blob: 34d761c73079bfbcaeaa2302792ad2facea1af17 [file] [log] [blame]
/*
* Copyright (c) 2016 - 2020, Broadcom
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <string.h>
#include <lib/mmio.h>
#include <platform_def.h>
#include "bcm_emmc.h"
#include "emmc_chal_types.h"
#include "emmc_chal_sd.h"
#include "emmc_pboot_hal_memory_drv.h"
extern void emmc_soft_reset(void);
#define SD_VDD_WINDOW_1_6_TO_1_7 0x00000010 // 1.6 V to 1.7 Volts
#define SD_VDD_WINDOW_1_7_TO_1_8 0x00000020 // 1.7 V to 1.8 Volts
#define SD_VDD_WINDOW_1_8_TO_1_9 0x00000040 // 1.8 V to 1.9 Volts
#define SD_VDD_WINDOW_1_9_TO_2_0 0x00000080 // 1.9 V to 2.0 Volts
#define SD_VDD_WINDOW_2_0_TO_2_1 0x00000100 // 2.0 V to 2.1 Volts
#define SD_VDD_WINDOW_2_1_TO_2_2 0x00000200 // 2.1 V to 2.2 Volts
#define SD_VDD_WINDOW_2_2_TO_2_3 0x00000400 // 2.2 V to 2.3 Volts
#define SD_VDD_WINDOW_2_3_TO_2_4 0x00000800 // 2.3 V to 2.4 Volts
#define SD_VDD_WINDOW_2_4_TO_2_5 0x00001000 // 2.4 V to 2.5 Volts
#define SD_VDD_WINDOW_2_5_TO_2_6 0x00002000 // 2.5 V to 2.6 Volts
#define SD_VDD_WINDOW_2_6_TO_2_7 0x00004000 // 2.6 V to 2.7 Volts
#define SD_VDD_WINDOW_2_7_TO_2_8 0x00008000 // 2.7 V to 2.8 Volts
#define SD_VDD_WINDOW_2_8_TO_2_9 0x00010000 // 2.8 V to 2.9 Volts
#define SD_VDD_WINDOW_2_9_TO_3_0 0x00020000 // 2.9 V to 3.0 Volts
#define SD_VDD_WINDOW_3_0_TO_3_1 0x00040000 // 3.0 V to 3.1 Volts
#define SD_VDD_WINDOW_3_1_TO_3_2 0x00080000 // 3.1 V to 3.2 Volts
#define SD_VDD_WINDOW_3_2_TO_3_3 0x00100000 // 3.2 V to 3.3 Volts
#define SD_VDD_WINDOW_3_3_TO_3_4 0x00200000 // 3.3 V to 3.4 Volts
#define SD_VDD_WINDOW_3_4_TO_3_5 0x00400000 // 3.4 V to 3.5 Volts
#define SD_VDD_WINDOW_3_5_TO_3_6 0x00800000 // 3.5 V to 3.6 Volts
#define SD_VDD_WINDOW_1_6_TO_2_6 (SD_VDD_WINDOW_1_6_TO_1_7 | \
SD_VDD_WINDOW_1_7_TO_1_8 | \
SD_VDD_WINDOW_1_8_TO_1_9 | \
SD_VDD_WINDOW_1_9_TO_2_0 | \
SD_VDD_WINDOW_2_0_TO_2_1 | \
SD_VDD_WINDOW_2_1_TO_2_2 | \
SD_VDD_WINDOW_2_2_TO_2_3 | \
SD_VDD_WINDOW_2_3_TO_2_4 | \
SD_VDD_WINDOW_2_4_TO_2_5 | \
SD_VDD_WINDOW_2_5_TO_2_6)
#define SD_VDD_WINDOW_2_6_TO_3_2 (SD_VDD_WINDOW_2_6_TO_2_7 | \
SD_VDD_WINDOW_2_7_TO_2_8 | \
SD_VDD_WINDOW_2_8_TO_2_9 | \
SD_VDD_WINDOW_2_9_TO_3_0 | \
SD_VDD_WINDOW_3_0_TO_3_1 | \
SD_VDD_WINDOW_3_1_TO_3_2)
#define SD_VDD_WINDOW_3_2_TO_3_6 (SD_VDD_WINDOW_3_2_TO_3_3 | \
SD_VDD_WINDOW_3_3_TO_3_4 | \
SD_VDD_WINDOW_3_4_TO_3_5 | \
SD_VDD_WINDOW_3_5_TO_3_6)
static int32_t chal_sd_set_power(struct sd_dev *handle,
uint32_t voltage, uint32_t state);
static void chal_sd_set_dma_boundary(struct sd_dev *handle, uint32_t boundary);
static int32_t chal_sd_setup_handler(struct sd_dev *handle,
uint32_t sdBbase, uint32_t hostBase);
/*
* Configure host controller pwr settings,
* to match voltage requirements by SD Card
*/
static int32_t chal_sd_set_power(struct sd_dev *handle,
uint32_t voltage, uint32_t state)
{
int32_t rc, rval = SD_FAIL;
uint32_t time = 0;
if (handle == NULL)
return SD_INVALID_HANDLE;
mmio_clrsetbits_32(handle->ctrl.sdRegBaseAddr +
SD4_EMMC_TOP_CTRL_OFFSET,
(SD4_EMMC_TOP_CTRL_SDVSELVDD1_MASK |
SD4_EMMC_TOP_CTRL_SDPWR_MASK),
(voltage << 9));
/*
* Long delay is required here in emulation. Without this, the initial
* commands sent to the eMMC card timeout. We don't know if this
* delay is necessary with silicon, leaving in for safety.
* It is observed that 403ms on emulation system and as per the clock
* calculations it is expected to complete with in 1ms on chip
*/
do {
rc = mmio_read_32(handle->ctrl.sdRegBaseAddr +
SD4_EMMC_TOP_INTR_OFFSET);
if ((rc & SD4_EMMC_TOP_INTR_CRDINS_MASK) ==
SD4_EMMC_TOP_INTR_CRDINS_MASK)
break;
mdelay(1);
} while (time++ < EMMC_CARD_DETECT_TIMEOUT_MS);
if (time >= EMMC_CARD_DETECT_TIMEOUT_MS) {
ERROR("EMMC: Card insert event detection timeout\n");
return rval;
}
VERBOSE("EMMC: Card detection delay: %dms\n", time);
if (state)
mmio_setbits_32(handle->ctrl.sdRegBaseAddr + SD4_EMMC_TOP_CTRL_OFFSET,
SD4_EMMC_TOP_CTRL_SDPWR_MASK);
/* dummy write & ack to verify if the sdio is ready to send commads */
mmio_write_32(handle->ctrl.sdRegBaseAddr + SD4_EMMC_TOP_ARG_OFFSET, 0);
mmio_write_32(handle->ctrl.sdRegBaseAddr + SD4_EMMC_TOP_CMD_OFFSET, 0);
/*
* 63ms observed on emulation system, As per clock calculations
* it will complete < 1ms on chip.
*/
time = 0;
do {
rc = mmio_read_32(handle->ctrl.sdRegBaseAddr +
SD4_EMMC_TOP_INTR_OFFSET);
if (rc & SD4_EMMC_TOP_INTR_ERRIRQ_MASK)
break;
if ((rc & SD4_EMMC_TOP_INTR_CMDDONE_MASK) ==
SD4_EMMC_TOP_INTR_CMDDONE_MASK)
break;
mdelay(1);
} while (time++ < EMMC_CMD_TIMEOUT_MS);
if (time >= EMMC_CMD_TIMEOUT_MS) {
WARN("%s %d Initial dummy command timeout is happened\n",
__func__, __LINE__);
return rval;
}
VERBOSE("EMMC: Dummy Command delay: %dms\n", time);
return SD_OK;
}
/*
* Configure DMA Boundaries
*/
static void chal_sd_set_dma_boundary(struct sd_dev *handle, uint32_t boundary)
{
if (handle == NULL)
return;
mmio_clrsetbits_32(handle->ctrl.sdRegBaseAddr +
SD4_EMMC_TOP_BLOCK_OFFSET,
SD4_EMMC_TOP_BLOCK_HSBS_MASK, boundary);
}
static int32_t chal_sd_setup_handler(struct sd_dev *handle, uint32_t sdBase,
uint32_t hostBase)
{
if (handle == NULL)
return SD_INVALID_HANDLE;
handle->ctrl.sdRegBaseAddr = sdBase;
handle->ctrl.hostRegBaseAddr = hostBase;
handle->ctrl.present = 0;
handle->ctrl.rca = 0;
handle->ctrl.blkGapEnable = 0;
handle->ctrl.cmdStatus = 0;
return SD_OK;
}
/*
* Initialize SD Host controller
*/
int32_t chal_sd_init(CHAL_HANDLE *sd_handle)
{
uint32_t cap_val_l = 0;
uint32_t ctl_val, voltage;
uint32_t timeout_val;
struct sd_dev *handle;
uint32_t reg_val;
int32_t rval = SD_FAIL;
if (sd_handle == NULL)
return SD_INVALID_HANDLE;
handle = (struct sd_dev *)sd_handle;
/*
* Set SDIO Host Controller capabilities register
*/
EMMC_TRACE("Set Host Controller Capabilities register\n");
reg_val = 0;
reg_val |= (1 << ICFG_SDIO0_CAP0__SLOT_TYPE_R);
reg_val |= (0 << ICFG_SDIO0_CAP0__INT_MODE_R);
reg_val |= (0 << ICFG_SDIO0_CAP0__SYS_BUS_64BIT_R);
reg_val |= (1 << ICFG_SDIO0_CAP0__VOLTAGE_1P8V_R);
reg_val |= (1 << ICFG_SDIO0_CAP0__VOLTAGE_3P0V_R);
reg_val |= (1 << ICFG_SDIO0_CAP0__VOLTAGE_3P3V_R);
reg_val |= (1 << ICFG_SDIO0_CAP0__SUSPEND_RESUME_R);
reg_val |= (1 << ICFG_SDIO0_CAP0__SDMA_R);
reg_val |= (1 << ICFG_SDIO0_CAP0__HIGH_SPEED_R);
reg_val |= (1 << ICFG_SDIO0_CAP0__ADMA2_R);
reg_val |= (1 << ICFG_SDIO0_CAP0__EXTENDED_MEDIA_R);
reg_val |= (2 << ICFG_SDIO0_CAP0__MAX_BLOCK_LEN_R);
reg_val |= (0xd0 << ICFG_SDIO0_CAP0__BASE_CLK_FREQ_R);
reg_val |= (1 << ICFG_SDIO0_CAP0__TIMEOUT_UNIT_R);
reg_val |= (0x30 << ICFG_SDIO0_CAP0__TIMEOUT_CLK_FREQ_R);
mmio_write_32(ICFG_SDIO0_CAP0, reg_val);
reg_val = 0;
reg_val |= (1 << ICFG_SDIO0_CAP1__SPI_BLOCK_MODE_R);
reg_val |= (1 << ICFG_SDIO0_CAP1__SPI_MODE_R);
reg_val |= (0 << ICFG_SDIO0_CAP1__CLK_MULT_R);
reg_val |= (0 << ICFG_SDIO0_CAP1__RETUNING_MODE_R);
reg_val |= (1 << ICFG_SDIO0_CAP1__TUNE_SDR50_R);
reg_val |= (1 << ICFG_SDIO0_CAP1__TIME_RETUNE_R);
reg_val |= (1 << ICFG_SDIO0_CAP1__DRIVER_D_R);
reg_val |= (1 << ICFG_SDIO0_CAP1__DRIVER_C_R);
reg_val |= (1 << ICFG_SDIO0_CAP1__DRIVER_A_R);
reg_val |= (1 << ICFG_SDIO0_CAP1__DDR50_R);
reg_val |= (1 << ICFG_SDIO0_CAP1__SDR104_R);
reg_val |= (1 << ICFG_SDIO0_CAP1__SDR50_R);
mmio_write_32(ICFG_SDIO0_CAP1, reg_val);
/* Reset the SDIO controller */
chal_sd_stop();
/* Turn on SD clock */
chal_sd_set_clock(sd_handle,
chal_sd_freq_2_div_ctrl_setting(INIT_CLK_FREQ), 1);
/* program data time out value to the max */
timeout_val = SD_HOST_CORE_TIMEOUT;
ctl_val = mmio_read_32(handle->ctrl.sdRegBaseAddr +
SD4_EMMC_TOP_CTRL1_OFFSET);
ctl_val |= ((timeout_val & 0xf) << SD4_EMMC_TOP_CTRL1_DTCNT_SHIFT);
mmio_write_32(handle->ctrl.sdRegBaseAddr + SD4_EMMC_TOP_CTRL1_OFFSET,
ctl_val);
/* enable all interrupt status */
mmio_write_32(handle->ctrl.sdRegBaseAddr + SD4_EMMC_TOP_INTREN1_OFFSET,
0);
mmio_write_32(handle->ctrl.sdRegBaseAddr + SD4_EMMC_TOP_INTREN2_OFFSET,
0);
SD_US_DELAY(100);
mmio_write_32(handle->ctrl.sdRegBaseAddr + SD4_EMMC_TOP_INTREN1_OFFSET,
SD_NOR_INTERRUPTS | SD_ERR_INTERRUPTS);
mmio_write_32(handle->ctrl.sdRegBaseAddr + SD4_EMMC_TOP_INTREN2_OFFSET,
SD_NOR_INTERRUPTS | SD_ERR_INTERRUPTS);
/* Select SD bus voltage */
cap_val_l = mmio_read_32(handle->ctrl.sdRegBaseAddr +
SD4_EMMC_TOP_CAPABILITIES1_OFFSET);
handle->cfg.voltage = 0;
voltage = 0x7;
if (cap_val_l & SD4_EMMC_TOP_CAPABILITIES1_V33_MASK) {
handle->cfg.voltage |= SD_VDD_WINDOW_3_3_TO_3_4;
voltage = 0x7;
} else if (cap_val_l & SD4_EMMC_TOP_CAPABILITIES1_V3_MASK) {
handle->cfg.voltage |= SD_VDD_WINDOW_3_0_TO_3_1;
voltage = 0x6;
} else if (cap_val_l & SD4_EMMC_TOP_CAPABILITIES1_V18_MASK) {
handle->cfg.voltage |= SD_VDD_WINDOW_1_8_TO_1_9;
voltage = 0x5;
}
rval = chal_sd_set_power(handle, voltage, SD4_EMMC_TOP_CTRL_SDPWR_MASK);
ctl_val = mmio_read_32(handle->ctrl.sdRegBaseAddr +
SD4_EMMC_TOP_HCVERSIRQ_OFFSET);
handle->ctrl.version = ((ctl_val >> 16) & 0xFF);
return rval;
}
void chal_sd_set_speed(CHAL_HANDLE *sd_handle, uint32_t speed)
{
struct sd_dev *handle;
if (sd_handle == NULL)
return;
handle = (struct sd_dev *) sd_handle;
if (speed) {
EMMC_TRACE("enable HighSpeed\n");
mmio_setbits_32(handle->ctrl.sdRegBaseAddr +
SD4_EMMC_TOP_CTRL_OFFSET,
SD4_EMMC_TOP_CTRL_HSEN_MASK);
} else {
EMMC_TRACE("disable HighSpeed\n");
mmio_clrbits_32(handle->ctrl.sdRegBaseAddr +
SD4_EMMC_TOP_CTRL_OFFSET,
SD4_EMMC_TOP_CTRL_HSEN_MASK);
}
}
int32_t chal_sd_stop(void)
{
uintptr_t idm_rst_ctrl_addr = EMMC_IDM_RESET_CTRL_ADDR;
/* Configure IO pins */
emmc_soft_reset();
/* Reset the SDIO controller */
mmio_write_32(idm_rst_ctrl_addr, 1);
SD_US_DELAY(100);
mmio_write_32(idm_rst_ctrl_addr, 0);
SD_US_DELAY(100);
return SD_OK;
}
/*
* Check if host supports specified capability
* returns -ve val on error, 0 if capability not supported else 1.
*/
int32_t chal_sd_check_cap(CHAL_HANDLE *sd_handle, uint32_t caps)
{
struct sd_dev *handle;
if (sd_handle == NULL)
return SD_INVALID_HANDLE;
handle = (struct sd_dev *) sd_handle;
if (caps & mmio_read_32(handle->ctrl.sdRegBaseAddr +
SD4_EMMC_TOP_CAPABILITIES1_OFFSET))
return 1;
else
return 0;
}
int32_t chal_sd_start(CHAL_HANDLE *sd_handle,
uint32_t mode, uint32_t sd_base, uint32_t host_base)
{
struct sd_dev *handle;
int32_t rval = SD_FAIL;
if (sd_handle == NULL)
return SD_INVALID_HANDLE;
handle = (struct sd_dev *) sd_handle;
handle->cfg.mode = SD_PIO_MODE; /* set to PIO mode first for init */
handle->cfg.dma = SD_DMA_OFF;
chal_sd_setup_handler(handle, sd_base, host_base);
/* init and start hw */
rval = chal_sd_init(sd_handle);
if (rval != SD_OK)
return rval;
chal_sd_clear_pending_irq(sd_handle);
handle->ctrl.eventList = 0;
handle->cfg.mode = mode;
return SD_OK;
}
/*
* Function to check 8bits of err generated from auto CMD12
*/
int32_t chal_sd_get_atuo12_error(CHAL_HANDLE *sd_handle)
{
struct sd_dev *handle;
if (sd_handle == NULL)
return SD_INVALID_HANDLE;
handle = (struct sd_dev *) sd_handle;
return (mmio_read_32(handle->ctrl.sdRegBaseAddr +
SD4_EMMC_TOP_ERRSTAT_OFFSET) & 0xFF);
}
/*
* Read present state register
*/
uint32_t chal_sd_get_present_status(CHAL_HANDLE *sd_handle)
{
struct sd_dev *handle;
if (sd_handle == NULL)
return SD_INVALID_HANDLE;
handle = (struct sd_dev *) sd_handle;
return mmio_read_32(handle->ctrl.sdRegBaseAddr +
SD4_EMMC_TOP_PSTATE_OFFSET);
}
/*
* Set SD bus width
*/
int32_t chal_sd_config_bus_width(CHAL_HANDLE *sd_handle, int32_t width)
{
uint32_t ctl_val;
struct sd_dev *handle;
if (sd_handle == NULL)
return SD_INVALID_HANDLE;
handle = (struct sd_dev *)sd_handle;
ctl_val = mmio_read_32(handle->ctrl.sdRegBaseAddr +
SD4_EMMC_TOP_CTRL_OFFSET);
switch (width) {
#ifdef DRIVER_EMMC_ENABLE_DATA_WIDTH_8BIT
case SD_BUS_DATA_WIDTH_8BIT:
ctl_val &= ~SD_BUS_DATA_WIDTH_4BIT;
ctl_val |= SD_BUS_DATA_WIDTH_8BIT;
break;
#endif
case SD_BUS_DATA_WIDTH_4BIT:
ctl_val &= ~SD_BUS_DATA_WIDTH_8BIT;
ctl_val |= SD_BUS_DATA_WIDTH_4BIT;
break;
case SD_BUS_DATA_WIDTH_1BIT:
ctl_val &= ~(SD_BUS_DATA_WIDTH_4BIT | SD_BUS_DATA_WIDTH_8BIT);
break;
default:
return SD_INV_DATA_WIDTH;
};
mmio_write_32(handle->ctrl.sdRegBaseAddr + SD4_EMMC_TOP_CTRL_OFFSET,
ctl_val);
return SD_OK;
}
/*
* Function to enable or disable DMA control.
*/
int32_t chal_sd_set_dma(CHAL_HANDLE *sd_handle, uint32_t mode)
{
uint32_t val;
struct sd_dev *handle;
int32_t rc;
if (sd_handle == NULL)
return SD_INVALID_HANDLE;
handle = (struct sd_dev *)sd_handle;
if (mode) {
rc = chal_sd_check_cap(sd_handle,
SD4_EMMC_TOP_CAPABILITIES1_SDMA_MASK |
SD4_EMMC_TOP_CAPABILITIES1_ADMA2_MASK);
if (rc < 0)
return rc;
if (rc) {
handle->cfg.dma = mode;
val = mmio_read_32(handle->ctrl.sdRegBaseAddr +
SD4_EMMC_TOP_CTRL_OFFSET);
val &= ~(SD4_EMMC_TOP_CTRL_DMASEL_MASK);
val |= handle->cfg.dma - 1;
mmio_write_32(handle->ctrl.sdRegBaseAddr +
SD4_EMMC_TOP_CTRL_OFFSET, val);
return SD_OK;
}
}
handle->cfg.dma = 0;
return SD_FAIL;
}
/*
* Get current DMA address.
* Called only when there is no data transaction activity.
*/
uintptr_t chal_sd_get_dma_addr(CHAL_HANDLE *sd_handle)
{
struct sd_dev *handle;
if (sd_handle == NULL)
return SD_INVALID_HANDLE;
handle = (struct sd_dev *) sd_handle;
if (handle->cfg.dma == SD_DMA_OFF)
return 0;
return (uintptr_t)mmio_read_32(handle->ctrl.sdRegBaseAddr +
SD4_EMMC_TOP_SYSADDR_OFFSET);
}
int32_t chal_sd_send_cmd(CHAL_HANDLE *sd_handle, uint32_t cmd_idx,
uint32_t argument, uint32_t options)
{
uint32_t cmd_mode_reg = 0;
struct sd_dev *handle;
if (sd_handle == NULL)
return SD_INVALID_HANDLE;
handle = (struct sd_dev *) sd_handle;
EMMC_TRACE("%s %d cmd:%d argReg:%x options:%x\n",
__func__, __LINE__, cmd_idx, argument, options);
/* Configure the value for command and mode registers */
cmd_mode_reg = (cmd_idx << 24) | options;
/*
* 1. Write block size reg & block count reg,
* this is done in the tx or rx setup
*/
mmio_write_32(handle->ctrl.sdRegBaseAddr + SD4_EMMC_TOP_BLOCK_OFFSET,
handle->ctrl.blkReg);
/* 2. Write argument reg */
mmio_write_32(handle->ctrl.sdRegBaseAddr + SD4_EMMC_TOP_ARG_OFFSET,
argument);
handle->ctrl.argReg = argument;
/*
* 3. Write transfer mode reg & command reg, check the DMA bit which is
* set before this function call if it is selected.
*/
if (cmd_idx == 24 || cmd_idx == 25 || cmd_idx == 18 || cmd_idx == 17 ||
cmd_idx == 42 || cmd_idx == 51 || cmd_idx == 53)
cmd_mode_reg |= ((handle->cfg.dma) ? 1 : 0);
mmio_write_32(handle->ctrl.sdRegBaseAddr + SD4_EMMC_TOP_CMD_OFFSET,
cmd_mode_reg);
handle->ctrl.cmdIndex = cmd_idx;
return SD_OK;
}
int32_t chal_sd_set_dma_addr(CHAL_HANDLE *sd_handle, uintptr_t address)
{
struct sd_dev *handle;
if (sd_handle == NULL)
return SD_INVALID_HANDLE;
handle = (struct sd_dev *) sd_handle;
if (handle->cfg.dma == SD_DMA_OFF)
return SD_FAIL;
mmio_write_32(handle->ctrl.sdRegBaseAddr + SD4_EMMC_TOP_SYSADDR_OFFSET,
address);
return SD_OK;
}
uint32_t chal_sd_freq_2_div_ctrl_setting(uint32_t desired_freq)
{
/*
* Divider control setting represents 1/2 of the actual divider value.
*
* DesiredFreq = BaseClockFreq / (2 * div_ctrl_setting)
*
* ==> div_ctrl_setting = BaseClockFreq / (2 * DesiredFreq)
*/
uint32_t div_ctrl_setting;
uint32_t actual_freq;
assert(desired_freq != 0);
/* Special case, 0 = divider of 1. */
if (desired_freq >= BASE_CLK_FREQ)
return 0;
/* Normal case, desired_freq < BASE_CLK_FREQ */
div_ctrl_setting = BASE_CLK_FREQ / (2 * desired_freq);
actual_freq = BASE_CLK_FREQ / (2 * div_ctrl_setting);
if (actual_freq > desired_freq) {
/*
* Division does not result in exact freqency match.
* Make sure resulting frequency does not exceed requested freq.
*/
div_ctrl_setting++;
}
return div_ctrl_setting;
}
int32_t chal_sd_set_clock(CHAL_HANDLE *sd_handle, uint32_t div_ctrl_setting,
uint32_t on)
{
uint32_t value;
struct sd_dev *handle;
uint32_t time;
uint32_t clk_sel_high_byte = 0xFF & (div_ctrl_setting >> 8);
uint32_t clk_sel_low_byte = 0xFF & div_ctrl_setting;
if (sd_handle == NULL)
return SD_INVALID_HANDLE;
EMMC_TRACE("set_clock(div_ctrl_setting=%d,on=%d)\n",
div_ctrl_setting, on);
handle = (struct sd_dev *) sd_handle;
/* Read control register content. */
value = mmio_read_32(handle->ctrl.sdRegBaseAddr +
SD4_EMMC_TOP_CTRL1_OFFSET);
/* Disable Clock */
value &= ~(SD4_EMMC_TOP_CTRL1_SDCLKEN_MASK);
mmio_write_32(handle->ctrl.sdRegBaseAddr + SD4_EMMC_TOP_CTRL1_OFFSET,
value);
/* Clear bits of interest. */
value &= ~(SD4_EMMC_TOP_CTRL1_SDCLKSEL_MASK |
SD4_EMMC_TOP_CTRL1_SDCLKSEL_UP_MASK);
/* Set bits of interest to new value. */
value |= (SD4_EMMC_TOP_CTRL1_SDCLKSEL_MASK &
(clk_sel_low_byte << SD4_EMMC_TOP_CTRL1_SDCLKSEL_SHIFT));
value |= (SD4_EMMC_TOP_CTRL1_SDCLKSEL_UP_MASK &
(clk_sel_high_byte << SD4_EMMC_TOP_CTRL1_SDCLKSEL_UP_SHIFT));
value |= SD4_EMMC_TOP_CTRL1_ICLKEN_MASK;
/* Write updated value back to control register. */
mmio_write_32(handle->ctrl.sdRegBaseAddr + SD4_EMMC_TOP_CTRL1_OFFSET,
value);
time = 0;
do {
value = mmio_read_32(handle->ctrl.sdRegBaseAddr +
SD4_EMMC_TOP_CTRL1_OFFSET);
if ((value & SD4_EMMC_TOP_CTRL1_ICLKSTB_MASK) ==
SD4_EMMC_TOP_CTRL1_ICLKSTB_MASK)
break;
mdelay(1);
} while (time++ < EMMC_CLOCK_SETTING_TIMEOUT_MS);
if (time >= EMMC_CLOCK_SETTING_TIMEOUT_MS)
WARN("%s %d clock settings timeout happenedi (%dms)\n",
__func__, __LINE__, time);
VERBOSE("EMMC: clock settings delay: %dms\n", time);
value = mmio_read_32(handle->ctrl.sdRegBaseAddr +
SD4_EMMC_TOP_CTRL1_OFFSET);
if (on)
value |= SD4_EMMC_TOP_CTRL1_SDCLKEN_MASK;
mmio_write_32(handle->ctrl.sdRegBaseAddr + SD4_EMMC_TOP_CTRL1_OFFSET,
value);
return SD_OK;
}
/*
* function to setup DMA buffer and data length, calculates block
* size and the number of blocks to be transferred and return
* the DMA buffer address.
*/
int32_t chal_sd_setup_xfer(CHAL_HANDLE *sd_handle,
uint8_t *data, uint32_t length, int32_t dir)
{
uint32_t blocks = 0;
struct sd_dev *handle;
if (sd_handle == NULL)
return SD_INVALID_HANDLE;
handle = (struct sd_dev *) sd_handle;
if (length <= handle->cfg.blockSize) {
handle->ctrl.blkReg = length | handle->cfg.dmaBoundary;
} else {
blocks = length / handle->cfg.blockSize;
handle->ctrl.blkReg = (blocks << 16) | handle->cfg.blockSize |
handle->cfg.dmaBoundary;
}
if (handle->cfg.dma != SD_DMA_OFF) {
/* For DMA target address setting, physical address should be used */
mmio_write_32(handle->ctrl.sdRegBaseAddr + SD4_EMMC_TOP_SYSADDR_OFFSET,
(uintptr_t)data);
}
return SD_OK;
}
#ifdef INCLUDE_EMMC_DRIVER_WRITE_CODE
/*
* function to write one block data directly to the
* host controller's FIFO which is 1K uint8_t or
* 2K uint8_t in size.
* It is used in Non-DMA mode for data transmission.
*/
int32_t chal_sd_write_buffer(CHAL_HANDLE *sd_handle, uint32_t length,
uint8_t *data)
{
uint32_t i, leftOver = 0, blockSize, size, value = 0;
struct sd_dev *handle;
if (sd_handle == NULL)
return SD_INVALID_HANDLE;
handle = (struct sd_dev *) sd_handle;
blockSize = handle->cfg.blockSize;
if (length == 0)
return SD_OK;
/* PIO mode, push into fifo word by word */
if (length >= blockSize) {
size = blockSize;
} else {
size = ((length >> 2) << 2);
leftOver = length % 4;
}
for (i = 0; i < size; i += 4) {
value = *(uint32_t *)(data + i);
mmio_write_32(handle->ctrl.sdRegBaseAddr +
SD4_EMMC_TOP_BUFDAT_OFFSET, value);
}
/*
* BUG ALERT:
* This implementation has TWO issues that must be addressed before you
* can safely INCLUDE_EMMC_DRIVER_WRITE_CODE.
*
* (1) For the last leftOver bytes, driver writes full word, which means
* some of the eMMC content (i.e. "4 - leftOver" will be erroneously
* overwritten).
* (2) eMMC is a block device. What happens when less than a full block of
* data is submitted???
*/
if (leftOver > 0) {
value = ((*(uint32_t *)(data + i)) << (4 - leftOver));
mmio_write_32(handle->ctrl.sdRegBaseAddr +
SD4_EMMC_TOP_BUFDAT_OFFSET, value);
}
return SD_OK;
}
#endif /* INCLUDE_EMMC_DRIVER_WRITE_CODE */
/*
* Function to read maximal one block data directly
* from the data port of the host controller (FIFO). It is used
* in Non-DMA mode for data transmission.
*/
int32_t chal_sd_read_buffer(CHAL_HANDLE *sd_handle, uint32_t length,
uint8_t *data)
{
uint32_t i, size, leftOver, blockSize, value;
struct sd_dev *handle;
if (sd_handle == NULL)
return SD_INVALID_HANDLE;
handle = (struct sd_dev *)sd_handle;
value = 0;
blockSize = handle->cfg.blockSize;
/* PIO mode, extract fifo word by word */
if (length >= blockSize) {
size = blockSize;
leftOver = 0;
} else {
leftOver = length % 4;
size = ((length >> 2) << 2);
}
for (i = 0; i < size; i += 4) {
value =
mmio_read_32(handle->ctrl.sdRegBaseAddr +
SD4_EMMC_TOP_BUFDAT_OFFSET);
memcpy((void *)(data + i), &value, sizeof(uint32_t));
}
if (leftOver > 0) {
value = mmio_read_32(handle->ctrl.sdRegBaseAddr +
SD4_EMMC_TOP_BUFDAT_OFFSET);
/*
* Copy remaining non-full word bytes.
* (We run ARM as Little Endian)
*/
uint8_t j = 0;
for (j = 0; j < leftOver; j++) {
data[i + j] = (value >> (j * 8)) & 0xFF;
}
}
return SD_OK;
}
/*
* Resets both DAT or CMD line.
*/
int32_t chal_sd_reset_line(CHAL_HANDLE *sd_handle, uint32_t line)
{
uint32_t control, flag;
struct sd_dev *handle;
if (sd_handle == NULL)
return SD_INVALID_HANDLE;
handle = (struct sd_dev *) sd_handle;
flag = SD4_EMMC_TOP_CTRL1_CMDRST_MASK | SD4_EMMC_TOP_CTRL1_DATRST_MASK;
if (flag != (line | flag))
return SD_FAIL;
control = mmio_read_32(handle->ctrl.sdRegBaseAddr +
SD4_EMMC_TOP_CTRL1_OFFSET);
control |= line;
mmio_write_32(handle->ctrl.sdRegBaseAddr + SD4_EMMC_TOP_CTRL1_OFFSET,
control);
/* reset CMD and DATA line should always work, no need to timed out */
do {
control = mmio_read_32(handle->ctrl.sdRegBaseAddr +
SD4_EMMC_TOP_CTRL1_OFFSET);
} while (control & line);
return SD_OK;
}
/*
* Function to be called once a SD command is done to read
* back it's response data.
*/
int32_t chal_sd_get_response(CHAL_HANDLE *sd_handle, uint32_t *resp)
{
struct sd_dev *handle;
if (sd_handle == NULL)
return SD_INVALID_HANDLE;
handle = (struct sd_dev *) sd_handle;
resp[0] = mmio_read_32(handle->ctrl.sdRegBaseAddr +
SD4_EMMC_TOP_RESP0_OFFSET);
resp[1] = mmio_read_32(handle->ctrl.sdRegBaseAddr +
SD4_EMMC_TOP_RESP2_OFFSET);
resp[2] = mmio_read_32(handle->ctrl.sdRegBaseAddr +
SD4_EMMC_TOP_RESP4_OFFSET);
resp[3] = mmio_read_32(handle->ctrl.sdRegBaseAddr +
SD4_EMMC_TOP_RESP6_OFFSET);
return SD_OK;
}
/*
* The function is called to clean all the pending interrupts.
*/
int32_t chal_sd_clear_pending_irq(CHAL_HANDLE *sd_handle)
{
uint32_t status = SD_OK;
struct sd_dev *handle;
if (sd_handle == NULL)
return SD_INVALID_HANDLE;
handle = (struct sd_dev *)sd_handle;
/* Make sure clean all interrupts */
do {
mmio_write_32(handle->ctrl.sdRegBaseAddr +
SD4_EMMC_TOP_INTR_OFFSET, 0xFFFFFFFF);
SD_US_DELAY(10);
} while (mmio_read_32(handle->ctrl.sdRegBaseAddr +
SD4_EMMC_TOP_INTR_OFFSET));
return status;
}
/*
* The function returns interrupt status register value.
*/
int32_t chal_sd_get_irq_status(CHAL_HANDLE *sd_handle)
{
struct sd_dev *handle;
if (sd_handle == NULL)
return SD_INVALID_HANDLE;
handle = (struct sd_dev *) sd_handle;
return (mmio_read_32(handle->ctrl.sdRegBaseAddr +
SD4_EMMC_TOP_INTR_OFFSET));
}
/*
* The function clears interrupt(s) specified in the mask.
*/
int32_t chal_sd_clear_irq(CHAL_HANDLE *sd_handle, uint32_t mask)
{
struct sd_dev *handle;
if (sd_handle == NULL)
return SD_INVALID_HANDLE;
handle = (struct sd_dev *) sd_handle;
/* Make sure clean masked interrupts */
do {
mmio_write_32(handle->ctrl.sdRegBaseAddr +
SD4_EMMC_TOP_INTR_OFFSET, mask);
SD_US_DELAY(10);
} while (mask &
mmio_read_32(handle->ctrl.sdRegBaseAddr +
SD4_EMMC_TOP_INTR_OFFSET));
return SD_OK;
}
/*
* Description: The function configures the SD host controller.
*/
int32_t chal_sd_config(CHAL_HANDLE *sd_handle, uint32_t speed, uint32_t retry,
uint32_t boundary, uint32_t blkSize, uint32_t dma)
{
struct sd_dev *handle;
if (sd_handle == NULL)
return SD_INVALID_HANDLE;
handle = (struct sd_dev *) sd_handle;
handle->cfg.speedMode = speed;
handle->cfg.retryLimit = retry;
handle->cfg.dmaBoundary = boundary;
handle->cfg.blockSize = blkSize;
chal_sd_set_dma(sd_handle, dma);
SD_US_DELAY(100);
chal_sd_set_dma_boundary(handle, boundary);
SD_US_DELAY(100);
chal_sd_set_speed(sd_handle, speed);
SD_US_DELAY(100);
return SD_OK;
}
/*
* Cleans up HC FIFO.
*/
void chal_sd_dump_fifo(CHAL_HANDLE *sd_handle)
{
struct sd_dev *handle;
if (sd_handle == NULL)
return;
handle = (struct sd_dev *)sd_handle;
/* in case there still data in the host buffer */
while (mmio_read_32(handle->ctrl.sdRegBaseAddr +
SD4_EMMC_TOP_PSTATE_OFFSET) & 0x800) {
mmio_read_32(handle->ctrl.sdRegBaseAddr +
SD4_EMMC_TOP_BUFDAT_OFFSET);
};
}
/*
* Enable or disable a SD interrupt signal.
*/
void chal_sd_set_irq_signal(CHAL_HANDLE *sd_handle, uint32_t mask,
uint32_t state)
{
struct sd_dev *handle;
if (sd_handle == NULL)
return;
handle = (struct sd_dev *)sd_handle;
if (state)
mmio_setbits_32(handle->ctrl.sdRegBaseAddr +
SD4_EMMC_TOP_INTREN2_OFFSET, mask);
else
mmio_clrbits_32(handle->ctrl.sdRegBaseAddr +
SD4_EMMC_TOP_INTREN2_OFFSET, mask);
}