg & 0xf) << 24) |
((rrt_bg & 0xf) << 20) |
((wwt_bg & 0xf) << 16) |
((acttoact_bg & 0xf) << 12) |
((wrtord_bg & 0xf) << 8) |
((pre_all_rec & 0x1f) << 0));
debug("timing_cfg[8] = 0x%x\n", regs->timing_cfg[8]);
regs->timing_cfg[9] = (refrec_cid_mclk & 0x3ff) << 16 |
(acttoact_cid_mclk & 0xf) << 8;
debug("timing_cfg[9] = 0x%x\n", regs->timing_cfg[9]);
}
static void cal_ddr_sdram_rcw(const unsigned long clk,
struct ddr_cfg_regs *regs,
const struct memctl_opt *popts,
const struct dimm_params *pdimm)
{
const unsigned int freq = clk / 1000000U;
unsigned int rc0a, rc0f;
if (pdimm->rdimm == 0) {
return;
}
rc0a = freq > 3200U ? 7U :
(freq > 2933U ? 6U :
(freq > 2666U ? 5U :
(freq > 2400U ? 4U :
(freq > 2133U ? 3U :
(freq > 1866U ? 2U :
(freq > 1600U ? 1U : 0U))))));
rc0f = freq > 3200U ? 3U :
(freq > 2400U ? 2U :
(freq > 2133U ? 1U : 0U));
rc0f = (regs->sdram_cfg[1] & SDRAM_CFG2_AP_EN) ? rc0f : 4;
regs->sdram_rcw[0] =
pdimm->rcw[0] << 28 |
pdimm->rcw[1] << 24 |
pdimm->rcw[2] << 20 |
pdimm->rcw[3] << 16 |
pdimm->rcw[4] << 12 |
pdimm->rcw[5] << 8 |
pdimm->rcw[6] << 4 |
pdimm->rcw[7];
regs->sdram_rcw[1] =
pdimm->rcw[8] << 28 |
pdimm->rcw[9] << 24 |
rc0a << 20 |
pdimm->rcw[11] << 16 |
pdimm->rcw[12] << 12 |
pdimm->rcw[13] << 8 |
pdimm->rcw[14] << 4 |
rc0f;
regs->sdram_rcw[2] =
((freq - 1260 + 19) / 20) << 8;
debug("sdram_rcw[0] = 0x%x\n", regs->sdram_rcw[0]);
debug("sdram_rcw[1] = 0x%x\n", regs->sdram_rcw[1]);
debug("sdram_rcw[2] = 0x%x\n", regs->sdram_rcw[2]);
}
static void cal_ddr_sdram_cfg(const unsigned long clk,
struct ddr_cfg_regs *regs,
const struct memctl_opt *popts,
const struct dimm_params *pdimm,
const unsigned int ip_rev)
{
const unsigned int mem_en = 1U;
const unsigned int sren = popts->self_refresh_in_sleep;
const unsigned int ecc_en = popts->ecc_mode;
const unsigned int rd_en = (pdimm->rdimm != 0U) ? 1U : 0U;
const unsigned int dyn_pwr = popts->dynamic_power;
const unsigned int dbw = popts->data_bus_used;
const unsigned int eight_be = (dbw == 1U ||
popts->burst_length == DDR_BL8) ? 1U : 0U;
const unsigned int ncap = 0U;
const unsigned int threet_en = popts->threet_en;
const unsigned int twot_en = pdimm->rdimm ?
0U : popts->twot_en;
const unsigned int ba_intlv = popts->ba_intlv;
const unsigned int x32_en = 0U;
const unsigned int pchb8 = 0U;
const unsigned int hse = popts->half_strength_drive_en;
const unsigned int acc_ecc_en = (dbw != 0U && ecc_en == 1U) ? 1U : 0U;
const unsigned int mem_halt = 0U;
#ifdef PHY_GEN2
const unsigned int bi = 1U;
#else
const unsigned int bi = 0U;
#endif
const unsigned int sdram_type = SDRAM_TYPE_DDR4;
unsigned int odt_cfg = 0U;
const unsigned int frc_sr = 0U;
const unsigned int sr_ie = popts->self_refresh_irq_en;
const unsigned int num_pr = pdimm->package_3ds + 1U;
const unsigned int slow = (clk < 1249000000U) ? 1U : 0U;
const unsigned int x4_en = popts->x4_en;
const unsigned int obc_cfg = popts->otf_burst_chop_en;
const unsigned int ap_en = ip_rev == 0x50500U ? 0U : popts->ap_en;
const unsigned int d_init = popts->ctlr_init_ecc;
const unsigned int rcw_en = popts->rdimm;
const unsigned int md_en = popts->mirrored_dimm;
const unsigned int qd_en = popts->quad_rank_present;
const unsigned int unq_mrs_en = ip_rev < 0x50500U ? 1U : 0U;
const unsigned int rd_pre = popts->quad_rank_present;
int i;
regs->sdram_cfg[0] = ((mem_en & 0x1) << 31) |
((sren & 0x1) << 30) |
((ecc_en & 0x1) << 29) |
((rd_en & 0x1) << 28) |
((sdram_type & 0x7) << 24) |
((dyn_pwr & 0x1) << 21) |
((dbw & 0x3) << 19) |
((eight_be & 0x1) << 18) |
((ncap & 0x1) << 17) |
((threet_en & 0x1) << 16) |
((twot_en & 0x1) << 15) |
((ba_intlv & 0x7F) << 8) |
((x32_en & 0x1) << 5) |
((pchb8 & 0x1) << 4) |
((hse & 0x1) << 3) |
((acc_ecc_en & 0x1) << 2) |
((mem_halt & 0x1) << 1) |
((bi & 0x1) << 0);
debug("sdram_cfg[0] = 0x%x\n", regs->sdram_cfg[0]);
for (i = 0; i < DDRC_NUM_CS; i++) {
if (popts->cs_odt[i].odt_rd_cfg != 0 ||
popts->cs_odt[i].odt_wr_cfg != 0) {
odt_cfg = SDRAM_CFG2_ODT_ONLY_READ;
break;
}
}
regs->sdram_cfg[1] = (0
| ((frc_sr & 0x1) << 31)
| ((sr_ie & 0x1) << 30)
| ((odt_cfg & 0x3) << 21)
| ((num_pr & 0xf) << 12)
| ((slow & 1) << 11)
| (x4_en << 10)
| (qd_en << 9)
| (unq_mrs_en << 8)
| ((obc_cfg & 0x1) << 6)
| ((ap_en & 0x1) << 5)
| ((d_init & 0x1) << 4)
| ((rcw_en & 0x1) << 2)
| ((md_en & 0x1) << 0)
);
debug("sdram_cfg[1] = 0x%x\n", regs->sdram_cfg[1]);
regs->sdram_cfg[2] = (rd_pre & 0x1) << 16 |
(popts->rdimm ? 1 : 0);
if (pdimm->package_3ds != 0) {
if (((pdimm->package_3ds + 1) & 0x1) != 0) {
WARN("Unsupported 3DS DIMM\n");
} else {
regs->sdram_cfg[2] |= ((pdimm->package_3ds + 1) >> 1)
<< 4;
}
}
debug("sdram_cfg[2] = 0x%x\n", regs->sdram_cfg[2]);
}
static void cal_ddr_sdram_interval(const unsigned long clk,
struct ddr_cfg_regs *regs,
const struct memctl_opt *popts,
const struct dimm_params *pdimm)
{
const unsigned int refint = picos_to_mclk(clk, pdimm->refresh_rate_ps);
const unsigned int bstopre = popts->bstopre;
regs->interval = ((refint & 0xFFFF) << 16) |
((bstopre & 0x3FFF) << 0);
debug("interval = 0x%x\n", regs->interval);
}
/* Require cs and cfg first */
static void cal_ddr_sdram_mode(const unsigned long clk,
struct ddr_cfg_regs *regs,
const struct memctl_opt *popts,
const struct ddr_conf *conf,
const struct dimm_params *pdimm,
unsigned int cas_latency,
unsigned int additive_latency,
const unsigned int ip_rev)
{
int i;
unsigned short esdmode; /* Extended SDRAM mode */
unsigned short sdmode; /* SDRAM mode */
/* Mode Register - MR1 */
const unsigned int qoff = 0;
const unsigned int tdqs_en = 0;
unsigned int rtt;
const unsigned int wrlvl_en = 0;
unsigned int al = 0;
unsigned int dic = 0;
const unsigned int dll_en = 1;
/* Mode Register - MR0 */
unsigned int wr = 0;
const unsigned int dll_rst = 0;
const unsigned int mode = 0;
unsigned int caslat = 4;/* CAS# latency, default set as 6 cycles */
/* BT: Burst Type (0=Nibble Sequential, 1=Interleaved) */
const unsigned int bt = 0;
const unsigned int bl = popts->burst_length == DDR_BL8 ? 0 :
(popts->burst_length == DDR_BC4 ? 2 : 1);
const unsigned int wr_mclk = picos_to_mclk(clk, pdimm->twr_ps);
/* DDR4 support WR 10, 12, 14, 16, 18, 20, 24 */
static const int wr_table[] = {
0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 6, 6
};
/* DDR4 support CAS 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, 24 */
static const int cas_latency_table[] = {
0, 1, 2, 3, 4, 5, 6, 7, 13, 8,
14, 9, 15, 10, 12, 11, 16, 17,
18, 19, 20, 21, 22, 23
};
const unsigned int unq_mrs_en = ip_rev < U(0x50500) ? 1U : 0U;
unsigned short esdmode2 = 0U;
unsigned short esdmode3 = 0U;
const unsigned int wr_crc = 0U;
unsigned int rtt_wr = 0U;
const unsigned int srt = 0U;
unsigned int cwl = cal_cwl(clk);
const unsigned int mpr = 0U;
const unsigned int mclk_ps = get_memory_clk_ps(clk);
const unsigned int wc_lat = 0U;
unsigned short esdmode4 = 0U;
unsigned short esdmode5;
int rtt_park_all = 0;
unsigned int rtt_park;
const bool four_cs = conf->cs_in_use == 0xf ? true : false;
unsigned short esdmode6 = 0U; /* Extended SDRAM mode 6 */
unsigned short esdmode7 = 0U; /* Extended SDRAM mode 7 */
const unsigned int tccdl_min = max(5U,
picos_to_mclk(clk, pdimm->tccdl_ps));
if (popts->rtt_override != 0U) {
rtt = popts->rtt_override_value;
} else {
rtt = popts->cs_odt[0].odt_rtt_norm;
}
if (additive_latency == (cas_latency - 1)) {
al = 1;
}
if (additive_latency == (cas_latency - 2)) {
al = 2;
}
if (popts->quad_rank_present != 0 || popts->output_driver_impedance != 0) {
dic = 1; /* output driver impedance 240/7 ohm */
}
esdmode = (((qoff & 0x1) << 12) |
((tdqs_en & 0x1) << 11) |
((rtt & 0x7) << 8) |
((wrlvl_en & 0x1) << 7) |
((al & 0x3) << 3) |
((dic & 0x3) << 1) |
((dll_en & 0x1) << 0));
if (wr_mclk >= 10 && wr_mclk <= 24) {
wr = wr_table[wr_mclk - 10];
} else {
ERROR("unsupported wc_mclk = %d for mode register\n", wr_mclk);
}
/* look up table to get the cas latency bits */
if (cas_latency >= 9 && cas_latency <= 32) {
caslat = cas_latency_table[cas_latency - 9];
} else {
WARN("Error: unsupported cas latency for mode register\n");
}
sdmode = (((caslat & 0x10) << 8) |
((wr & 0x7) << 9) |
((dll_rst & 0x1) << 8) |
((mode & 0x1) << 7) |
(((caslat >> 1) & 0x7) << 4) |
((bt & 0x1) << 3) |
((caslat & 1) << 2) |
((bl & 0x3) << 0));
regs->sdram_mode[0] = (((esdmode & 0xFFFF) << 16) |
((sdmode & 0xFFFF) << 0));
debug("sdram_mode[0] = 0x%x\n", regs->sdram_mode[0]);
switch (cwl) {
case 9:
case 10:
case 11:
case 12:
cwl -= 9;
break;
case 14:
cwl -= 10;
break;
case 16:
cwl -= 11;
break;
case 18:
cwl -= 12;
break;
case 20:
cwl -= 13;
break;
default:
printf("Error CWL\n");
break;
}
if (popts->rtt_override != 0) {
rtt_wr = popts->rtt_wr_override_value;
} else {
rtt_wr = popts->cs_odt[0].odt_rtt_wr;
}
esdmode2 = ((wr_crc & 0x1) << 12) |
((rtt_wr & 0x7) << 9) |
((srt & 0x3) << 6) |
((cwl & 0x7) << 3);
esdmode3 = ((mpr & 0x3) << 11) | ((wc_lat & 0x3) << 9);
regs->sdram_mode[1] = ((esdmode2 & 0xFFFF) << 16) |
((esdmode3 & 0xFFFF) << 0);
debug("sdram_mode[1] = 0x%x\n", regs->sdram_mode[1]);
esdmode6 = ((tccdl_min - 4) & 0x7) << 10;
if (popts->vref_dimm != 0) {
esdmode6 |= popts->vref_dimm & 0x7f;
} else if ((popts->ddr_cdr2 & DDR_CDR2_VREF_RANGE_2) != 0) {
esdmode6 |= 1 << 6; /* Range 2 */
}
regs->sdram_mode[9] = ((esdmode6 & 0xffff) << 16) |
((esdmode7 & 0xffff) << 0);
debug("sdram_mode[9] = 0x%x\n", regs->sdram_mode[9]);
rtt_park = (popts->rtt_park != 0) ? popts->rtt_park : 240;
switch (rtt_park) {
case 240:
rtt_park = 0x4;
break;
case 120:
rtt_park = 0x2;
break;
case 80:
rtt_park = 0x6;
break;
case 60:
rtt_park = 0x1;
break;
case 48:
rtt_park = 0x5;
break;
case 40:
rtt_park = 0x3;
break;
case 34:
rtt_park = 0x7;
break;
default:
rtt_park = 0;
break;
}
for (i = 0; i < DDRC_NUM_CS; i++) {
if (i != 0 && unq_mrs_en == 0) {
break;
}
if (popts->rtt_override != 0) {
rtt = popts->rtt_override_value;
rtt_wr = popts->rtt_wr_override_value;
} else {
rtt = popts->cs_odt[i].odt_rtt_norm;
rtt_wr = popts->cs_odt[i].odt_rtt_wr;
}
esdmode &= 0xF8FF; /* clear bit 10,9,8 for rtt */
esdmode |= (rtt & 0x7) << 8;
esdmode2 &= 0xF9FF; /* clear bit 10, 9 */
esdmode2 |= (rtt_wr & 0x3) << 9;
esdmode5 = (popts->x4_en) ? 0 : 0x400; /* data mask */
if (rtt_park_all == 0 &&
((regs->cs[i].config & SDRAM_CS_CONFIG_EN) != 0)) {
esdmode5 |= rtt_park << 6;
rtt_park_all = four_cs ? 0 : 1;
}
if (((regs->sdram_cfg[1] & SDRAM_CFG2_AP_EN) != 0) &&
(popts->rdimm == 0)) {
if (mclk_ps >= 935) {
esdmode5 |= DDR_MR5_CA_PARITY_LAT_4_CLK;
} else if (mclk_ps >= 833) {
esdmode5 |= DDR_MR5_CA_PARITY_LAT_5_CLK;
} else {
esdmode5 |= DDR_MR5_CA_PARITY_LAT_5_CLK;
WARN("mclk_ps not supported %d", mclk_ps);
}
}
switch (i) {
case 0:
regs->sdram_mode[8] = ((esdmode4 & 0xffff) << 16) |
((esdmode5 & 0xffff) << 0);
debug("sdram_mode[8] = 0x%x\n", regs->sdram_mode[8]);
break;
case 1:
regs->sdram_mode[2] = (((esdmode & 0xFFFF) << 16) |
((sdmode & 0xFFFF) << 0));
regs->sdram_mode[3] = ((esdmode2 & 0xFFFF) << 16) |
((esdmode3 & 0xFFFF) << 0);
regs->sdram_mode[10] = ((esdmode4 & 0xFFFF) << 16) |
((esdmode5 & 0xFFFF) << 0);
regs->sdram_mode[11] = ((esdmode6 & 0xFFFF) << 16) |
((esdmode7 & 0xFFFF) << 0);
debug("sdram_mode[2] = 0x%x\n", regs->sdram_mode[2]);
debug("sdram_mode[3] = 0x%x\n", regs->sdram_mode[3]);
debug("sdram_mode[10] = 0x%x\n", regs->sdram_mode[10]);
debug("sdram_mode[11] = 0x%x\n", regs->sdram_mode[11]);
break;
case 2:
regs->sdram_mode[4] = (((esdmode & 0xFFFF) << 16) |
((sdmode & 0xFFFF) << 0));
regs->sdram_mode[5] = ((esdmode2 & 0xFFFF) << 16) |
((esdmode3 & 0xFFFF) << 0);
regs->sdram_mode[12] = ((esdmode4 & 0xFFFF) << 16) |
((esdmode5 & 0xFFFF) << 0);
regs->sdram_mode[13] = ((esdmode6 & 0xFFFF) << 16) |
((esdmode7 & 0xFFFF) << 0);
debug("sdram_mode[4] = 0x%x\n", regs->sdram_mode[4]);
debug("sdram_mode[5] = 0x%x\n", regs->sdram_mode[5]);
debug("sdram_mode[12] = 0x%x\n", regs->sdram_mode[12]);
debug("sdram_mode[13] = 0x%x\n", regs->sdram_mode[13]);
break;
case 3:
regs->sdram_mode[6] = (((esdmode & 0xFFFF) << 16) |
((sdmode & 0xFFFF) << 0));
regs->sdram_mode[7] = ((esdmode2 & 0xFFFF) << 16) |
((esdmode3 & 0xFFFF) << 0);
regs->sdram_mode[14] = ((esdmode4 & 0xFFFF) << 16) |
((esdmode5 & 0xFFFF) << 0);
regs->sdram_mode[15] = ((esdmode6 & 0xFFFF) << 16) |
((esdmode7 & 0xFFFF) << 0);
debug("sdram_mode[6] = 0x%x\n", regs->sdram_mode[6]);
debug("sdram_mode[7] = 0x%x\n", regs->sdram_mode[7]);
debug("sdram_mode[14] = 0x%x\n", regs->sdram_mode[14]);
debug("sdram_mode[15] = 0x%x\n", regs->sdram_mode[15]);
break;
default:
break;
}
}
}
#ifndef CONFIG_MEM_INIT_VALUE
#define CONFIG_MEM_INIT_VALUE 0xDEADBEEF
#endif
static void cal_ddr_data_init(struct ddr_cfg_regs *regs)
{
regs->data_init = CONFIG_MEM_INIT_VALUE;
}
static void cal_ddr_dq_mapping(struct ddr_cfg_regs *regs,
const struct dimm_params *pdimm)
{
const unsigned int acc_ecc_en = (regs->sdram_cfg[0] >> 2) & 0x1;
/* FIXME: revert the dq mapping from DIMM */
regs->dq_map[0] = ((pdimm->dq_mapping[0] & 0x3F) << 26) |
((pdimm->dq_mapping[1] & 0x3F) << 20) |
((pdimm->dq_mapping[2] & 0x3F) << 14) |
((pdimm->dq_mapping[3] & 0x3F) << 8) |
((pdimm->dq_mapping[4] & 0x3F) << 2);
regs->dq_map[1] = ((pdimm->dq_mapping[5] & 0x3F) << 26) |
((pdimm->dq_mapping[6] & 0x3F) << 20) |
((pdimm->dq_mapping[7] & 0x3F) << 14) |
((pdimm->dq_mapping[10] & 0x3F) << 8) |
((pdimm->dq_mapping[11] & 0x3F) << 2);
regs->dq_map[2] = ((pdimm->dq_mapping[12] & 0x3F) << 26) |
((pdimm->dq_mapping[13] & 0x3F) << 20) |
((pdimm->dq_mapping[14] & 0x3F) << 14) |
((pdimm->dq_mapping[15] & 0x3F) << 8) |
((pdimm->dq_mapping[16] & 0x3F) << 2);
/* dq_map for ECC[4:7] is set to 0 if accumulated ECC is enabled */
regs->dq_map[3] = ((pdimm->dq_mapping[17] & 0x3F) << 26) |
((pdimm->dq_mapping[8] & 0x3F) << 20) |
((acc_ecc_en != 0) ? 0 :
(pdimm->dq_mapping[9] & 0x3F) << 14) |
pdimm->dq_mapping_ors;
debug("dq_map[0] = 0x%x\n", regs->dq_map[0]);
debug("dq_map[1] = 0x%x\n", regs->dq_map[1]);
debug("dq_map[2] = 0x%x\n", regs->dq_map[2]);
debug("dq_map[3] = 0x%x\n", regs->dq_map[3]);
}
static void cal_ddr_zq_cntl(struct ddr_cfg_regs *regs)
{
const unsigned int zqinit = 10U; /* 1024 clocks */
const unsigned int zqoper = 9U; /* 512 clocks */
const unsigned int zqcs = 7U; /* 128 clocks */
const unsigned int zqcs_init = 5U; /* 1024 refresh seqences */
const unsigned int zq_en = 1U; /* enabled */
regs->zq_cntl = ((zq_en & 0x1) << 31) |
((zqinit & 0xF) << 24) |
((zqoper & 0xF) << 16) |
((zqcs & 0xF) << 8) |
((zqcs_init & 0xF) << 0);
debug("zq_cntl = 0x%x\n", regs->zq_cntl);
}
static void cal_ddr_sr_cntr(struct ddr_cfg_regs *regs,
const struct memctl_opt *popts)
{
const unsigned int sr_it = (popts->auto_self_refresh_en) ?
popts->sr_it : 0;
regs->ddr_sr_cntr = (sr_it & 0xF) << 16;
debug("ddr_sr_cntr = 0x%x\n", regs->ddr_sr_cntr);
}
static void cal_ddr_eor(struct ddr_cfg_regs *regs,
const struct memctl_opt *popts)
{
if (popts->addr_hash != 0) {
regs->eor = 0x40000000; /* address hash enable */
debug("eor = 0x%x\n", regs->eor);
}
}
static void cal_ddr_csn_bnds(struct ddr_cfg_regs *regs,
const struct memctl_opt *popts,
const struct ddr_conf *conf,
const struct dimm_params *pdimm)
{
int i;
unsigned long long ea, sa;
/* Chip Select Memory Bounds (CSn_BNDS) */
for (i = 0;
i < DDRC_NUM_CS && conf->cs_size[i];
i++) {
debug("cs_in_use = 0x%x\n", conf->cs_in_use);
if (conf->cs_in_use != 0) {
sa = conf->cs_base_addr[i];
ea = sa + conf->cs_size[i] - 1;
sa >>= 24;
ea >>= 24;
regs->cs[i].bnds = ((sa & 0xffff) << 16) |
((ea & 0xffff) << 0);
cal_csn_config(i, regs, popts, pdimm);
} else {
/* setting bnds to 0xffffffff for inactive CS */
regs->cs[i].bnds = 0xffffffff;
}
debug("cs[%d].bnds = 0x%x\n", i, regs->cs[i].bnds);
}
}
static void cal_ddr_addr_dec(struct ddr_cfg_regs *regs)
{
#ifdef CONFIG_DDR_ADDR_DEC
unsigned int ba_bits __unused;
char p __unused;
const unsigned int cs0_config = regs->cs[0].config;
const int cacheline = PLATFORM_CACHE_LINE_SHIFT;
unsigned int bg_bits;
unsigned int row_bits;
unsigned int col_bits;
unsigned int cs;
unsigned int map_row[18];
unsigned int map_col[11];
unsigned int map_ba[2];
unsigned int map_cid[2] = {0x3F, 0x3F};
unsigned int map_bg[2] = {0x3F, 0x3F};
unsigned int map_cs[2] = {0x3F, 0x3F};
unsigned int dbw;
unsigned int ba_intlv;
int placement;
int intlv;
int abort = 0;
int i;
int j;
col_bits = (cs0_config >> 0) & 0x7;
if (col_bits < 4) {
col_bits += 8;
} else if (col_bits < 7 || col_bits > 10) {
ERROR("Error %s col_bits = %d\n", __func__, col_bits);
}
row_bits = ((cs0_config >> 8) & 0x7) + 12;
ba_bits = ((cs0_config >> 14) & 0x3) + 2;
bg_bits = ((cs0_config >> 4) & 0x3) + 0;
intlv = (cs0_config >> 24) & 0xf;
ba_intlv = (regs->sdram_cfg[0] >> 8) & 0x7f;
switch (ba_intlv) {
case DDR_BA_INTLV_CS01:
cs = 1;
break;
case DDR_BA_INTLV_CS0123:
cs = 2;
break;
case DDR_BA_NONE:
cs = 0;
break;
default:
ERROR("%s ba_intlv 0x%x\n", __func__, ba_intlv);
return;
}
debug("col %d, row %d, ba %d, bg %d, intlv %d\n",
col_bits, row_bits, ba_bits, bg_bits, intlv);
/*
* Example mapping of 15x2x2x10
* ---- --rr rrrr rrrr rrrr rCBB Gccc cccI cGcc cbbb
*/
dbw = (regs->sdram_cfg[0] >> 19) & 0x3;
switch (dbw) {
case 0: /* 64-bit */
placement = 3;
break;
case 1: /* 32-bit */
placement = 2;
break;
default:
ERROR("%s dbw = %d\n", __func__, dbw);
return;
}
debug("cacheline size %d\n", cacheline);
for (i = 0; placement < cacheline; i++) {
map_col[i] = placement++;
}
map_bg[0] = placement++;
for ( ; i < col_bits; i++) {
map_col[i] = placement++;
if (placement == intlv) {
placement++;
}
}
for ( ; i < 11; i++) {
map_col[i] = 0x3F; /* unused col bits */
}
if (bg_bits >= 2) {
map_bg[1] = placement++;
}
map_ba[0] = placement++;
map_ba[1] = placement++;
if (cs != 0U) {
map_cs[0] = placement++;
if (cs == 2U) {
map_cs[1] = placement++;
}
} else {
map_cs[0] = U(0x3F);
}
for (i = 0; i < row_bits; i++) {
map_row[i] = placement++;
}
for ( ; i < 18; i++) {
map_row[i] = 0x3F; /* unused row bits */
}
for (i = 39; i >= 0 ; i--) {
if (i == intlv) {
placement = 8;
p = 'I';
} else if (i < 3) {
p = 'b';
placement = 0;
} else {
placement = 0;
p = '-';
}
for (j = 0; j < 18; j++) {
if (map_row[j] != i) {
continue;
}
if (placement != 0) {
abort = 1;
ERROR("%s wrong address bit %d\n", __func__, i);
}
placement = i;
p = 'r';
}
for (j = 0; j < 11; j++) {
if (map_col[j] != i) {
continue;
}
if (placement != 0) {
abort = 1;
ERROR("%s wrong address bit %d\n", __func__, i);
}
placement = i;
p = 'c';
}
for (j = 0; j < 2; j++) {
if (map_ba[j] != i) {
continue;
}
if (placement != 0) {
abort = 1;
ERROR("%s wrong address bit %d\n", __func__, i);
}
placement = i;
p = 'B';
}
for (j = 0; j < 2; j++) {
if (map_bg[j] != i) {
continue;
}
if (placement != 0) {
abort = 1;
ERROR("%s wrong address bit %d\n", __func__, i);
}
placement = i;
p = 'G';
}
for (j = 0; j < 2; j++) {
if (map_cs[j] != i) {
continue;
}
if (placement != 0) {
abort = 1;
ERROR("%s wrong address bit %d\n", __func__, i);
}
placement = i;
p = 'C';
}
#ifdef DDR_DEBUG
printf("%c", p);
if ((i % 4) == 0) {
printf(" ");
}
#endif
}
#ifdef DDR_DEBUG
puts("\n");
#endif
if (abort != 0) {
return;
}
regs->dec[0] = map_row[17] << 26 |
map_row[16] << 18 |
map_row[15] << 10 |
map_row[14] << 2;
regs->dec[1] = map_row[13] << 26 |
map_row[12] << 18 |
map_row[11] << 10 |
map_row[10] << 2;
regs->dec[2] = map_row[9] << 26 |
map_row[8] << 18 |
map_row[7] << 10 |
map_row[6] << 2;
regs->dec[3] = map_row[5] << 26 |
map_row[4] << 18 |
map_row[3] << 10 |
map_row[2] << 2;
regs->dec[4] = map_row[1] << 26 |
map_row[0] << 18 |
map_col[10] << 10 |
map_col[9] << 2;
regs->dec[5] = map_col[8] << 26 |
map_col[7] << 18 |
map_col[6] << 10 |
map_col[5] << 2;
regs->dec[6] = map_col[4] << 26 |
map_col[3] << 18 |
map_col[2] << 10 |
map_col[1] << 2;
regs->dec[7] = map_col[0] << 26 |
map_ba[1] << 18 |
map_ba[0] << 10 |
map_cid[1] << 2;
regs->dec[8] = map_cid[1] << 26 |
map_cs[1] << 18 |
map_cs[0] << 10 |
map_bg[1] << 2;
regs->dec[9] = map_bg[0] << 26 |
1;
for (i = 0; i < 10; i++) {
debug("dec[%d] = 0x%x\n", i, regs->dec[i]);
}
#endif
}
static unsigned int skip_caslat(unsigned int tckmin_ps,
unsigned int taamin_ps,
unsigned int mclk_ps,
unsigned int package_3ds)
{
int i, j, k;
struct cas {
const unsigned int tckmin_ps;
const unsigned int caslat[4];
};
struct speed {
const struct cas *cl;
const unsigned int taamin_ps[4];
};
const struct cas cl_3200[] = {
{625, {0xa00000, 0xb00000, 0xf000000,} },
{750, { 0x20000, 0x60000, 0xe00000,} },
{833, { 0x8000, 0x18000, 0x38000,} },
{937, { 0x4000, 0x4000, 0xc000,} },
{1071, { 0x1000, 0x1000, 0x3000,} },
{1250, { 0x400, 0x400, 0xc00,} },
{1500, { 0, 0x600, 0x200,} },
};
const struct cas cl_2933[] = {
{682, { 0, 0x80000, 0x180000, 0x380000} },
{750, { 0x20000, 0x60000, 0x60000, 0xe0000} },
{833, { 0x8000, 0x18000, 0x18000, 0x38000} },
{937, { 0x4000, 0x4000, 0x4000, 0xc000} },
{1071, { 0x1000, 0x1000, 0x1000, 0x3000} },
{1250, { 0x400, 0x400, 0x400, 0xc00} },
{1500, { 0, 0x200, 0x200, 0x200} },
};
const struct cas cl_2666[] = {
{750, { 0, 0x20000, 0x60000, 0xe0000} },
{833, { 0x8000, 0x18000, 0x18000, 0x38000} },
{937, { 0x4000, 0x4000, 0x4000, 0xc000} },
{1071, { 0x1000, 0x1000, 0x1000, 0x3000} },
{1250, { 0x400, 0x400, 0x400, 0xc00} },
{1500, { 0, 0, 0x200, 0x200} },
};
const struct cas cl_2400[] = {
{833, { 0, 0x8000, 0x18000, 0x38000} },
{937, { 0xc000, 0x4000, 0x4000, 0xc000} },
{1071, { 0x3000, 0x1000, 0x1000, 0x3000} },
{1250, { 0xc00, 0x400, 0x400, 0xc00} },
{1500, { 0, 0x400, 0x200, 0x200} },
};
const struct cas cl_2133[] = {
{937, { 0, 0x4000, 0xc000,} },
{1071, { 0x2000, 0, 0x2000,} },
{1250, { 0x800, 0, 0x800,} },
{1500, { 0, 0x400, 0x200,} },
};
const struct cas cl_1866[] = {
{1071, { 0, 0x1000, 0x3000,} },
{1250, { 0xc00, 0x400, 0xc00,} },
{1500, { 0, 0x400, 0x200,} },
};
const struct cas cl_1600[] = {
{1250, { 0, 0x400, 0xc00,} },
{1500, { 0, 0x400, 0x200,} },
};
const struct speed bin_0[] = {
{cl_3200, {12500, 13750, 15000,} },
{cl_2933, {12960, 13640, 13750, 15000,} },
{cl_2666, {12750, 13500, 13750, 15000,} },
{cl_2400, {12500, 13320, 13750, 15000,} },
{cl_2133, {13130, 13500, 15000,} },
{cl_1866, {12850, 13500, 15000,} },
{cl_1600, {12500, 13500, 15000,} }
};
const struct cas cl_3200_3ds[] = {
{625, { 0xa000000, 0xb000000, 0xf000000,} },
{750, { 0xaa00000, 0xab00000, 0xef00000,} },
{833, { 0xaac0000, 0xaac0000, 0xebc0000,} },
{937, { 0xaab0000, 0xaab0000, 0xeaf0000,} },
{1071, { 0xaaa4000, 0xaaac000, 0xeaec000,} },
{1250, { 0xaaa0000, 0xaaa2000, 0xeaeb000,} },
};
const struct cas cl_2666_3ds[] = {
{750, { 0xa00000, 0xb00000, 0xf00000,} },
{833, { 0xac0000, 0xac0000, 0xbc0000,} },
{937, { 0xab0000, 0xab0000, 0xaf0000,} },
{1071, { 0xaa4000, 0xaac000, 0xaac000,} },
{1250, { 0xaa0000, 0xaaa000, 0xaaa000,} },
};
const struct cas cl_2400_3ds[] = {
{833, { 0xe00000, 0xe40000, 0xec0000, 0xb00000} },
{937, { 0xe00000, 0xe00000, 0xea0000, 0xae0000} },
{1071, { 0xe00000, 0xe04000, 0xeac000, 0xaec000} },
{1250, { 0xe00000, 0xe00000, 0xeaa000, 0xae2000} },
};
const struct cas cl_2133_3ds[] = {
{937, { 0x90000, 0xb0000, 0xf0000,} },
{1071, { 0x84000, 0xac000, 0xec000,} },
{1250, { 0x80000, 0xa2000, 0xe2000,} },
};
const struct cas cl_1866_3ds[] = {
{1071, { 0, 0x4000, 0xc000,} },
{1250, { 0, 0x1000, 0x3000,} },
};
const struct cas cl_1600_3ds[] = {
{1250, { 0, 0x1000, 0x3000,} },
};
const struct speed bin_3ds[] = {
{cl_3200_3ds, {15000, 16250, 17140,} },
{cl_2666_3ds, {15000, 16500, 17140,} },
{cl_2400_3ds, {15000, 15830, 16670, 17140} },
{cl_2133_3ds, {15950, 16880, 17140,} },
{cl_1866_3ds, {15000, 16070, 17140,} },
{cl_1600_3ds, {15000, 16250, 17500,} },
};
const struct speed *bin;
int size;
unsigned int taamin_max, tck_max;
if (taamin_ps > ((package_3ds != 0) ? 21500 : 18000)) {
ERROR("taamin_ps %u invalid\n", taamin_ps);
return 0;
}
if (package_3ds != 0) {
bin = bin_3ds;
size = ARRAY_SIZE(bin_3ds);
taamin_max = 1250;
tck_max = 1500;
} else {
bin = bin_0;
size = ARRAY_SIZE(bin_0);
taamin_max = 1500;
tck_max = 1600;
}
if (mclk_ps < 625 || mclk_ps > tck_max) {
ERROR("mclk %u invalid\n", mclk_ps);
return 0;
}
for (i = 0; i < size; i++) {
if (bin[i].cl[0].tckmin_ps >= tckmin_ps) {
break;
}
}
if (i >= size) {
ERROR("speed bin not found\n");
return 0;
}
if (bin[i].cl[0].tckmin_ps > tckmin_ps && i > 0) {
i--;
}
for (j = 0; j < 4; j++) {
if ((bin[i].taamin_ps[j] == 0) ||
bin[i].taamin_ps[j] >= taamin_ps) {
break;
}
}
if (j >= 4) {
ERROR("taamin_ps out of range.\n");
return 0;
}
if (((bin[i].taamin_ps[j] == 0) && j > 0) ||
(bin[i].taamin_ps[j] > taamin_ps && j > 0)) {
j--;
}
for (k = 0; bin[i].cl[k].tckmin_ps < mclk_ps &&
bin[i].cl[k].tckmin_ps < taamin_max; k++)
;
if (bin[i].cl[k].tckmin_ps > mclk_ps && k > 0) {
k--;
}
debug("Skip CL mask for this speed 0x%x\n", bin[i].cl[k].caslat[j]);
return bin[i].cl[k].caslat[j];
}
int compute_ddrc(const unsigned long clk,
const struct memctl_opt *popts,
const struct ddr_conf *conf,
struct ddr_cfg_regs *regs,
const struct dimm_params *pdimm,
unsigned int ip_rev)
{
unsigned int cas_latency;
unsigned int caslat_skip;
unsigned int additive_latency;
const unsigned int mclk_ps = get_memory_clk_ps(clk);
int i;
zeromem(regs, sizeof(struct ddr_cfg_regs));
if (mclk_ps < pdimm->tckmin_x_ps) {
ERROR("DDR Clk: MCLK cycle is %u ps.\n", mclk_ps);
ERROR("DDR Clk is faster than DIMM can support.\n");
}
/* calculate cas latency, override first */
cas_latency = (popts->caslat_override != 0) ?
popts->caslat_override_value :
(pdimm->taa_ps + mclk_ps - 1) / mclk_ps;
/* skip unsupported caslat based on speed bin */
caslat_skip = skip_caslat(pdimm->tckmin_x_ps,
pdimm->taa_ps,
mclk_ps,
pdimm->package_3ds);
debug("Skip caslat 0x%x\n", caslat_skip);
/* Check if DIMM supports the cas latency */
i = 24;
while (((pdimm->caslat_x & ~caslat_skip & (1 << cas_latency)) == 0) &&
(i-- > 0)) {
cas_latency++;
}
if (i <= 0) {
ERROR("Failed to find a proper cas latency\n");
return -EINVAL;
}
/* Verify cas latency does not exceed 18ns for DDR4 */
if (cas_latency * mclk_ps > 18000) {
ERROR("cas latency is too large %d\n", cas_latency);
return -EINVAL;
}
additive_latency = (popts->addt_lat_override != 0) ?
popts->addt_lat_override_value : 0;
cal_ddr_csn_bnds(regs, popts, conf, pdimm);
cal_ddr_sdram_cfg(clk, regs, popts, pdimm, ip_rev);
cal_ddr_sdram_rcw(clk, regs, popts, pdimm);
cal_timing_cfg(clk, regs, popts, pdimm, conf, cas_latency,
additive_latency);
cal_ddr_dq_mapping(regs, pdimm);
if (ip_rev >= 0x50500) {
cal_ddr_addr_dec(regs);
}
cal_ddr_sdram_mode(clk, regs, popts, conf, pdimm, cas_latency,
additive_latency, ip_rev);
cal_ddr_eor(regs, popts);
cal_ddr_data_init(regs);
cal_ddr_sdram_interval(clk, regs, popts, pdimm);
cal_ddr_zq_cntl(regs);
cal_ddr_sr_cntr(regs, popts);
return 0;
}