| /* |
| * Copyright (c) 2017, ARM Limited and Contributors. All rights reserved. |
| * |
| * SPDX-License-Identifier: BSD-3-Clause |
| */ |
| |
| #include <arch_helpers.h> |
| #include <assert.h> |
| #include <bl_common.h> |
| #include <console.h> |
| #include <debug.h> |
| #include <dw_mmc.h> |
| #include <emmc.h> |
| #include <errno.h> |
| #include <gpio.h> |
| #include <hi6220.h> |
| #include <hi6553.h> |
| #include <mmio.h> |
| #include <pl061_gpio.h> |
| #include <platform.h> |
| #include <platform_def.h> |
| #include <sp804_delay_timer.h> |
| #include <string.h> |
| #include <tbbr/tbbr_img_desc.h> |
| |
| #include "../../bl1/bl1_private.h" |
| #include "hikey_def.h" |
| #include "hikey_private.h" |
| |
| /* |
| * Declarations of linker defined symbols which will help us find the layout |
| * of trusted RAM |
| */ |
| extern unsigned long __COHERENT_RAM_START__; |
| extern unsigned long __COHERENT_RAM_END__; |
| |
| /* |
| * The next 2 constants identify the extents of the coherent memory region. |
| * These addresses are used by the MMU setup code and therefore they must be |
| * page-aligned. It is the responsibility of the linker script to ensure that |
| * __COHERENT_RAM_START__ and __COHERENT_RAM_END__ linker symbols refer to |
| * page-aligned addresses. |
| */ |
| #define BL1_COHERENT_RAM_BASE (unsigned long)(&__COHERENT_RAM_START__) |
| #define BL1_COHERENT_RAM_LIMIT (unsigned long)(&__COHERENT_RAM_END__) |
| |
| /* Data structure which holds the extents of the trusted RAM for BL1 */ |
| static meminfo_t bl1_tzram_layout; |
| |
| enum { |
| BOOT_NORMAL = 0, |
| BOOT_USB_DOWNLOAD, |
| BOOT_UART_DOWNLOAD, |
| }; |
| |
| meminfo_t *bl1_plat_sec_mem_layout(void) |
| { |
| return &bl1_tzram_layout; |
| } |
| |
| #if LOAD_IMAGE_V2 |
| /******************************************************************************* |
| * Function that takes a memory layout into which BL2 has been loaded and |
| * populates a new memory layout for BL2 that ensures that BL1's data sections |
| * resident in secure RAM are not visible to BL2. |
| ******************************************************************************/ |
| void bl1_init_bl2_mem_layout(const meminfo_t *bl1_mem_layout, |
| meminfo_t *bl2_mem_layout) |
| { |
| |
| assert(bl1_mem_layout != NULL); |
| assert(bl2_mem_layout != NULL); |
| |
| /* |
| * Cannot remove BL1 RW data from the scope of memory visible to BL2 |
| * like arm platforms because they overlap in hikey |
| */ |
| bl2_mem_layout->total_base = BL2_BASE; |
| bl2_mem_layout->total_size = BL32_SRAM_LIMIT - BL2_BASE; |
| |
| flush_dcache_range((unsigned long)bl2_mem_layout, sizeof(meminfo_t)); |
| } |
| #endif /* LOAD_IMAGE_V2 */ |
| |
| /* |
| * Perform any BL1 specific platform actions. |
| */ |
| void bl1_early_platform_setup(void) |
| { |
| /* Initialize the console to provide early debug support */ |
| console_init(CONSOLE_BASE, PL011_UART_CLK_IN_HZ, PL011_BAUDRATE); |
| |
| /* Allow BL1 to see the whole Trusted RAM */ |
| bl1_tzram_layout.total_base = BL1_RW_BASE; |
| bl1_tzram_layout.total_size = BL1_RW_SIZE; |
| |
| #if !LOAD_IMAGE_V2 |
| /* Calculate how much RAM BL1 is using and how much remains free */ |
| bl1_tzram_layout.free_base = BL1_RW_BASE; |
| bl1_tzram_layout.free_size = BL1_RW_SIZE; |
| reserve_mem(&bl1_tzram_layout.free_base, |
| &bl1_tzram_layout.free_size, |
| BL1_RAM_BASE, |
| BL1_RAM_LIMIT - BL1_RAM_BASE); /* bl1_size */ |
| #endif |
| |
| INFO("BL1: 0x%lx - 0x%lx [size = %lu]\n", BL1_RAM_BASE, BL1_RAM_LIMIT, |
| BL1_RAM_LIMIT - BL1_RAM_BASE); /* bl1_size */ |
| } |
| |
| /* |
| * Perform the very early platform specific architecture setup here. At the |
| * moment this only does basic initialization. Later architectural setup |
| * (bl1_arch_setup()) does not do anything platform specific. |
| */ |
| void bl1_plat_arch_setup(void) |
| { |
| hikey_init_mmu_el3(bl1_tzram_layout.total_base, |
| bl1_tzram_layout.total_size, |
| BL1_RO_BASE, |
| BL1_RO_LIMIT, |
| BL1_COHERENT_RAM_BASE, |
| BL1_COHERENT_RAM_LIMIT); |
| } |
| |
| static void hikey_sp804_init(void) |
| { |
| uint32_t data; |
| |
| /* select the clock of dual timer0 */ |
| data = mmio_read_32(AO_SC_TIMER_EN0); |
| while (data & 3) { |
| data &= ~3; |
| data |= 3 << 16; |
| mmio_write_32(AO_SC_TIMER_EN0, data); |
| data = mmio_read_32(AO_SC_TIMER_EN0); |
| } |
| /* enable the pclk of dual timer0 */ |
| data = mmio_read_32(AO_SC_PERIPH_CLKSTAT4); |
| while (!(data & PCLK_TIMER1) || !(data & PCLK_TIMER0)) { |
| mmio_write_32(AO_SC_PERIPH_CLKEN4, PCLK_TIMER1 | PCLK_TIMER0); |
| data = mmio_read_32(AO_SC_PERIPH_CLKSTAT4); |
| } |
| /* reset dual timer0 */ |
| data = mmio_read_32(AO_SC_PERIPH_RSTSTAT4); |
| mmio_write_32(AO_SC_PERIPH_RSTEN4, PCLK_TIMER1 | PCLK_TIMER0); |
| do { |
| data = mmio_read_32(AO_SC_PERIPH_RSTSTAT4); |
| } while (!(data & PCLK_TIMER1) || !(data & PCLK_TIMER0)); |
| /* unreset dual timer0 */ |
| mmio_write_32(AO_SC_PERIPH_RSTDIS4, PCLK_TIMER1 | PCLK_TIMER0); |
| do { |
| data = mmio_read_32(AO_SC_PERIPH_RSTSTAT4); |
| } while ((data & PCLK_TIMER1) || (data & PCLK_TIMER0)); |
| |
| sp804_timer_init(SP804_TIMER0_BASE, 10, 192); |
| } |
| |
| static void hikey_gpio_init(void) |
| { |
| pl061_gpio_init(); |
| pl061_gpio_register(GPIO0_BASE, 0); |
| pl061_gpio_register(GPIO1_BASE, 1); |
| pl061_gpio_register(GPIO2_BASE, 2); |
| pl061_gpio_register(GPIO3_BASE, 3); |
| pl061_gpio_register(GPIO4_BASE, 4); |
| pl061_gpio_register(GPIO5_BASE, 5); |
| pl061_gpio_register(GPIO6_BASE, 6); |
| pl061_gpio_register(GPIO7_BASE, 7); |
| pl061_gpio_register(GPIO8_BASE, 8); |
| pl061_gpio_register(GPIO9_BASE, 9); |
| pl061_gpio_register(GPIO10_BASE, 10); |
| pl061_gpio_register(GPIO11_BASE, 11); |
| pl061_gpio_register(GPIO12_BASE, 12); |
| pl061_gpio_register(GPIO13_BASE, 13); |
| pl061_gpio_register(GPIO14_BASE, 14); |
| pl061_gpio_register(GPIO15_BASE, 15); |
| pl061_gpio_register(GPIO16_BASE, 16); |
| pl061_gpio_register(GPIO17_BASE, 17); |
| pl061_gpio_register(GPIO18_BASE, 18); |
| pl061_gpio_register(GPIO19_BASE, 19); |
| |
| /* Power on indicator LED (USER_LED1). */ |
| gpio_set_direction(32, GPIO_DIR_OUT); /* LED1 */ |
| gpio_set_value(32, GPIO_LEVEL_HIGH); |
| gpio_set_direction(33, GPIO_DIR_OUT); /* LED2 */ |
| gpio_set_value(33, GPIO_LEVEL_LOW); |
| gpio_set_direction(34, GPIO_DIR_OUT); /* LED3 */ |
| gpio_set_direction(35, GPIO_DIR_OUT); /* LED4 */ |
| } |
| |
| static void hikey_pmussi_init(void) |
| { |
| uint32_t data; |
| |
| /* Initialize PWR_HOLD GPIO */ |
| gpio_set_direction(0, GPIO_DIR_OUT); |
| gpio_set_value(0, GPIO_LEVEL_LOW); |
| |
| /* |
| * After reset, PMUSSI stays in reset mode. |
| * Now make it out of reset. |
| */ |
| mmio_write_32(AO_SC_PERIPH_RSTDIS4, |
| AO_SC_PERIPH_RSTDIS4_PRESET_PMUSSI_N); |
| do { |
| data = mmio_read_32(AO_SC_PERIPH_RSTSTAT4); |
| } while (data & AO_SC_PERIPH_RSTDIS4_PRESET_PMUSSI_N); |
| |
| /* Set PMUSSI clock latency for read operation. */ |
| data = mmio_read_32(AO_SC_MCU_SUBSYS_CTRL3); |
| data &= ~AO_SC_MCU_SUBSYS_CTRL3_RCLK_MASK; |
| data |= AO_SC_MCU_SUBSYS_CTRL3_RCLK_3; |
| mmio_write_32(AO_SC_MCU_SUBSYS_CTRL3, data); |
| |
| /* enable PMUSSI clock */ |
| data = AO_SC_PERIPH_CLKEN5_PCLK_PMUSSI_CCPU | |
| AO_SC_PERIPH_CLKEN5_PCLK_PMUSSI_MCU; |
| mmio_write_32(AO_SC_PERIPH_CLKEN5, data); |
| data = AO_SC_PERIPH_CLKEN4_PCLK_PMUSSI; |
| mmio_write_32(AO_SC_PERIPH_CLKEN4, data); |
| |
| gpio_set_value(0, GPIO_LEVEL_HIGH); |
| } |
| |
| static void hikey_hi6553_init(void) |
| { |
| uint8_t data; |
| |
| mmio_write_8(HI6553_PERI_EN_MARK, 0x1e); |
| mmio_write_8(HI6553_NP_REG_ADJ1, 0); |
| data = DISABLE6_XO_CLK_CONN | DISABLE6_XO_CLK_NFC | |
| DISABLE6_XO_CLK_RF1 | DISABLE6_XO_CLK_RF2; |
| mmio_write_8(HI6553_DISABLE6_XO_CLK, data); |
| |
| /* configure BUCK0 & BUCK1 */ |
| mmio_write_8(HI6553_BUCK01_CTRL2, 0x5e); |
| mmio_write_8(HI6553_BUCK0_CTRL7, 0x10); |
| mmio_write_8(HI6553_BUCK1_CTRL7, 0x10); |
| mmio_write_8(HI6553_BUCK0_CTRL5, 0x1e); |
| mmio_write_8(HI6553_BUCK1_CTRL5, 0x1e); |
| mmio_write_8(HI6553_BUCK0_CTRL1, 0xfc); |
| mmio_write_8(HI6553_BUCK1_CTRL1, 0xfc); |
| |
| /* configure BUCK2 */ |
| mmio_write_8(HI6553_BUCK2_REG1, 0x4f); |
| mmio_write_8(HI6553_BUCK2_REG5, 0x99); |
| mmio_write_8(HI6553_BUCK2_REG6, 0x45); |
| mdelay(1); |
| mmio_write_8(HI6553_VSET_BUCK2_ADJ, 0x22); |
| mdelay(1); |
| |
| /* configure BUCK3 */ |
| mmio_write_8(HI6553_BUCK3_REG3, 0x02); |
| mmio_write_8(HI6553_BUCK3_REG5, 0x99); |
| mmio_write_8(HI6553_BUCK3_REG6, 0x41); |
| mmio_write_8(HI6553_VSET_BUCK3_ADJ, 0x02); |
| mdelay(1); |
| |
| /* configure BUCK4 */ |
| mmio_write_8(HI6553_BUCK4_REG2, 0x9a); |
| mmio_write_8(HI6553_BUCK4_REG5, 0x99); |
| mmio_write_8(HI6553_BUCK4_REG6, 0x45); |
| |
| /* configure LDO20 */ |
| mmio_write_8(HI6553_LDO20_REG_ADJ, 0x50); |
| |
| mmio_write_8(HI6553_NP_REG_CHG, 0x0f); |
| mmio_write_8(HI6553_CLK_TOP0, 0x06); |
| mmio_write_8(HI6553_CLK_TOP3, 0xc0); |
| mmio_write_8(HI6553_CLK_TOP4, 0x00); |
| |
| /* configure LDO7 & LDO10 for SD slot */ |
| /* enable LDO7 */ |
| data = mmio_read_8(HI6553_LDO7_REG_ADJ); |
| data = (data & 0xf8) | 0x2; |
| mmio_write_8(HI6553_LDO7_REG_ADJ, data); |
| mdelay(5); |
| mmio_write_8(HI6553_ENABLE2_LDO1_8, 1 << 6); |
| mdelay(5); |
| /* enable LDO10 */ |
| data = mmio_read_8(HI6553_LDO10_REG_ADJ); |
| data = (data & 0xf8) | 0x5; |
| mmio_write_8(HI6553_LDO10_REG_ADJ, data); |
| mdelay(5); |
| mmio_write_8(HI6553_ENABLE3_LDO9_16, 1 << 1); |
| mdelay(5); |
| /* enable LDO15 */ |
| data = mmio_read_8(HI6553_LDO15_REG_ADJ); |
| data = (data & 0xf8) | 0x4; |
| mmio_write_8(HI6553_LDO15_REG_ADJ, data); |
| mmio_write_8(HI6553_ENABLE3_LDO9_16, 1 << 6); |
| mdelay(5); |
| /* enable LDO19 */ |
| data = mmio_read_8(HI6553_LDO19_REG_ADJ); |
| data |= 0x7; |
| mmio_write_8(HI6553_LDO19_REG_ADJ, data); |
| mmio_write_8(HI6553_ENABLE4_LDO17_22, 1 << 2); |
| mdelay(5); |
| /* enable LDO21 */ |
| data = mmio_read_8(HI6553_LDO21_REG_ADJ); |
| data = (data & 0xf8) | 0x3; |
| mmio_write_8(HI6553_LDO21_REG_ADJ, data); |
| mmio_write_8(HI6553_ENABLE4_LDO17_22, 1 << 4); |
| mdelay(5); |
| /* enable LDO22 */ |
| data = mmio_read_8(HI6553_LDO22_REG_ADJ); |
| data = (data & 0xf8) | 0x7; |
| mmio_write_8(HI6553_LDO22_REG_ADJ, data); |
| mmio_write_8(HI6553_ENABLE4_LDO17_22, 1 << 5); |
| mdelay(5); |
| |
| /* select 32.764KHz */ |
| mmio_write_8(HI6553_CLK19M2_600_586_EN, 0x01); |
| |
| /* Disable vbus_det interrupts */ |
| data = mmio_read_8(HI6553_IRQ2_MASK); |
| data = data | 0x3; |
| mmio_write_8(HI6553_IRQ2_MASK, data); |
| } |
| |
| static void init_mmc0_pll(void) |
| { |
| unsigned int data; |
| |
| /* select SYSPLL as the source of MMC0 */ |
| /* select SYSPLL as the source of MUX1 (SC_CLK_SEL0) */ |
| mmio_write_32(PERI_SC_CLK_SEL0, 1 << 5 | 1 << 21); |
| do { |
| data = mmio_read_32(PERI_SC_CLK_SEL0); |
| } while (!(data & (1 << 5))); |
| /* select MUX1 as the source of MUX2 (SC_CLK_SEL0) */ |
| mmio_write_32(PERI_SC_CLK_SEL0, 1 << 29); |
| do { |
| data = mmio_read_32(PERI_SC_CLK_SEL0); |
| } while (data & (1 << 13)); |
| |
| mmio_write_32(PERI_SC_PERIPH_CLKEN0, (1 << 0)); |
| do { |
| data = mmio_read_32(PERI_SC_PERIPH_CLKSTAT0); |
| } while (!(data & (1 << 0))); |
| |
| data = mmio_read_32(PERI_SC_PERIPH_CLKEN12); |
| data |= 1 << 1; |
| mmio_write_32(PERI_SC_PERIPH_CLKEN12, data); |
| |
| do { |
| mmio_write_32(PERI_SC_CLKCFG8BIT1, (1 << 7) | 0xb); |
| data = mmio_read_32(PERI_SC_CLKCFG8BIT1); |
| } while ((data & 0xb) != 0xb); |
| } |
| |
| static void reset_mmc0_clk(void) |
| { |
| unsigned int data; |
| |
| /* disable mmc0 bus clock */ |
| mmio_write_32(PERI_SC_PERIPH_CLKDIS0, PERI_CLK0_MMC0); |
| do { |
| data = mmio_read_32(PERI_SC_PERIPH_CLKSTAT0); |
| } while (data & PERI_CLK0_MMC0); |
| /* enable mmc0 bus clock */ |
| mmio_write_32(PERI_SC_PERIPH_CLKEN0, PERI_CLK0_MMC0); |
| do { |
| data = mmio_read_32(PERI_SC_PERIPH_CLKSTAT0); |
| } while (!(data & PERI_CLK0_MMC0)); |
| /* reset mmc0 clock domain */ |
| mmio_write_32(PERI_SC_PERIPH_RSTEN0, PERI_RST0_MMC0); |
| |
| /* bypass mmc0 clock phase */ |
| data = mmio_read_32(PERI_SC_PERIPH_CTRL2); |
| data |= 3; |
| mmio_write_32(PERI_SC_PERIPH_CTRL2, data); |
| |
| /* disable low power */ |
| data = mmio_read_32(PERI_SC_PERIPH_CTRL13); |
| data |= 1 << 3; |
| mmio_write_32(PERI_SC_PERIPH_CTRL13, data); |
| do { |
| data = mmio_read_32(PERI_SC_PERIPH_RSTSTAT0); |
| } while (!(data & PERI_RST0_MMC0)); |
| |
| /* unreset mmc0 clock domain */ |
| mmio_write_32(PERI_SC_PERIPH_RSTDIS0, PERI_RST0_MMC0); |
| do { |
| data = mmio_read_32(PERI_SC_PERIPH_RSTSTAT0); |
| } while (data & PERI_RST0_MMC0); |
| } |
| |
| static void init_media_clk(void) |
| { |
| unsigned int data, value; |
| |
| data = mmio_read_32(PMCTRL_MEDPLLCTRL); |
| data |= 1; |
| mmio_write_32(PMCTRL_MEDPLLCTRL, data); |
| |
| for (;;) { |
| data = mmio_read_32(PMCTRL_MEDPLLCTRL); |
| value = 1 << 28; |
| if ((data & value) == value) |
| break; |
| } |
| |
| data = mmio_read_32(PERI_SC_PERIPH_CLKEN12); |
| data = 1 << 10; |
| mmio_write_32(PERI_SC_PERIPH_CLKEN12, data); |
| } |
| |
| static void init_mmc1_pll(void) |
| { |
| uint32_t data; |
| |
| /* select SYSPLL as the source of MMC1 */ |
| /* select SYSPLL as the source of MUX1 (SC_CLK_SEL0) */ |
| mmio_write_32(PERI_SC_CLK_SEL0, 1 << 11 | 1 << 27); |
| do { |
| data = mmio_read_32(PERI_SC_CLK_SEL0); |
| } while (!(data & (1 << 11))); |
| /* select MUX1 as the source of MUX2 (SC_CLK_SEL0) */ |
| mmio_write_32(PERI_SC_CLK_SEL0, 1 << 30); |
| do { |
| data = mmio_read_32(PERI_SC_CLK_SEL0); |
| } while (data & (1 << 14)); |
| |
| mmio_write_32(PERI_SC_PERIPH_CLKEN0, (1 << 1)); |
| do { |
| data = mmio_read_32(PERI_SC_PERIPH_CLKSTAT0); |
| } while (!(data & (1 << 1))); |
| |
| data = mmio_read_32(PERI_SC_PERIPH_CLKEN12); |
| data |= 1 << 2; |
| mmio_write_32(PERI_SC_PERIPH_CLKEN12, data); |
| |
| do { |
| /* 1.2GHz / 50 = 24MHz */ |
| mmio_write_32(PERI_SC_CLKCFG8BIT2, 0x31 | (1 << 7)); |
| data = mmio_read_32(PERI_SC_CLKCFG8BIT2); |
| } while ((data & 0x31) != 0x31); |
| } |
| |
| static void reset_mmc1_clk(void) |
| { |
| unsigned int data; |
| |
| /* disable mmc1 bus clock */ |
| mmio_write_32(PERI_SC_PERIPH_CLKDIS0, PERI_CLK0_MMC1); |
| do { |
| data = mmio_read_32(PERI_SC_PERIPH_CLKSTAT0); |
| } while (data & PERI_CLK0_MMC1); |
| /* enable mmc1 bus clock */ |
| mmio_write_32(PERI_SC_PERIPH_CLKEN0, PERI_CLK0_MMC1); |
| do { |
| data = mmio_read_32(PERI_SC_PERIPH_CLKSTAT0); |
| } while (!(data & PERI_CLK0_MMC1)); |
| /* reset mmc1 clock domain */ |
| mmio_write_32(PERI_SC_PERIPH_RSTEN0, PERI_RST0_MMC1); |
| |
| /* bypass mmc1 clock phase */ |
| data = mmio_read_32(PERI_SC_PERIPH_CTRL2); |
| data |= 3 << 2; |
| mmio_write_32(PERI_SC_PERIPH_CTRL2, data); |
| |
| /* disable low power */ |
| data = mmio_read_32(PERI_SC_PERIPH_CTRL13); |
| data |= 1 << 4; |
| mmio_write_32(PERI_SC_PERIPH_CTRL13, data); |
| do { |
| data = mmio_read_32(PERI_SC_PERIPH_RSTSTAT0); |
| } while (!(data & PERI_RST0_MMC1)); |
| |
| /* unreset mmc0 clock domain */ |
| mmio_write_32(PERI_SC_PERIPH_RSTDIS0, PERI_RST0_MMC1); |
| do { |
| data = mmio_read_32(PERI_SC_PERIPH_RSTSTAT0); |
| } while (data & PERI_RST0_MMC1); |
| } |
| |
| /* Initialize PLL of both eMMC and SD controllers. */ |
| static void hikey_mmc_pll_init(void) |
| { |
| init_mmc0_pll(); |
| reset_mmc0_clk(); |
| init_media_clk(); |
| |
| dsb(); |
| |
| init_mmc1_pll(); |
| reset_mmc1_clk(); |
| } |
| |
| static void hikey_rtc_init(void) |
| { |
| uint32_t data; |
| |
| data = mmio_read_32(AO_SC_PERIPH_CLKEN4); |
| data |= AO_SC_PERIPH_RSTDIS4_RESET_RTC0_N; |
| mmio_write_32(AO_SC_PERIPH_CLKEN4, data); |
| } |
| |
| /* |
| * Function which will perform any remaining platform-specific setup that can |
| * occur after the MMU and data cache have been enabled. |
| */ |
| void bl1_platform_setup(void) |
| { |
| dw_mmc_params_t params; |
| |
| assert((HIKEY_BL1_MMC_DESC_BASE >= SRAM_BASE) && |
| ((SRAM_BASE + SRAM_SIZE) >= |
| (HIKEY_BL1_MMC_DATA_BASE + HIKEY_BL1_MMC_DATA_SIZE))); |
| hikey_sp804_init(); |
| hikey_gpio_init(); |
| hikey_pmussi_init(); |
| hikey_hi6553_init(); |
| |
| hikey_rtc_init(); |
| |
| hikey_mmc_pll_init(); |
| |
| memset(¶ms, 0, sizeof(dw_mmc_params_t)); |
| params.reg_base = DWMMC0_BASE; |
| params.desc_base = HIKEY_BL1_MMC_DESC_BASE; |
| params.desc_size = 1 << 20; |
| params.clk_rate = 24 * 1000 * 1000; |
| params.bus_width = EMMC_BUS_WIDTH_8; |
| params.flags = EMMC_FLAG_CMD23; |
| dw_mmc_init(¶ms); |
| |
| hikey_io_setup(); |
| } |
| |
| /* |
| * The following function checks if Firmware update is needed, |
| * by checking if TOC in FIP image is valid or not. |
| */ |
| unsigned int bl1_plat_get_next_image_id(void) |
| { |
| int32_t boot_mode; |
| unsigned int ret; |
| |
| boot_mode = mmio_read_32(ONCHIPROM_PARAM_BASE); |
| switch (boot_mode) { |
| case BOOT_NORMAL: |
| ret = BL2_IMAGE_ID; |
| break; |
| case BOOT_USB_DOWNLOAD: |
| case BOOT_UART_DOWNLOAD: |
| ret = NS_BL1U_IMAGE_ID; |
| break; |
| default: |
| WARN("Invalid boot mode is found:%d\n", boot_mode); |
| panic(); |
| } |
| return ret; |
| } |
| |
| image_desc_t *bl1_plat_get_image_desc(unsigned int image_id) |
| { |
| unsigned int index = 0; |
| |
| while (bl1_tbbr_image_descs[index].image_id != INVALID_IMAGE_ID) { |
| if (bl1_tbbr_image_descs[index].image_id == image_id) |
| return &bl1_tbbr_image_descs[index]; |
| |
| index++; |
| } |
| |
| return NULL; |
| } |
| |
| void bl1_plat_set_ep_info(unsigned int image_id, |
| entry_point_info_t *ep_info) |
| { |
| uint64_t data = 0; |
| |
| if (image_id == BL2_IMAGE_ID) |
| return; |
| inv_dcache_range(NS_BL1U_BASE, NS_BL1U_SIZE); |
| __asm__ volatile ("mrs %0, cpacr_el1" : "=r"(data)); |
| do { |
| data |= 3 << 20; |
| __asm__ volatile ("msr cpacr_el1, %0" : : "r"(data)); |
| __asm__ volatile ("mrs %0, cpacr_el1" : "=r"(data)); |
| } while ((data & (3 << 20)) != (3 << 20)); |
| INFO("cpacr_el1:0x%lx\n", data); |
| |
| ep_info->args.arg0 = 0xffff & read_mpidr(); |
| ep_info->spsr = SPSR_64(MODE_EL1, MODE_SP_ELX, |
| DISABLE_ALL_EXCEPTIONS); |
| } |