blob: 05533c61d315a677cb2de1ea7d8ae4ed2a2e4fca [file] [log] [blame]
/*
* Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch_helpers.h>
#include <assert.h>
#include <debug.h>
#include <errno.h>
#include <platform_def.h>
#include <stdbool.h>
#include <types.h>
#include <utils_def.h>
#include <xlat_tables_defs.h>
#include <xlat_tables_v2.h>
#include "xlat_tables_private.h"
#if LOG_LEVEL < LOG_LEVEL_VERBOSE
void xlat_mmap_print(__unused const mmap_region_t *mmap)
{
/* Empty */
}
void xlat_tables_print(__unused xlat_ctx_t *ctx)
{
/* Empty */
}
#else /* if LOG_LEVEL >= LOG_LEVEL_VERBOSE */
void xlat_mmap_print(const mmap_region_t *mmap)
{
tf_printf("mmap:\n");
const mmap_region_t *mm = mmap;
while (mm->size != 0U) {
tf_printf(" VA:0x%lx PA:0x%llx size:0x%zx attr:0x%x "
"granularity:0x%zx\n", mm->base_va, mm->base_pa,
mm->size, mm->attr, mm->granularity);
++mm;
};
tf_printf("\n");
}
/* Print the attributes of the specified block descriptor. */
static void xlat_desc_print(const xlat_ctx_t *ctx, uint64_t desc)
{
uint64_t mem_type_index = ATTR_INDEX_GET(desc);
int xlat_regime = ctx->xlat_regime;
if (mem_type_index == ATTR_IWBWA_OWBWA_NTR_INDEX) {
tf_printf("MEM");
} else if (mem_type_index == ATTR_NON_CACHEABLE_INDEX) {
tf_printf("NC");
} else {
assert(mem_type_index == ATTR_DEVICE_INDEX);
tf_printf("DEV");
}
if ((xlat_regime == EL3_REGIME) || (xlat_regime == EL2_REGIME)) {
/* For EL3 and EL2 only check the AP[2] and XN bits. */
tf_printf(((desc & LOWER_ATTRS(AP_RO)) != 0ULL) ? "-RO" : "-RW");
tf_printf(((desc & UPPER_ATTRS(XN)) != 0ULL) ? "-XN" : "-EXEC");
} else {
assert(xlat_regime == EL1_EL0_REGIME);
/*
* For EL0 and EL1:
* - In AArch64 PXN and UXN can be set independently but in
* AArch32 there is no UXN (XN affects both privilege levels).
* For consistency, we set them simultaneously in both cases.
* - RO and RW permissions must be the same in EL1 and EL0. If
* EL0 can access that memory region, so can EL1, with the
* same permissions.
*/
#if ENABLE_ASSERTIONS
uint64_t xn_mask = xlat_arch_regime_get_xn_desc(EL1_EL0_REGIME);
uint64_t xn_perm = desc & xn_mask;
assert((xn_perm == xn_mask) || (xn_perm == 0ULL));
#endif
tf_printf(((desc & LOWER_ATTRS(AP_RO)) != 0ULL) ? "-RO" : "-RW");
/* Only check one of PXN and UXN, the other one is the same. */
tf_printf(((desc & UPPER_ATTRS(PXN)) != 0ULL) ? "-XN" : "-EXEC");
/*
* Privileged regions can only be accessed from EL1, user
* regions can be accessed from EL1 and EL0.
*/
tf_printf(((desc & LOWER_ATTRS(AP_ACCESS_UNPRIVILEGED)) != 0ULL)
? "-USER" : "-PRIV");
}
tf_printf(((LOWER_ATTRS(NS) & desc) != 0ULL) ? "-NS" : "-S");
}
static const char * const level_spacers[] = {
"[LV0] ",
" [LV1] ",
" [LV2] ",
" [LV3] "
};
static const char *invalid_descriptors_ommited =
"%s(%d invalid descriptors omitted)\n";
/*
* Recursive function that reads the translation tables passed as an argument
* and prints their status.
*/
static void xlat_tables_print_internal(xlat_ctx_t *ctx, uintptr_t table_base_va,
const uint64_t *table_base, unsigned int table_entries,
unsigned int level)
{
assert(level <= XLAT_TABLE_LEVEL_MAX);
uint64_t desc;
uintptr_t table_idx_va = table_base_va;
unsigned int table_idx = 0U;
size_t level_size = XLAT_BLOCK_SIZE(level);
/*
* Keep track of how many invalid descriptors are counted in a row.
* Whenever multiple invalid descriptors are found, only the first one
* is printed, and a line is added to inform about how many descriptors
* have been omitted.
*/
int invalid_row_count = 0;
while (table_idx < table_entries) {
desc = table_base[table_idx];
if ((desc & DESC_MASK) == INVALID_DESC) {
if (invalid_row_count == 0) {
tf_printf("%sVA:0x%lx size:0x%zx\n",
level_spacers[level],
table_idx_va, level_size);
}
invalid_row_count++;
} else {
if (invalid_row_count > 1) {
tf_printf(invalid_descriptors_ommited,
level_spacers[level],
invalid_row_count - 1);
}
invalid_row_count = 0;
/*
* Check if this is a table or a block. Tables are only
* allowed in levels other than 3, but DESC_PAGE has the
* same value as DESC_TABLE, so we need to check.
*/
if (((desc & DESC_MASK) == TABLE_DESC) &&
(level < XLAT_TABLE_LEVEL_MAX)) {
/*
* Do not print any PA for a table descriptor,
* as it doesn't directly map physical memory
* but instead points to the next translation
* table in the translation table walk.
*/
tf_printf("%sVA:0x%lx size:0x%zx\n",
level_spacers[level],
table_idx_va, level_size);
uintptr_t addr_inner = desc & TABLE_ADDR_MASK;
xlat_tables_print_internal(ctx, table_idx_va,
(uint64_t *)addr_inner,
XLAT_TABLE_ENTRIES, level + 1U);
} else {
tf_printf("%sVA:0x%lx PA:0x%llx size:0x%zx ",
level_spacers[level],
table_idx_va,
(uint64_t)(desc & TABLE_ADDR_MASK),
level_size);
xlat_desc_print(ctx, desc);
tf_printf("\n");
}
}
table_idx++;
table_idx_va += level_size;
}
if (invalid_row_count > 1) {
tf_printf(invalid_descriptors_ommited,
level_spacers[level], invalid_row_count - 1);
}
}
void xlat_tables_print(xlat_ctx_t *ctx)
{
const char *xlat_regime_str;
int used_page_tables;
if (ctx->xlat_regime == EL1_EL0_REGIME) {
xlat_regime_str = "1&0";
} else if (ctx->xlat_regime == EL2_REGIME) {
xlat_regime_str = "2";
} else {
assert(ctx->xlat_regime == EL3_REGIME);
xlat_regime_str = "3";
}
VERBOSE("Translation tables state:\n");
VERBOSE(" Xlat regime: EL%s\n", xlat_regime_str);
VERBOSE(" Max allowed PA: 0x%llx\n", ctx->pa_max_address);
VERBOSE(" Max allowed VA: 0x%lx\n", ctx->va_max_address);
VERBOSE(" Max mapped PA: 0x%llx\n", ctx->max_pa);
VERBOSE(" Max mapped VA: 0x%lx\n", ctx->max_va);
VERBOSE(" Initial lookup level: %u\n", ctx->base_level);
VERBOSE(" Entries @initial lookup level: %u\n",
ctx->base_table_entries);
#if PLAT_XLAT_TABLES_DYNAMIC
used_page_tables = 0;
for (int i = 0; i < ctx->tables_num; ++i) {
if (ctx->tables_mapped_regions[i] != 0)
++used_page_tables;
}
#else
used_page_tables = ctx->next_table;
#endif
VERBOSE(" Used %d sub-tables out of %d (spare: %d)\n",
used_page_tables, ctx->tables_num,
ctx->tables_num - used_page_tables);
xlat_tables_print_internal(ctx, 0U, ctx->base_table,
ctx->base_table_entries, ctx->base_level);
}
#endif /* LOG_LEVEL >= LOG_LEVEL_VERBOSE */
/*
* Do a translation table walk to find the block or page descriptor that maps
* virtual_addr.
*
* On success, return the address of the descriptor within the translation
* table. Its lookup level is stored in '*out_level'.
* On error, return NULL.
*
* xlat_table_base
* Base address for the initial lookup level.
* xlat_table_base_entries
* Number of entries in the translation table for the initial lookup level.
* virt_addr_space_size
* Size in bytes of the virtual address space.
*/
static uint64_t *find_xlat_table_entry(uintptr_t virtual_addr,
void *xlat_table_base,
unsigned int xlat_table_base_entries,
unsigned long long virt_addr_space_size,
unsigned int *out_level)
{
unsigned int start_level;
uint64_t *table;
unsigned int entries;
start_level = GET_XLAT_TABLE_LEVEL_BASE(virt_addr_space_size);
table = xlat_table_base;
entries = xlat_table_base_entries;
for (unsigned int level = start_level;
level <= XLAT_TABLE_LEVEL_MAX;
++level) {
uint64_t idx, desc, desc_type;
idx = XLAT_TABLE_IDX(virtual_addr, level);
if (idx >= entries) {
WARN("Missing xlat table entry at address 0x%lx\n",
virtual_addr);
return NULL;
}
desc = table[idx];
desc_type = desc & DESC_MASK;
if (desc_type == INVALID_DESC) {
VERBOSE("Invalid entry (memory not mapped)\n");
return NULL;
}
if (level == XLAT_TABLE_LEVEL_MAX) {
/*
* Only page descriptors allowed at the final lookup
* level.
*/
assert(desc_type == PAGE_DESC);
*out_level = level;
return &table[idx];
}
if (desc_type == BLOCK_DESC) {
*out_level = level;
return &table[idx];
}
assert(desc_type == TABLE_DESC);
table = (uint64_t *)(uintptr_t)(desc & TABLE_ADDR_MASK);
entries = XLAT_TABLE_ENTRIES;
}
/*
* This shouldn't be reached, the translation table walk should end at
* most at level XLAT_TABLE_LEVEL_MAX and return from inside the loop.
*/
assert(false);
return NULL;
}
static int xlat_get_mem_attributes_internal(const xlat_ctx_t *ctx,
uintptr_t base_va, uint32_t *attributes, uint64_t **table_entry,
unsigned long long *addr_pa, unsigned int *table_level)
{
uint64_t *entry;
uint64_t desc;
unsigned int level;
unsigned long long virt_addr_space_size;
/*
* Sanity-check arguments.
*/
assert(ctx != NULL);
assert(ctx->initialized);
assert((ctx->xlat_regime == EL1_EL0_REGIME) ||
(ctx->xlat_regime == EL2_REGIME) ||
(ctx->xlat_regime == EL3_REGIME));
virt_addr_space_size = (unsigned long long)ctx->va_max_address + 1ULL;
assert(virt_addr_space_size > 0U);
entry = find_xlat_table_entry(base_va,
ctx->base_table,
ctx->base_table_entries,
virt_addr_space_size,
&level);
if (entry == NULL) {
WARN("Address 0x%lx is not mapped.\n", base_va);
return -EINVAL;
}
if (addr_pa != NULL) {
*addr_pa = *entry & TABLE_ADDR_MASK;
}
if (table_entry != NULL) {
*table_entry = entry;
}
if (table_level != NULL) {
*table_level = level;
}
desc = *entry;
#if LOG_LEVEL >= LOG_LEVEL_VERBOSE
VERBOSE("Attributes: ");
xlat_desc_print(ctx, desc);
tf_printf("\n");
#endif /* LOG_LEVEL >= LOG_LEVEL_VERBOSE */
assert(attributes != NULL);
*attributes = 0U;
uint64_t attr_index = (desc >> ATTR_INDEX_SHIFT) & ATTR_INDEX_MASK;
if (attr_index == ATTR_IWBWA_OWBWA_NTR_INDEX) {
*attributes |= MT_MEMORY;
} else if (attr_index == ATTR_NON_CACHEABLE_INDEX) {
*attributes |= MT_NON_CACHEABLE;
} else {
assert(attr_index == ATTR_DEVICE_INDEX);
*attributes |= MT_DEVICE;
}
uint64_t ap2_bit = (desc >> AP2_SHIFT) & 1U;
if (ap2_bit == AP2_RW)
*attributes |= MT_RW;
if (ctx->xlat_regime == EL1_EL0_REGIME) {
uint64_t ap1_bit = (desc >> AP1_SHIFT) & 1U;
if (ap1_bit == AP1_ACCESS_UNPRIVILEGED)
*attributes |= MT_USER;
}
uint64_t ns_bit = (desc >> NS_SHIFT) & 1U;
if (ns_bit == 1U)
*attributes |= MT_NS;
uint64_t xn_mask = xlat_arch_regime_get_xn_desc(ctx->xlat_regime);
if ((desc & xn_mask) == xn_mask) {
*attributes |= MT_EXECUTE_NEVER;
} else {
assert((desc & xn_mask) == 0U);
}
return 0;
}
int xlat_get_mem_attributes_ctx(const xlat_ctx_t *ctx, uintptr_t base_va,
uint32_t *attr)
{
return xlat_get_mem_attributes_internal(ctx, base_va, attr,
NULL, NULL, NULL);
}
int xlat_change_mem_attributes_ctx(const xlat_ctx_t *ctx, uintptr_t base_va,
size_t size, uint32_t attr)
{
/* Note: This implementation isn't optimized. */
assert(ctx != NULL);
assert(ctx->initialized);
unsigned long long virt_addr_space_size =
(unsigned long long)ctx->va_max_address + 1U;
assert(virt_addr_space_size > 0U);
if (!IS_PAGE_ALIGNED(base_va)) {
WARN("%s: Address 0x%lx is not aligned on a page boundary.\n",
__func__, base_va);
return -EINVAL;
}
if (size == 0U) {
WARN("%s: Size is 0.\n", __func__);
return -EINVAL;
}
if ((size % PAGE_SIZE) != 0U) {
WARN("%s: Size 0x%zx is not a multiple of a page size.\n",
__func__, size);
return -EINVAL;
}
if (((attr & MT_EXECUTE_NEVER) == 0U) && ((attr & MT_RW) != 0U)) {
WARN("%s: Mapping memory as read-write and executable not allowed.\n",
__func__);
return -EINVAL;
}
size_t pages_count = size / PAGE_SIZE;
VERBOSE("Changing memory attributes of %zu pages starting from address 0x%lx...\n",
pages_count, base_va);
uintptr_t base_va_original = base_va;
/*
* Sanity checks.
*/
for (size_t i = 0U; i < pages_count; ++i) {
const uint64_t *entry;
uint64_t desc, attr_index;
unsigned int level;
entry = find_xlat_table_entry(base_va,
ctx->base_table,
ctx->base_table_entries,
virt_addr_space_size,
&level);
if (entry == NULL) {
WARN("Address 0x%lx is not mapped.\n", base_va);
return -EINVAL;
}
desc = *entry;
/*
* Check that all the required pages are mapped at page
* granularity.
*/
if (((desc & DESC_MASK) != PAGE_DESC) ||
(level != XLAT_TABLE_LEVEL_MAX)) {
WARN("Address 0x%lx is not mapped at the right granularity.\n",
base_va);
WARN("Granularity is 0x%llx, should be 0x%x.\n",
(unsigned long long)XLAT_BLOCK_SIZE(level), PAGE_SIZE);
return -EINVAL;
}
/*
* If the region type is device, it shouldn't be executable.
*/
attr_index = (desc >> ATTR_INDEX_SHIFT) & ATTR_INDEX_MASK;
if (attr_index == ATTR_DEVICE_INDEX) {
if ((attr & MT_EXECUTE_NEVER) == 0U) {
WARN("Setting device memory as executable at address 0x%lx.",
base_va);
return -EINVAL;
}
}
base_va += PAGE_SIZE;
}
/* Restore original value. */
base_va = base_va_original;
for (unsigned int i = 0U; i < pages_count; ++i) {
uint32_t old_attr = 0U, new_attr;
uint64_t *entry = NULL;
unsigned int level = 0U;
unsigned long long addr_pa = 0ULL;
(void) xlat_get_mem_attributes_internal(ctx, base_va, &old_attr,
&entry, &addr_pa, &level);
/*
* From attr, only MT_RO/MT_RW, MT_EXECUTE/MT_EXECUTE_NEVER and
* MT_USER/MT_PRIVILEGED are taken into account. Any other
* information is ignored.
*/
/* Clean the old attributes so that they can be rebuilt. */
new_attr = old_attr & ~(MT_RW | MT_EXECUTE_NEVER | MT_USER);
/*
* Update attributes, but filter out the ones this function
* isn't allowed to change.
*/
new_attr |= attr & (MT_RW | MT_EXECUTE_NEVER | MT_USER);
/*
* The break-before-make sequence requires writing an invalid
* descriptor and making sure that the system sees the change
* before writing the new descriptor.
*/
*entry = INVALID_DESC;
#if !(HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
dccvac((uintptr_t)entry);
#endif
/* Invalidate any cached copy of this mapping in the TLBs. */
xlat_arch_tlbi_va(base_va, ctx->xlat_regime);
/* Ensure completion of the invalidation. */
xlat_arch_tlbi_va_sync();
/* Write new descriptor */
*entry = xlat_desc(ctx, new_attr, addr_pa, level);
#if !(HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
dccvac((uintptr_t)entry);
#endif
base_va += PAGE_SIZE;
}
/* Ensure that the last descriptor writen is seen by the system. */
dsbish();
return 0;
}