blob: e4cc9b9e8c9d68616fe0a12fdbd96927ed078b1a [file] [log] [blame]
/*
* Copyright (C) 2018, STMicroelectronics - All Rights Reserved
*
* SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
*/
#include <assert.h>
#include <errno.h>
#include <stdint.h>
#include <stdio.h>
#include <libfdt.h>
#include <platform_def.h>
#include <arch.h>
#include <arch_helpers.h>
#include <common/debug.h>
#include <drivers/delay_timer.h>
#include <drivers/generic_delay_timer.h>
#include <drivers/st/stm32mp1_clk.h>
#include <drivers/st/stm32mp1_clkfunc.h>
#include <drivers/st/stm32mp1_rcc.h>
#include <dt-bindings/clock/stm32mp1-clks.h>
#include <dt-bindings/clock/stm32mp1-clksrc.h>
#include <lib/mmio.h>
#include <lib/utils_def.h>
#include <plat/common/platform.h>
#define MAX_HSI_HZ 64000000
#define TIMEOUT_200MS (plat_get_syscnt_freq2() / 5U)
#define TIMEOUT_1S plat_get_syscnt_freq2()
#define PLLRDY_TIMEOUT TIMEOUT_200MS
#define CLKSRC_TIMEOUT TIMEOUT_200MS
#define CLKDIV_TIMEOUT TIMEOUT_200MS
#define HSIDIV_TIMEOUT TIMEOUT_200MS
#define OSCRDY_TIMEOUT TIMEOUT_1S
enum stm32mp1_parent_id {
/* Oscillators are defined in enum stm32mp_osc_id */
/* Other parent source */
_HSI_KER = NB_OSC,
_HSE_KER,
_HSE_KER_DIV2,
_CSI_KER,
_PLL1_P,
_PLL1_Q,
_PLL1_R,
_PLL2_P,
_PLL2_Q,
_PLL2_R,
_PLL3_P,
_PLL3_Q,
_PLL3_R,
_PLL4_P,
_PLL4_Q,
_PLL4_R,
_ACLK,
_PCLK1,
_PCLK2,
_PCLK3,
_PCLK4,
_PCLK5,
_HCLK6,
_HCLK2,
_CK_PER,
_CK_MPU,
_PARENT_NB,
_UNKNOWN_ID = 0xff,
};
enum stm32mp1_parent_sel {
_I2C46_SEL,
_UART6_SEL,
_UART24_SEL,
_UART35_SEL,
_UART78_SEL,
_SDMMC12_SEL,
_SDMMC3_SEL,
_QSPI_SEL,
_FMC_SEL,
_USBPHY_SEL,
_USBO_SEL,
_STGEN_SEL,
_PARENT_SEL_NB,
_UNKNOWN_SEL = 0xff,
};
enum stm32mp1_pll_id {
_PLL1,
_PLL2,
_PLL3,
_PLL4,
_PLL_NB
};
enum stm32mp1_div_id {
_DIV_P,
_DIV_Q,
_DIV_R,
_DIV_NB,
};
enum stm32mp1_clksrc_id {
CLKSRC_MPU,
CLKSRC_AXI,
CLKSRC_PLL12,
CLKSRC_PLL3,
CLKSRC_PLL4,
CLKSRC_RTC,
CLKSRC_MCO1,
CLKSRC_MCO2,
CLKSRC_NB
};
enum stm32mp1_clkdiv_id {
CLKDIV_MPU,
CLKDIV_AXI,
CLKDIV_APB1,
CLKDIV_APB2,
CLKDIV_APB3,
CLKDIV_APB4,
CLKDIV_APB5,
CLKDIV_RTC,
CLKDIV_MCO1,
CLKDIV_MCO2,
CLKDIV_NB
};
enum stm32mp1_pllcfg {
PLLCFG_M,
PLLCFG_N,
PLLCFG_P,
PLLCFG_Q,
PLLCFG_R,
PLLCFG_O,
PLLCFG_NB
};
enum stm32mp1_pllcsg {
PLLCSG_MOD_PER,
PLLCSG_INC_STEP,
PLLCSG_SSCG_MODE,
PLLCSG_NB
};
enum stm32mp1_plltype {
PLL_800,
PLL_1600,
PLL_TYPE_NB
};
struct stm32mp1_pll {
uint8_t refclk_min;
uint8_t refclk_max;
uint8_t divn_max;
};
struct stm32mp1_clk_gate {
uint16_t offset;
uint8_t bit;
uint8_t index;
uint8_t set_clr;
enum stm32mp1_parent_sel sel;
enum stm32mp1_parent_id fixed;
bool secure;
};
struct stm32mp1_clk_sel {
uint16_t offset;
uint8_t src;
uint8_t msk;
uint8_t nb_parent;
const uint8_t *parent;
};
#define REFCLK_SIZE 4
struct stm32mp1_clk_pll {
enum stm32mp1_plltype plltype;
uint16_t rckxselr;
uint16_t pllxcfgr1;
uint16_t pllxcfgr2;
uint16_t pllxfracr;
uint16_t pllxcr;
uint16_t pllxcsgr;
enum stm32mp_osc_id refclk[REFCLK_SIZE];
};
struct stm32mp1_clk_data {
const struct stm32mp1_clk_gate *gate;
const struct stm32mp1_clk_sel *sel;
const struct stm32mp1_clk_pll *pll;
const int nb_gate;
};
struct stm32mp1_clk_priv {
uint32_t base;
const struct stm32mp1_clk_data *data;
unsigned long osc[NB_OSC];
uint32_t pkcs_usb_value;
};
#define STM32MP1_CLK(off, b, idx, s) \
{ \
.offset = (off), \
.bit = (b), \
.index = (idx), \
.set_clr = 0, \
.sel = (s), \
.fixed = _UNKNOWN_ID, \
.secure = 0, \
}
#define STM32MP1_CLK_F(off, b, idx, f) \
{ \
.offset = (off), \
.bit = (b), \
.index = (idx), \
.set_clr = 0, \
.sel = _UNKNOWN_SEL, \
.fixed = (f), \
.secure = 0, \
}
#define STM32MP1_CLK_SET_CLR(off, b, idx, s) \
{ \
.offset = (off), \
.bit = (b), \
.index = (idx), \
.set_clr = 1, \
.sel = (s), \
.fixed = _UNKNOWN_ID, \
.secure = 0, \
}
#define STM32MP1_CLK_SET_CLR_F(off, b, idx, f) \
{ \
.offset = (off), \
.bit = (b), \
.index = (idx), \
.set_clr = 1, \
.sel = _UNKNOWN_SEL, \
.fixed = (f), \
.secure = 0, \
}
#define STM32MP1_CLK_SEC_SET_CLR(off, b, idx, s) \
{ \
.offset = (off), \
.bit = (b), \
.index = (idx), \
.set_clr = 1, \
.sel = (s), \
.fixed = _UNKNOWN_ID, \
.secure = 1, \
}
#define STM32MP1_CLK_PARENT(idx, off, s, m, p) \
[(idx)] = { \
.offset = (off), \
.src = (s), \
.msk = (m), \
.parent = (p), \
.nb_parent = ARRAY_SIZE((p)) \
}
#define STM32MP1_CLK_PLL(idx, type, off1, off2, off3, \
off4, off5, off6, \
p1, p2, p3, p4) \
[(idx)] = { \
.plltype = (type), \
.rckxselr = (off1), \
.pllxcfgr1 = (off2), \
.pllxcfgr2 = (off3), \
.pllxfracr = (off4), \
.pllxcr = (off5), \
.pllxcsgr = (off6), \
.refclk[0] = (p1), \
.refclk[1] = (p2), \
.refclk[2] = (p3), \
.refclk[3] = (p4), \
}
static const uint8_t stm32mp1_clks[][2] = {
{CK_PER, _CK_PER},
{CK_MPU, _CK_MPU},
{CK_AXI, _ACLK},
{CK_HSE, _HSE},
{CK_CSI, _CSI},
{CK_LSI, _LSI},
{CK_LSE, _LSE},
{CK_HSI, _HSI},
{CK_HSE_DIV2, _HSE_KER_DIV2},
};
static const struct stm32mp1_clk_gate stm32mp1_clk_gate[] = {
STM32MP1_CLK(RCC_DDRITFCR, 0, DDRC1, _UNKNOWN_SEL),
STM32MP1_CLK(RCC_DDRITFCR, 1, DDRC1LP, _UNKNOWN_SEL),
STM32MP1_CLK(RCC_DDRITFCR, 2, DDRC2, _UNKNOWN_SEL),
STM32MP1_CLK(RCC_DDRITFCR, 3, DDRC2LP, _UNKNOWN_SEL),
STM32MP1_CLK_F(RCC_DDRITFCR, 4, DDRPHYC, _PLL2_R),
STM32MP1_CLK(RCC_DDRITFCR, 5, DDRPHYCLP, _UNKNOWN_SEL),
STM32MP1_CLK(RCC_DDRITFCR, 6, DDRCAPB, _UNKNOWN_SEL),
STM32MP1_CLK(RCC_DDRITFCR, 7, DDRCAPBLP, _UNKNOWN_SEL),
STM32MP1_CLK(RCC_DDRITFCR, 8, AXIDCG, _UNKNOWN_SEL),
STM32MP1_CLK(RCC_DDRITFCR, 9, DDRPHYCAPB, _UNKNOWN_SEL),
STM32MP1_CLK(RCC_DDRITFCR, 10, DDRPHYCAPBLP, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 14, USART2_K, _UART24_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 15, USART3_K, _UART35_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 16, UART4_K, _UART24_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 17, UART5_K, _UART35_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 18, UART7_K, _UART78_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 19, UART8_K, _UART78_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_APB2ENSETR, 13, USART6_K, _UART6_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 8, DDRPERFM, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 15, IWDG2, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 16, USBPHY_K, _USBPHY_SEL),
STM32MP1_CLK_SEC_SET_CLR(RCC_MP_APB5ENSETR, 2, I2C4_K, _I2C46_SEL),
STM32MP1_CLK_SEC_SET_CLR(RCC_MP_APB5ENSETR, 8, RTCAPB, _PCLK5),
STM32MP1_CLK_SEC_SET_CLR(RCC_MP_APB5ENSETR, 11, TZC1, _UNKNOWN_SEL),
STM32MP1_CLK_SEC_SET_CLR(RCC_MP_APB5ENSETR, 12, TZC2, _UNKNOWN_SEL),
STM32MP1_CLK_SEC_SET_CLR(RCC_MP_APB5ENSETR, 20, STGEN_K, _STGEN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB2ENSETR, 8, USBO_K, _USBO_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB2ENSETR, 16, SDMMC3_K, _SDMMC3_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 0, GPIOA, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 1, GPIOB, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 2, GPIOC, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 3, GPIOD, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 4, GPIOE, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 5, GPIOF, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 6, GPIOG, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 7, GPIOH, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 8, GPIOI, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 9, GPIOJ, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 10, GPIOK, _UNKNOWN_SEL),
STM32MP1_CLK_SEC_SET_CLR(RCC_MP_AHB5ENSETR, 0, GPIOZ, _UNKNOWN_SEL),
STM32MP1_CLK_SEC_SET_CLR(RCC_MP_AHB5ENSETR, 5, HASH1, _UNKNOWN_SEL),
STM32MP1_CLK_SEC_SET_CLR(RCC_MP_AHB5ENSETR, 6, RNG1_K, _CSI_KER),
STM32MP1_CLK_SEC_SET_CLR(RCC_MP_AHB5ENSETR, 8, BKPSRAM, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 12, FMC_K, _FMC_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 14, QSPI_K, _QSPI_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 16, SDMMC1_K, _SDMMC12_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 17, SDMMC2_K, _SDMMC12_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 24, USBH, _UNKNOWN_SEL),
STM32MP1_CLK(RCC_DBGCFGR, 8, CK_DBG, _UNKNOWN_SEL),
};
static const uint8_t i2c46_parents[] = {_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER};
static const uint8_t uart6_parents[] = {_PCLK2, _PLL4_Q, _HSI_KER, _CSI_KER,
_HSE_KER};
static const uint8_t uart24_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
_HSE_KER};
static const uint8_t uart35_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
_HSE_KER};
static const uint8_t uart78_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
_HSE_KER};
static const uint8_t sdmmc12_parents[] = {_HCLK6, _PLL3_R, _PLL4_P, _HSI_KER};
static const uint8_t sdmmc3_parents[] = {_HCLK2, _PLL3_R, _PLL4_P, _HSI_KER};
static const uint8_t qspi_parents[] = {_ACLK, _PLL3_R, _PLL4_P, _CK_PER};
static const uint8_t fmc_parents[] = {_ACLK, _PLL3_R, _PLL4_P, _CK_PER};
static const uint8_t usbphy_parents[] = {_HSE_KER, _PLL4_R, _HSE_KER_DIV2};
static const uint8_t usbo_parents[] = {_PLL4_R, _USB_PHY_48};
static const uint8_t stgen_parents[] = {_HSI_KER, _HSE_KER};
static const struct stm32mp1_clk_sel stm32mp1_clk_sel[_PARENT_SEL_NB] = {
STM32MP1_CLK_PARENT(_I2C46_SEL, RCC_I2C46CKSELR, 0, 0x7, i2c46_parents),
STM32MP1_CLK_PARENT(_UART6_SEL, RCC_UART6CKSELR, 0, 0x7, uart6_parents),
STM32MP1_CLK_PARENT(_UART24_SEL, RCC_UART24CKSELR, 0, 0x7,
uart24_parents),
STM32MP1_CLK_PARENT(_UART35_SEL, RCC_UART35CKSELR, 0, 0x7,
uart35_parents),
STM32MP1_CLK_PARENT(_UART78_SEL, RCC_UART78CKSELR, 0, 0x7,
uart78_parents),
STM32MP1_CLK_PARENT(_SDMMC12_SEL, RCC_SDMMC12CKSELR, 0, 0x7,
sdmmc12_parents),
STM32MP1_CLK_PARENT(_SDMMC3_SEL, RCC_SDMMC3CKSELR, 0, 0x7,
sdmmc3_parents),
STM32MP1_CLK_PARENT(_QSPI_SEL, RCC_QSPICKSELR, 0, 0xf, qspi_parents),
STM32MP1_CLK_PARENT(_FMC_SEL, RCC_FMCCKSELR, 0, 0xf, fmc_parents),
STM32MP1_CLK_PARENT(_USBPHY_SEL, RCC_USBCKSELR, 0, 0x3, usbphy_parents),
STM32MP1_CLK_PARENT(_USBO_SEL, RCC_USBCKSELR, 4, 0x1, usbo_parents),
STM32MP1_CLK_PARENT(_STGEN_SEL, RCC_STGENCKSELR, 0, 0x3, stgen_parents),
};
/* Define characteristic of PLL according type */
#define DIVN_MIN 24
static const struct stm32mp1_pll stm32mp1_pll[PLL_TYPE_NB] = {
[PLL_800] = {
.refclk_min = 4,
.refclk_max = 16,
.divn_max = 99,
},
[PLL_1600] = {
.refclk_min = 8,
.refclk_max = 16,
.divn_max = 199,
},
};
/* PLLNCFGR2 register divider by output */
static const uint8_t pllncfgr2[_DIV_NB] = {
[_DIV_P] = RCC_PLLNCFGR2_DIVP_SHIFT,
[_DIV_Q] = RCC_PLLNCFGR2_DIVQ_SHIFT,
[_DIV_R] = RCC_PLLNCFGR2_DIVR_SHIFT
};
static const struct stm32mp1_clk_pll stm32mp1_clk_pll[_PLL_NB] = {
STM32MP1_CLK_PLL(_PLL1, PLL_1600,
RCC_RCK12SELR, RCC_PLL1CFGR1, RCC_PLL1CFGR2,
RCC_PLL1FRACR, RCC_PLL1CR, RCC_PLL1CSGR,
_HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID),
STM32MP1_CLK_PLL(_PLL2, PLL_1600,
RCC_RCK12SELR, RCC_PLL2CFGR1, RCC_PLL2CFGR2,
RCC_PLL2FRACR, RCC_PLL2CR, RCC_PLL2CSGR,
_HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID),
STM32MP1_CLK_PLL(_PLL3, PLL_800,
RCC_RCK3SELR, RCC_PLL3CFGR1, RCC_PLL3CFGR2,
RCC_PLL3FRACR, RCC_PLL3CR, RCC_PLL3CSGR,
_HSI, _HSE, _CSI, _UNKNOWN_OSC_ID),
STM32MP1_CLK_PLL(_PLL4, PLL_800,
RCC_RCK4SELR, RCC_PLL4CFGR1, RCC_PLL4CFGR2,
RCC_PLL4FRACR, RCC_PLL4CR, RCC_PLL4CSGR,
_HSI, _HSE, _CSI, _I2S_CKIN),
};
/* Prescaler table lookups for clock computation */
/* div = /1 /2 /4 /8 /16 : same divider for PMU and APBX */
#define stm32mp1_mpu_div stm32mp1_mpu_apbx_div
#define stm32mp1_apbx_div stm32mp1_mpu_apbx_div
static const uint8_t stm32mp1_mpu_apbx_div[8] = {
0, 1, 2, 3, 4, 4, 4, 4
};
/* div = /1 /2 /3 /4 */
static const uint8_t stm32mp1_axi_div[8] = {
1, 2, 3, 4, 4, 4, 4, 4
};
static const struct stm32mp1_clk_data stm32mp1_data = {
.gate = stm32mp1_clk_gate,
.sel = stm32mp1_clk_sel,
.pll = stm32mp1_clk_pll,
.nb_gate = ARRAY_SIZE(stm32mp1_clk_gate),
};
static struct stm32mp1_clk_priv stm32mp1_clk_priv_data;
static unsigned long stm32mp1_clk_get_fixed(struct stm32mp1_clk_priv *priv,
enum stm32mp_osc_id idx)
{
if (idx >= NB_OSC) {
return 0;
}
return priv->osc[idx];
}
static int stm32mp1_clk_get_id(struct stm32mp1_clk_priv *priv, unsigned long id)
{
const struct stm32mp1_clk_gate *gate = priv->data->gate;
int i;
int nb_clks = priv->data->nb_gate;
for (i = 0; i < nb_clks; i++) {
if (gate[i].index == id) {
return i;
}
}
ERROR("%s: clk id %d not found\n", __func__, (uint32_t)id);
return -EINVAL;
}
static enum stm32mp1_parent_sel
stm32mp1_clk_get_sel(struct stm32mp1_clk_priv *priv, int i)
{
const struct stm32mp1_clk_gate *gate = priv->data->gate;
return gate[i].sel;
}
static enum stm32mp1_parent_id
stm32mp1_clk_get_fixed_parent(struct stm32mp1_clk_priv *priv, int i)
{
const struct stm32mp1_clk_gate *gate = priv->data->gate;
return gate[i].fixed;
}
static int stm32mp1_clk_get_parent(struct stm32mp1_clk_priv *priv,
unsigned long id)
{
const struct stm32mp1_clk_sel *sel = priv->data->sel;
uint32_t j, p_sel;
int i;
enum stm32mp1_parent_id p;
enum stm32mp1_parent_sel s;
for (j = 0; j < ARRAY_SIZE(stm32mp1_clks); j++) {
if (stm32mp1_clks[j][0] == id) {
return (int)stm32mp1_clks[j][1];
}
}
i = stm32mp1_clk_get_id(priv, id);
if (i < 0) {
return i;
}
p = stm32mp1_clk_get_fixed_parent(priv, i);
if (p < _PARENT_NB) {
return (int)p;
}
s = stm32mp1_clk_get_sel(priv, i);
if (s >= _PARENT_SEL_NB) {
return -EINVAL;
}
p_sel = (mmio_read_32(priv->base + sel[s].offset) >> sel[s].src) &
sel[s].msk;
if (p_sel < sel[s].nb_parent) {
return (int)sel[s].parent[p_sel];
}
ERROR("%s: no parents defined for clk id %ld\n", __func__, id);
return -EINVAL;
}
static unsigned long stm32mp1_pll_get_fref_ck(struct stm32mp1_clk_priv *priv,
enum stm32mp1_pll_id pll_id)
{
const struct stm32mp1_clk_pll *pll = priv->data->pll;
uint32_t selr, src;
unsigned long refclk;
selr = mmio_read_32(priv->base + pll[pll_id].rckxselr);
src = selr & RCC_SELR_REFCLK_SRC_MASK;
refclk = stm32mp1_clk_get_fixed(priv, pll[pll_id].refclk[src]);
return refclk;
}
/*
* pll_get_fvco() : return the VCO or (VCO / 2) frequency for the requested PLL
* - PLL1 & PLL2 => return VCO / 2 with Fpll_y_ck = FVCO / 2 * (DIVy + 1)
* - PLL3 & PLL4 => return VCO with Fpll_y_ck = FVCO / (DIVy + 1)
* => in all cases Fpll_y_ck = pll_get_fvco() / (DIVy + 1)
*/
static unsigned long stm32mp1_pll_get_fvco(struct stm32mp1_clk_priv *priv,
enum stm32mp1_pll_id pll_id)
{
const struct stm32mp1_clk_pll *pll = priv->data->pll;
unsigned long refclk, fvco;
uint32_t cfgr1, fracr, divm, divn;
cfgr1 = mmio_read_32(priv->base + pll[pll_id].pllxcfgr1);
fracr = mmio_read_32(priv->base + pll[pll_id].pllxfracr);
divm = (cfgr1 & (RCC_PLLNCFGR1_DIVM_MASK)) >> RCC_PLLNCFGR1_DIVM_SHIFT;
divn = cfgr1 & RCC_PLLNCFGR1_DIVN_MASK;
refclk = stm32mp1_pll_get_fref_ck(priv, pll_id);
/*
* With FRACV :
* Fvco = Fck_ref * ((DIVN + 1) + FRACV / 2^13) / (DIVM + 1)
* Without FRACV
* Fvco = Fck_ref * ((DIVN + 1) / (DIVM + 1)
*/
if ((fracr & RCC_PLLNFRACR_FRACLE) != 0U) {
uint32_t fracv = (fracr & RCC_PLLNFRACR_FRACV_MASK)
>> RCC_PLLNFRACR_FRACV_SHIFT;
unsigned long long numerator, denominator;
numerator = ((unsigned long long)divn + 1U) << 13;
numerator = (refclk * numerator) + fracv;
denominator = ((unsigned long long)divm + 1U) << 13;
fvco = (unsigned long)(numerator / denominator);
} else {
fvco = (unsigned long)(refclk * (divn + 1U) / (divm + 1U));
}
return fvco;
}
static unsigned long stm32mp1_read_pll_freq(struct stm32mp1_clk_priv *priv,
enum stm32mp1_pll_id pll_id,
enum stm32mp1_div_id div_id)
{
const struct stm32mp1_clk_pll *pll = priv->data->pll;
unsigned long dfout;
uint32_t cfgr2, divy;
if (div_id >= _DIV_NB) {
return 0;
}
cfgr2 = mmio_read_32(priv->base + pll[pll_id].pllxcfgr2);
divy = (cfgr2 >> pllncfgr2[div_id]) & RCC_PLLNCFGR2_DIVX_MASK;
dfout = stm32mp1_pll_get_fvco(priv, pll_id) / (divy + 1U);
return dfout;
}
static unsigned long stm32mp1_clk_get(struct stm32mp1_clk_priv *priv, int p)
{
uint32_t reg, clkdiv;
unsigned long clock = 0;
switch (p) {
case _CK_MPU:
/* MPU sub system */
reg = mmio_read_32(priv->base + RCC_MPCKSELR);
switch (reg & RCC_SELR_SRC_MASK) {
case RCC_MPCKSELR_HSI:
clock = stm32mp1_clk_get_fixed(priv, _HSI);
break;
case RCC_MPCKSELR_HSE:
clock = stm32mp1_clk_get_fixed(priv, _HSE);
break;
case RCC_MPCKSELR_PLL:
clock = stm32mp1_read_pll_freq(priv, _PLL1, _DIV_P);
break;
case RCC_MPCKSELR_PLL_MPUDIV:
clock = stm32mp1_read_pll_freq(priv, _PLL1, _DIV_P);
reg = mmio_read_32(priv->base + RCC_MPCKDIVR);
clkdiv = reg & RCC_MPUDIV_MASK;
if (clkdiv != 0U) {
clock /= stm32mp1_mpu_div[clkdiv];
}
break;
default:
break;
}
break;
/* AXI sub system */
case _ACLK:
case _HCLK2:
case _HCLK6:
case _PCLK4:
case _PCLK5:
reg = mmio_read_32(priv->base + RCC_ASSCKSELR);
switch (reg & RCC_SELR_SRC_MASK) {
case RCC_ASSCKSELR_HSI:
clock = stm32mp1_clk_get_fixed(priv, _HSI);
break;
case RCC_ASSCKSELR_HSE:
clock = stm32mp1_clk_get_fixed(priv, _HSE);
break;
case RCC_ASSCKSELR_PLL:
clock = stm32mp1_read_pll_freq(priv, _PLL2, _DIV_P);
break;
default:
break;
}
/* System clock divider */
reg = mmio_read_32(priv->base + RCC_AXIDIVR);
clock /= stm32mp1_axi_div[reg & RCC_AXIDIV_MASK];
switch (p) {
case _PCLK4:
reg = mmio_read_32(priv->base + RCC_APB4DIVR);
clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
break;
case _PCLK5:
reg = mmio_read_32(priv->base + RCC_APB5DIVR);
clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
break;
default:
break;
}
break;
case _CK_PER:
reg = mmio_read_32(priv->base + RCC_CPERCKSELR);
switch (reg & RCC_SELR_SRC_MASK) {
case RCC_CPERCKSELR_HSI:
clock = stm32mp1_clk_get_fixed(priv, _HSI);
break;
case RCC_CPERCKSELR_HSE:
clock = stm32mp1_clk_get_fixed(priv, _HSE);
break;
case RCC_CPERCKSELR_CSI:
clock = stm32mp1_clk_get_fixed(priv, _CSI);
break;
default:
break;
}
break;
case _HSI:
case _HSI_KER:
clock = stm32mp1_clk_get_fixed(priv, _HSI);
break;
case _CSI:
case _CSI_KER:
clock = stm32mp1_clk_get_fixed(priv, _CSI);
break;
case _HSE:
case _HSE_KER:
clock = stm32mp1_clk_get_fixed(priv, _HSE);
break;
case _HSE_KER_DIV2:
clock = stm32mp1_clk_get_fixed(priv, _HSE) >> 1;
break;
case _LSI:
clock = stm32mp1_clk_get_fixed(priv, _LSI);
break;
case _LSE:
clock = stm32mp1_clk_get_fixed(priv, _LSE);
break;
/* PLL */
case _PLL1_P:
clock = stm32mp1_read_pll_freq(priv, _PLL1, _DIV_P);
break;
case _PLL1_Q:
clock = stm32mp1_read_pll_freq(priv, _PLL1, _DIV_Q);
break;
case _PLL1_R:
clock = stm32mp1_read_pll_freq(priv, _PLL1, _DIV_R);
break;
case _PLL2_P:
clock = stm32mp1_read_pll_freq(priv, _PLL2, _DIV_P);
break;
case _PLL2_Q:
clock = stm32mp1_read_pll_freq(priv, _PLL2, _DIV_Q);
break;
case _PLL2_R:
clock = stm32mp1_read_pll_freq(priv, _PLL2, _DIV_R);
break;
case _PLL3_P:
clock = stm32mp1_read_pll_freq(priv, _PLL3, _DIV_P);
break;
case _PLL3_Q:
clock = stm32mp1_read_pll_freq(priv, _PLL3, _DIV_Q);
break;
case _PLL3_R:
clock = stm32mp1_read_pll_freq(priv, _PLL3, _DIV_R);
break;
case _PLL4_P:
clock = stm32mp1_read_pll_freq(priv, _PLL4, _DIV_P);
break;
case _PLL4_Q:
clock = stm32mp1_read_pll_freq(priv, _PLL4, _DIV_Q);
break;
case _PLL4_R:
clock = stm32mp1_read_pll_freq(priv, _PLL4, _DIV_R);
break;
/* Other */
case _USB_PHY_48:
clock = stm32mp1_clk_get_fixed(priv, _USB_PHY_48);
break;
default:
break;
}
return clock;
}
bool stm32mp1_clk_is_enabled(unsigned long id)
{
struct stm32mp1_clk_priv *priv = &stm32mp1_clk_priv_data;
const struct stm32mp1_clk_gate *gate = priv->data->gate;
int i = stm32mp1_clk_get_id(priv, id);
if (i < 0) {
return false;
}
return ((mmio_read_32(priv->base + gate[i].offset) &
BIT(gate[i].bit)) != 0U);
}
int stm32mp1_clk_enable(unsigned long id)
{
struct stm32mp1_clk_priv *priv = &stm32mp1_clk_priv_data;
const struct stm32mp1_clk_gate *gate = priv->data->gate;
int i = stm32mp1_clk_get_id(priv, id);
if (i < 0) {
return i;
}
if (gate[i].set_clr != 0U) {
mmio_write_32(priv->base + gate[i].offset, BIT(gate[i].bit));
} else {
mmio_setbits_32(priv->base + gate[i].offset, BIT(gate[i].bit));
}
return 0;
}
int stm32mp1_clk_disable(unsigned long id)
{
struct stm32mp1_clk_priv *priv = &stm32mp1_clk_priv_data;
const struct stm32mp1_clk_gate *gate = priv->data->gate;
int i = stm32mp1_clk_get_id(priv, id);
if (i < 0) {
return i;
}
if (gate[i].set_clr != 0U) {
mmio_write_32(priv->base + gate[i].offset
+ RCC_MP_ENCLRR_OFFSET,
BIT(gate[i].bit));
} else {
mmio_clrbits_32(priv->base + gate[i].offset, BIT(gate[i].bit));
}
return 0;
}
unsigned long stm32mp1_clk_get_rate(unsigned long id)
{
struct stm32mp1_clk_priv *priv = &stm32mp1_clk_priv_data;
int p = stm32mp1_clk_get_parent(priv, id);
unsigned long rate;
if (p < 0) {
return 0;
}
rate = stm32mp1_clk_get(priv, p);
return rate;
}
static void stm32mp1_ls_osc_set(int enable, uint32_t rcc, uint32_t offset,
uint32_t mask_on)
{
uint32_t address = rcc + offset;
if (enable != 0) {
mmio_setbits_32(address, mask_on);
} else {
mmio_clrbits_32(address, mask_on);
}
}
static void stm32mp1_hs_ocs_set(int enable, uint32_t rcc, uint32_t mask_on)
{
if (enable != 0) {
mmio_setbits_32(rcc + RCC_OCENSETR, mask_on);
} else {
mmio_setbits_32(rcc + RCC_OCENCLRR, mask_on);
}
}
static int stm32mp1_osc_wait(int enable, uint32_t rcc, uint32_t offset,
uint32_t mask_rdy)
{
unsigned long start;
uint32_t mask_test;
uint32_t address = rcc + offset;
if (enable != 0) {
mask_test = mask_rdy;
} else {
mask_test = 0;
}
start = get_timer(0);
while ((mmio_read_32(address) & mask_rdy) != mask_test) {
if (get_timer(start) > OSCRDY_TIMEOUT) {
ERROR("OSC %x @ %x timeout for enable=%d : 0x%x\n",
mask_rdy, address, enable, mmio_read_32(address));
return -ETIMEDOUT;
}
}
return 0;
}
static void stm32mp1_lse_enable(uint32_t rcc, bool bypass, uint32_t lsedrv)
{
uint32_t value;
if (bypass) {
mmio_setbits_32(rcc + RCC_BDCR, RCC_BDCR_LSEBYP);
}
/*
* Warning: not recommended to switch directly from "high drive"
* to "medium low drive", and vice-versa.
*/
value = (mmio_read_32(rcc + RCC_BDCR) & RCC_BDCR_LSEDRV_MASK) >>
RCC_BDCR_LSEDRV_SHIFT;
while (value != lsedrv) {
if (value > lsedrv) {
value--;
} else {
value++;
}
mmio_clrsetbits_32(rcc + RCC_BDCR,
RCC_BDCR_LSEDRV_MASK,
value << RCC_BDCR_LSEDRV_SHIFT);
}
stm32mp1_ls_osc_set(1, rcc, RCC_BDCR, RCC_BDCR_LSEON);
}
static void stm32mp1_lse_wait(uint32_t rcc)
{
if (stm32mp1_osc_wait(1, rcc, RCC_BDCR, RCC_BDCR_LSERDY) != 0) {
VERBOSE("%s: failed\n", __func__);
}
}
static void stm32mp1_lsi_set(uint32_t rcc, int enable)
{
stm32mp1_ls_osc_set(enable, rcc, RCC_RDLSICR, RCC_RDLSICR_LSION);
if (stm32mp1_osc_wait(enable, rcc, RCC_RDLSICR, RCC_RDLSICR_LSIRDY) !=
0) {
VERBOSE("%s: failed\n", __func__);
}
}
static void stm32mp1_hse_enable(uint32_t rcc, bool bypass, bool css)
{
if (bypass) {
mmio_setbits_32(rcc + RCC_OCENSETR, RCC_OCENR_HSEBYP);
}
stm32mp1_hs_ocs_set(1, rcc, RCC_OCENR_HSEON);
if (stm32mp1_osc_wait(1, rcc, RCC_OCRDYR, RCC_OCRDYR_HSERDY) !=
0) {
VERBOSE("%s: failed\n", __func__);
}
if (css) {
mmio_setbits_32(rcc + RCC_OCENSETR, RCC_OCENR_HSECSSON);
}
}
static void stm32mp1_csi_set(uint32_t rcc, int enable)
{
stm32mp1_ls_osc_set(enable, rcc, RCC_OCENSETR, RCC_OCENR_CSION);
if (stm32mp1_osc_wait(enable, rcc, RCC_OCRDYR, RCC_OCRDYR_CSIRDY) !=
0) {
VERBOSE("%s: failed\n", __func__);
}
}
static void stm32mp1_hsi_set(uint32_t rcc, int enable)
{
stm32mp1_hs_ocs_set(enable, rcc, RCC_OCENR_HSION);
if (stm32mp1_osc_wait(enable, rcc, RCC_OCRDYR, RCC_OCRDYR_HSIRDY) !=
0) {
VERBOSE("%s: failed\n", __func__);
}
}
static int stm32mp1_set_hsidiv(uint32_t rcc, uint8_t hsidiv)
{
unsigned long start;
uint32_t address = rcc + RCC_OCRDYR;
mmio_clrsetbits_32(rcc + RCC_HSICFGR,
RCC_HSICFGR_HSIDIV_MASK,
RCC_HSICFGR_HSIDIV_MASK & (uint32_t)hsidiv);
start = get_timer(0);
while ((mmio_read_32(address) & RCC_OCRDYR_HSIDIVRDY) == 0U) {
if (get_timer(start) > HSIDIV_TIMEOUT) {
ERROR("HSIDIV failed @ 0x%x: 0x%x\n",
address, mmio_read_32(address));
return -ETIMEDOUT;
}
}
return 0;
}
static int stm32mp1_hsidiv(uint32_t rcc, unsigned long hsifreq)
{
uint8_t hsidiv;
uint32_t hsidivfreq = MAX_HSI_HZ;
for (hsidiv = 0; hsidiv < 4U; hsidiv++) {
if (hsidivfreq == hsifreq) {
break;
}
hsidivfreq /= 2U;
}
if (hsidiv == 4U) {
ERROR("Invalid clk-hsi frequency\n");
return -1;
}
if (hsidiv != 0U) {
return stm32mp1_set_hsidiv(rcc, hsidiv);
}
return 0;
}
static void stm32mp1_pll_start(struct stm32mp1_clk_priv *priv,
enum stm32mp1_pll_id pll_id)
{
const struct stm32mp1_clk_pll *pll = priv->data->pll;
mmio_write_32(priv->base + pll[pll_id].pllxcr, RCC_PLLNCR_PLLON);
}
static int stm32mp1_pll_output(struct stm32mp1_clk_priv *priv,
enum stm32mp1_pll_id pll_id, uint32_t output)
{
const struct stm32mp1_clk_pll *pll = priv->data->pll;
uint32_t pllxcr = priv->base + pll[pll_id].pllxcr;
unsigned long start;
start = get_timer(0);
/* Wait PLL lock */
while ((mmio_read_32(pllxcr) & RCC_PLLNCR_PLLRDY) == 0U) {
if (get_timer(start) > PLLRDY_TIMEOUT) {
ERROR("PLL%d start failed @ 0x%x: 0x%x\n",
pll_id, pllxcr, mmio_read_32(pllxcr));
return -ETIMEDOUT;
}
}
/* Start the requested output */
mmio_setbits_32(pllxcr, output << RCC_PLLNCR_DIVEN_SHIFT);
return 0;
}
static int stm32mp1_pll_stop(struct stm32mp1_clk_priv *priv,
enum stm32mp1_pll_id pll_id)
{
const struct stm32mp1_clk_pll *pll = priv->data->pll;
uint32_t pllxcr = priv->base + pll[pll_id].pllxcr;
unsigned long start;
/* Stop all output */
mmio_clrbits_32(pllxcr, RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN |
RCC_PLLNCR_DIVREN);
/* Stop PLL */
mmio_clrbits_32(pllxcr, RCC_PLLNCR_PLLON);
start = get_timer(0);
/* Wait PLL stopped */
while ((mmio_read_32(pllxcr) & RCC_PLLNCR_PLLRDY) != 0U) {
if (get_timer(start) > PLLRDY_TIMEOUT) {
ERROR("PLL%d stop failed @ 0x%x: 0x%x\n",
pll_id, pllxcr, mmio_read_32(pllxcr));
return -ETIMEDOUT;
}
}
return 0;
}
static void stm32mp1_pll_config_output(struct stm32mp1_clk_priv *priv,
enum stm32mp1_pll_id pll_id,
uint32_t *pllcfg)
{
const struct stm32mp1_clk_pll *pll = priv->data->pll;
uint32_t rcc = priv->base;
uint32_t value;
value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) &
RCC_PLLNCFGR2_DIVP_MASK;
value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT) &
RCC_PLLNCFGR2_DIVQ_MASK;
value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) &
RCC_PLLNCFGR2_DIVR_MASK;
mmio_write_32(rcc + pll[pll_id].pllxcfgr2, value);
}
static int stm32mp1_pll_config(struct stm32mp1_clk_priv *priv,
enum stm32mp1_pll_id pll_id,
uint32_t *pllcfg, uint32_t fracv)
{
const struct stm32mp1_clk_pll *pll = priv->data->pll;
uint32_t rcc = priv->base;
enum stm32mp1_plltype type = pll[pll_id].plltype;
unsigned long refclk;
uint32_t ifrge = 0;
uint32_t src, value;
src = mmio_read_32(priv->base + pll[pll_id].rckxselr) &
RCC_SELR_REFCLK_SRC_MASK;
refclk = stm32mp1_clk_get_fixed(priv, pll[pll_id].refclk[src]) /
(pllcfg[PLLCFG_M] + 1U);
if ((refclk < (stm32mp1_pll[type].refclk_min * 1000000U)) ||
(refclk > (stm32mp1_pll[type].refclk_max * 1000000U))) {
return -EINVAL;
}
if ((type == PLL_800) && (refclk >= 8000000U)) {
ifrge = 1U;
}
value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT) &
RCC_PLLNCFGR1_DIVN_MASK;
value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT) &
RCC_PLLNCFGR1_DIVM_MASK;
value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT) &
RCC_PLLNCFGR1_IFRGE_MASK;
mmio_write_32(rcc + pll[pll_id].pllxcfgr1, value);
/* Fractional configuration */
value = 0;
mmio_write_32(rcc + pll[pll_id].pllxfracr, value);
value = fracv << RCC_PLLNFRACR_FRACV_SHIFT;
mmio_write_32(rcc + pll[pll_id].pllxfracr, value);
value |= RCC_PLLNFRACR_FRACLE;
mmio_write_32(rcc + pll[pll_id].pllxfracr, value);
stm32mp1_pll_config_output(priv, pll_id, pllcfg);
return 0;
}
static void stm32mp1_pll_csg(struct stm32mp1_clk_priv *priv,
enum stm32mp1_pll_id pll_id,
uint32_t *csg)
{
const struct stm32mp1_clk_pll *pll = priv->data->pll;
uint32_t pllxcsg = 0;
pllxcsg |= (csg[PLLCSG_MOD_PER] << RCC_PLLNCSGR_MOD_PER_SHIFT) &
RCC_PLLNCSGR_MOD_PER_MASK;
pllxcsg |= (csg[PLLCSG_INC_STEP] << RCC_PLLNCSGR_INC_STEP_SHIFT) &
RCC_PLLNCSGR_INC_STEP_MASK;
pllxcsg |= (csg[PLLCSG_SSCG_MODE] << RCC_PLLNCSGR_SSCG_MODE_SHIFT) &
RCC_PLLNCSGR_SSCG_MODE_MASK;
mmio_write_32(priv->base + pll[pll_id].pllxcsgr, pllxcsg);
}
static int stm32mp1_set_clksrc(struct stm32mp1_clk_priv *priv,
unsigned int clksrc)
{
uint32_t address = priv->base + (clksrc >> 4);
unsigned long start;
mmio_clrsetbits_32(address, RCC_SELR_SRC_MASK,
clksrc & RCC_SELR_SRC_MASK);
start = get_timer(0);
while ((mmio_read_32(address) & RCC_SELR_SRCRDY) == 0U) {
if (get_timer(start) > CLKSRC_TIMEOUT) {
ERROR("CLKSRC %x start failed @ 0x%x: 0x%x\n",
clksrc, address, mmio_read_32(address));
return -ETIMEDOUT;
}
}
return 0;
}
static int stm32mp1_set_clkdiv(unsigned int clkdiv, uint32_t address)
{
unsigned long start;
mmio_clrsetbits_32(address, RCC_DIVR_DIV_MASK,
clkdiv & RCC_DIVR_DIV_MASK);
start = get_timer(0);
while ((mmio_read_32(address) & RCC_DIVR_DIVRDY) == 0U) {
if (get_timer(start) > CLKDIV_TIMEOUT) {
ERROR("CLKDIV %x start failed @ 0x%x: 0x%x\n",
clkdiv, address, mmio_read_32(address));
return -ETIMEDOUT;
}
}
return 0;
}
static void stm32mp1_mco_csg(struct stm32mp1_clk_priv *priv,
uint32_t clksrc, uint32_t clkdiv)
{
uint32_t address = priv->base + (clksrc >> 4);
/*
* Binding clksrc :
* bit15-4 offset
* bit3: disable
* bit2-0: MCOSEL[2:0]
*/
if ((clksrc & 0x8U) != 0U) {
mmio_clrbits_32(address, RCC_MCOCFG_MCOON);
} else {
mmio_clrsetbits_32(address,
RCC_MCOCFG_MCOSRC_MASK,
clksrc & RCC_MCOCFG_MCOSRC_MASK);
mmio_clrsetbits_32(address,
RCC_MCOCFG_MCODIV_MASK,
clkdiv << RCC_MCOCFG_MCODIV_SHIFT);
mmio_setbits_32(address, RCC_MCOCFG_MCOON);
}
}
static void stm32mp1_set_rtcsrc(struct stm32mp1_clk_priv *priv,
unsigned int clksrc, bool lse_css)
{
uint32_t address = priv->base + RCC_BDCR;
if (((mmio_read_32(address) & RCC_BDCR_RTCCKEN) == 0U) ||
(clksrc != (uint32_t)CLK_RTC_DISABLED)) {
mmio_clrsetbits_32(address,
RCC_BDCR_RTCSRC_MASK,
clksrc << RCC_BDCR_RTCSRC_SHIFT);
mmio_setbits_32(address, RCC_BDCR_RTCCKEN);
}
if (lse_css) {
mmio_setbits_32(address, RCC_BDCR_LSECSSON);
}
}
#define CNTCVL_OFF 0x008
#define CNTCVU_OFF 0x00C
static void stm32mp1_stgen_config(struct stm32mp1_clk_priv *priv)
{
uintptr_t stgen;
int p;
uint32_t cntfid0;
unsigned long rate;
stgen = fdt_get_stgen_base();
cntfid0 = mmio_read_32(stgen + CNTFID_OFF);
p = stm32mp1_clk_get_parent(priv, STGEN_K);
rate = stm32mp1_clk_get(priv, p);
if (cntfid0 != rate) {
unsigned long long counter;
mmio_clrbits_32(stgen + CNTCR_OFF, CNTCR_EN);
counter = (unsigned long long)
mmio_read_32(stgen + CNTCVL_OFF);
counter |= ((unsigned long long)
(mmio_read_32(stgen + CNTCVU_OFF))) << 32;
counter = (counter * rate / cntfid0);
mmio_write_32(stgen + CNTCVL_OFF, (uint32_t)counter);
mmio_write_32(stgen + CNTCVU_OFF, (uint32_t)(counter >> 32));
mmio_write_32(stgen + CNTFID_OFF, rate);
mmio_setbits_32(stgen + CNTCR_OFF, CNTCR_EN);
write_cntfrq((u_register_t)rate);
/* Need to update timer with new frequency */
generic_delay_timer_init();
}
}
void stm32mp1_stgen_increment(unsigned long long offset_in_ms)
{
uintptr_t stgen;
unsigned long long cnt;
stgen = fdt_get_stgen_base();
cnt = ((unsigned long long)mmio_read_32(stgen + CNTCVU_OFF) << 32) |
mmio_read_32(stgen + CNTCVL_OFF);
cnt += (offset_in_ms * mmio_read_32(stgen + CNTFID_OFF)) / 1000U;
mmio_clrbits_32(stgen + CNTCR_OFF, CNTCR_EN);
mmio_write_32(stgen + CNTCVL_OFF, (uint32_t)cnt);
mmio_write_32(stgen + CNTCVU_OFF, (uint32_t)(cnt >> 32));
mmio_setbits_32(stgen + CNTCR_OFF, CNTCR_EN);
}
static void stm32mp1_pkcs_config(struct stm32mp1_clk_priv *priv, uint32_t pkcs)
{
uint32_t address = priv->base + ((pkcs >> 4) & 0xFFFU);
uint32_t value = pkcs & 0xFU;
uint32_t mask = 0xFU;
if ((pkcs & BIT(31)) != 0U) {
mask <<= 4;
value <<= 4;
}
mmio_clrsetbits_32(address, mask, value);
}
int stm32mp1_clk_init(void)
{
struct stm32mp1_clk_priv *priv = &stm32mp1_clk_priv_data;
uint32_t rcc = priv->base;
unsigned int clksrc[CLKSRC_NB];
unsigned int clkdiv[CLKDIV_NB];
unsigned int pllcfg[_PLL_NB][PLLCFG_NB];
int plloff[_PLL_NB];
int ret, len;
enum stm32mp1_pll_id i;
bool lse_css = false;
const fdt32_t *pkcs_cell;
/* Check status field to disable security */
if (!fdt_get_rcc_secure_status()) {
mmio_write_32(rcc + RCC_TZCR, 0);
}
ret = fdt_rcc_read_uint32_array("st,clksrc", clksrc,
(uint32_t)CLKSRC_NB);
if (ret < 0) {
return -FDT_ERR_NOTFOUND;
}
ret = fdt_rcc_read_uint32_array("st,clkdiv", clkdiv,
(uint32_t)CLKDIV_NB);
if (ret < 0) {
return -FDT_ERR_NOTFOUND;
}
for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
char name[12];
snprintf(name, sizeof(name), "st,pll@%d", i);
plloff[i] = fdt_rcc_subnode_offset(name);
if (!fdt_check_node(plloff[i])) {
continue;
}
ret = fdt_read_uint32_array(plloff[i], "cfg",
pllcfg[i], (int)PLLCFG_NB);
if (ret < 0) {
return -FDT_ERR_NOTFOUND;
}
}
stm32mp1_mco_csg(priv, clksrc[CLKSRC_MCO1], clkdiv[CLKDIV_MCO1]);
stm32mp1_mco_csg(priv, clksrc[CLKSRC_MCO2], clkdiv[CLKDIV_MCO2]);
/*
* Switch ON oscillator found in device-tree.
* Note: HSI already ON after BootROM stage.
*/
if (priv->osc[_LSI] != 0U) {
stm32mp1_lsi_set(rcc, 1);
}
if (priv->osc[_LSE] != 0U) {
bool bypass;
uint32_t lsedrv;
bypass = fdt_osc_read_bool(_LSE, "st,bypass");
lse_css = fdt_osc_read_bool(_LSE, "st,css");
lsedrv = fdt_osc_read_uint32_default(_LSE, "st,drive",
LSEDRV_MEDIUM_HIGH);
stm32mp1_lse_enable(rcc, bypass, lsedrv);
}
if (priv->osc[_HSE] != 0U) {
bool bypass, css;
bypass = fdt_osc_read_bool(_LSE, "st,bypass");
css = fdt_osc_read_bool(_LSE, "st,css");
stm32mp1_hse_enable(rcc, bypass, css);
}
/*
* CSI is mandatory for automatic I/O compensation (SYSCFG_CMPCR)
* => switch on CSI even if node is not present in device tree
*/
stm32mp1_csi_set(rcc, 1);
/* Come back to HSI */
ret = stm32mp1_set_clksrc(priv, CLK_MPU_HSI);
if (ret != 0) {
return ret;
}
ret = stm32mp1_set_clksrc(priv, CLK_AXI_HSI);
if (ret != 0) {
return ret;
}
for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
if (i == _PLL4)
continue;
ret = stm32mp1_pll_stop(priv, i);
if (ret != 0) {
return ret;
}
}
/* Configure HSIDIV */
if (priv->osc[_HSI] != 0U) {
ret = stm32mp1_hsidiv(rcc, priv->osc[_HSI]);
if (ret != 0) {
return ret;
}
stm32mp1_stgen_config(priv);
}
/* Select DIV */
/* No ready bit when MPUSRC != CLK_MPU_PLL1P_DIV, MPUDIV is disabled */
mmio_write_32(rcc + RCC_MPCKDIVR,
clkdiv[CLKDIV_MPU] & RCC_DIVR_DIV_MASK);
ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_AXI], rcc + RCC_AXIDIVR);
if (ret != 0) {
return ret;
}
ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB4], rcc + RCC_APB4DIVR);
if (ret != 0) {
return ret;
}
ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB5], rcc + RCC_APB5DIVR);
if (ret != 0) {
return ret;
}
ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB1], rcc + RCC_APB1DIVR);
if (ret != 0) {
return ret;
}
ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB2], rcc + RCC_APB2DIVR);
if (ret != 0) {
return ret;
}
ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB3], rcc + RCC_APB3DIVR);
if (ret != 0) {
return ret;
}
/* No ready bit for RTC */
mmio_write_32(rcc + RCC_RTCDIVR,
clkdiv[CLKDIV_RTC] & RCC_DIVR_DIV_MASK);
/* Configure PLLs source */
ret = stm32mp1_set_clksrc(priv, clksrc[CLKSRC_PLL12]);
if (ret != 0) {
return ret;
}
ret = stm32mp1_set_clksrc(priv, clksrc[CLKSRC_PLL3]);
if (ret != 0) {
return ret;
}
ret = stm32mp1_set_clksrc(priv, clksrc[CLKSRC_PLL4]);
if (ret != 0) {
return ret;
}
/* Configure and start PLLs */
for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
uint32_t fracv;
uint32_t csg[PLLCSG_NB];
if (!fdt_check_node(plloff[i])) {
continue;
}
fracv = fdt_read_uint32_default(plloff[i], "frac", 0);
ret = stm32mp1_pll_config(priv, i, pllcfg[i], fracv);
if (ret != 0) {
return ret;
}
ret = fdt_read_uint32_array(plloff[i], "csg", csg,
(uint32_t)PLLCSG_NB);
if (ret == 0) {
stm32mp1_pll_csg(priv, i, csg);
} else if (ret != -FDT_ERR_NOTFOUND) {
return ret;
}
stm32mp1_pll_start(priv, i);
}
/* Wait and start PLLs ouptut when ready */
for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
if (!fdt_check_node(plloff[i])) {
continue;
}
ret = stm32mp1_pll_output(priv, i, pllcfg[i][PLLCFG_O]);
if (ret != 0) {
return ret;
}
}
/* Wait LSE ready before to use it */
if (priv->osc[_LSE] != 0U) {
stm32mp1_lse_wait(rcc);
}
/* Configure with expected clock source */
ret = stm32mp1_set_clksrc(priv, clksrc[CLKSRC_MPU]);
if (ret != 0) {
return ret;
}
ret = stm32mp1_set_clksrc(priv, clksrc[CLKSRC_AXI]);
if (ret != 0) {
return ret;
}
stm32mp1_set_rtcsrc(priv, clksrc[CLKSRC_RTC], lse_css);
/* Configure PKCK */
pkcs_cell = fdt_rcc_read_prop("st,pkcs", &len);
if (pkcs_cell != NULL) {
bool ckper_disabled = false;
uint32_t j;
priv->pkcs_usb_value = 0;
for (j = 0; j < ((uint32_t)len / sizeof(uint32_t)); j++) {
uint32_t pkcs = fdt32_to_cpu(pkcs_cell[j]);
if (pkcs == (uint32_t)CLK_CKPER_DISABLED) {
ckper_disabled = true;
continue;
}
stm32mp1_pkcs_config(priv, pkcs);
}
/*
* CKPER is source for some peripheral clocks
* (FMC-NAND / QPSI-NOR) and switching source is allowed
* only if previous clock is still ON
* => deactivated CKPER only after switching clock
*/
if (ckper_disabled) {
stm32mp1_pkcs_config(priv, CLK_CKPER_DISABLED);
}
}
/* Switch OFF HSI if not found in device-tree */
if (priv->osc[_HSI] == 0U) {
stm32mp1_hsi_set(rcc, 0);
}
stm32mp1_stgen_config(priv);
/* Software Self-Refresh mode (SSR) during DDR initilialization */
mmio_clrsetbits_32(priv->base + RCC_DDRITFCR,
RCC_DDRITFCR_DDRCKMOD_MASK,
RCC_DDRITFCR_DDRCKMOD_SSR <<
RCC_DDRITFCR_DDRCKMOD_SHIFT);
return 0;
}
static void stm32mp1_osc_clk_init(const char *name,
struct stm32mp1_clk_priv *priv,
enum stm32mp_osc_id index)
{
uint32_t frequency;
priv->osc[index] = 0;
if (fdt_osc_read_freq(name, &frequency) != 0) {
ERROR("%s frequency request failed\n", name);
panic();
} else {
priv->osc[index] = frequency;
}
}
static void stm32mp1_osc_init(void)
{
struct stm32mp1_clk_priv *priv = &stm32mp1_clk_priv_data;
enum stm32mp_osc_id i;
for (i = (enum stm32mp_osc_id)0 ; i < NB_OSC; i++) {
stm32mp1_osc_clk_init(stm32mp_osc_node_label[i], priv, i);
}
}
int stm32mp1_clk_probe(void)
{
struct stm32mp1_clk_priv *priv = &stm32mp1_clk_priv_data;
priv->base = fdt_rcc_read_addr();
if (priv->base == 0U) {
return -EINVAL;
}
priv->data = &stm32mp1_data;
if ((priv->data->gate == NULL) || (priv->data->sel == NULL) ||
(priv->data->pll == NULL)) {
return -EINVAL;
}
stm32mp1_osc_init();
return 0;
}