| /* |
| * Copyright (c) 2015-2022, Arm Limited and Contributors. All rights reserved. |
| * Copyright (c) 2023, NVIDIA Corporation. All rights reserved. |
| * |
| * SPDX-License-Identifier: BSD-3-Clause |
| */ |
| |
| #include <assert.h> |
| |
| #include <arch.h> |
| #include <arch_helpers.h> |
| #include <common/debug.h> |
| #include <common/interrupt_props.h> |
| #include <drivers/arm/gic600_multichip.h> |
| #include <drivers/arm/gic_common.h> |
| |
| #include <platform_def.h> |
| |
| #include "../common/gic_common_private.h" |
| #include "gicv3_private.h" |
| |
| uintptr_t gicv3_get_multichip_base(uint32_t spi_id, uintptr_t gicd_base) |
| { |
| #if GICV3_IMPL_GIC600_MULTICHIP |
| if (gic600_multichip_is_initialized()) { |
| return gic600_multichip_gicd_base_for_spi(spi_id); |
| } |
| #endif |
| return gicd_base; |
| } |
| |
| /****************************************************************************** |
| * This function marks the core as awake in the re-distributor and |
| * ensures that the interface is active. |
| *****************************************************************************/ |
| void gicv3_rdistif_mark_core_awake(uintptr_t gicr_base) |
| { |
| /* |
| * The WAKER_PS_BIT should be changed to 0 |
| * only when WAKER_CA_BIT is 1. |
| */ |
| assert((gicr_read_waker(gicr_base) & WAKER_CA_BIT) != 0U); |
| |
| /* Mark the connected core as awake */ |
| gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) & ~WAKER_PS_BIT); |
| |
| /* Wait till the WAKER_CA_BIT changes to 0 */ |
| while ((gicr_read_waker(gicr_base) & WAKER_CA_BIT) != 0U) { |
| } |
| } |
| |
| /****************************************************************************** |
| * This function marks the core as asleep in the re-distributor and ensures |
| * that the interface is quiescent. |
| *****************************************************************************/ |
| void gicv3_rdistif_mark_core_asleep(uintptr_t gicr_base) |
| { |
| /* Mark the connected core as asleep */ |
| gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) | WAKER_PS_BIT); |
| |
| /* Wait till the WAKER_CA_BIT changes to 1 */ |
| while ((gicr_read_waker(gicr_base) & WAKER_CA_BIT) == 0U) { |
| } |
| } |
| |
| /******************************************************************************* |
| * This function probes the Redistributor frames when the driver is initialised |
| * and saves their base addresses. These base addresses are used later to |
| * initialise each Redistributor interface. |
| ******************************************************************************/ |
| void gicv3_rdistif_base_addrs_probe(uintptr_t *rdistif_base_addrs, |
| unsigned int rdistif_num, |
| uintptr_t gicr_base, |
| mpidr_hash_fn mpidr_to_core_pos) |
| { |
| u_register_t mpidr; |
| unsigned int proc_num; |
| uint64_t typer_val; |
| uintptr_t rdistif_base = gicr_base; |
| |
| assert(rdistif_base_addrs != NULL); |
| |
| /* |
| * Iterate over the Redistributor frames. Store the base address of each |
| * frame in the platform provided array. Use the "Processor Number" |
| * field to index into the array if the platform has not provided a hash |
| * function to convert an MPIDR (obtained from the "Affinity Value" |
| * field into a linear index. |
| */ |
| do { |
| typer_val = gicr_read_typer(rdistif_base); |
| if (mpidr_to_core_pos != NULL) { |
| mpidr = mpidr_from_gicr_typer(typer_val); |
| proc_num = mpidr_to_core_pos(mpidr); |
| } else { |
| proc_num = (typer_val >> TYPER_PROC_NUM_SHIFT) & |
| TYPER_PROC_NUM_MASK; |
| } |
| |
| if (proc_num < rdistif_num) { |
| rdistif_base_addrs[proc_num] = rdistif_base; |
| } |
| rdistif_base += gicv3_redist_size(typer_val); |
| } while ((typer_val & TYPER_LAST_BIT) == 0U); |
| } |
| |
| /******************************************************************************* |
| * Helper function to get the maximum SPI INTID + 1. |
| ******************************************************************************/ |
| unsigned int gicv3_get_spi_limit(uintptr_t gicd_base) |
| { |
| unsigned int spi_limit; |
| unsigned int typer_reg = gicd_read_typer(gicd_base); |
| |
| /* (maximum SPI INTID + 1) is equal to 32 * (GICD_TYPER.ITLinesNumber+1) */ |
| spi_limit = ((typer_reg & TYPER_IT_LINES_NO_MASK) + 1U) << 5; |
| |
| /* Filter out special INTIDs 1020-1023 */ |
| if (spi_limit > (MAX_SPI_ID + 1U)) { |
| return MAX_SPI_ID + 1U; |
| } |
| |
| return spi_limit; |
| } |
| |
| #if GIC_EXT_INTID |
| /******************************************************************************* |
| * Helper function to get the maximum ESPI INTID + 1. |
| ******************************************************************************/ |
| unsigned int gicv3_get_espi_limit(uintptr_t gicd_base) |
| { |
| unsigned int typer_reg = gicd_read_typer(gicd_base); |
| |
| /* Check if extended SPI range is implemented */ |
| if ((typer_reg & TYPER_ESPI) != 0U) { |
| /* |
| * (maximum ESPI INTID + 1) is equal to |
| * 32 * (GICD_TYPER.ESPI_range + 1) + 4096 |
| */ |
| return ((((typer_reg >> TYPER_ESPI_RANGE_SHIFT) & |
| TYPER_ESPI_RANGE_MASK) + 1U) << 5) + MIN_ESPI_ID; |
| } |
| |
| return 0U; |
| } |
| #endif /* GIC_EXT_INTID */ |
| |
| /******************************************************************************* |
| * Helper function to configure the default attributes of (E)SPIs. |
| ******************************************************************************/ |
| void gicv3_spis_config_defaults(uintptr_t gicd_base) |
| { |
| unsigned int i, num_ints; |
| #if GIC_EXT_INTID |
| unsigned int num_eints; |
| #endif |
| |
| num_ints = gicv3_get_spi_limit(gicd_base); |
| INFO("Maximum SPI INTID supported: %u\n", num_ints - 1); |
| |
| /* Treat all (E)SPIs as G1NS by default. We do 32 at a time. */ |
| for (i = MIN_SPI_ID; i < num_ints; i += (1U << IGROUPR_SHIFT)) { |
| gicd_write_igroupr(gicv3_get_multichip_base(i, gicd_base), i, ~0U); |
| } |
| |
| #if GIC_EXT_INTID |
| num_eints = gicv3_get_espi_limit(gicd_base); |
| if (num_eints != 0U) { |
| INFO("Maximum ESPI INTID supported: %u\n", num_eints - 1); |
| |
| for (i = MIN_ESPI_ID; i < num_eints; |
| i += (1U << IGROUPR_SHIFT)) { |
| gicd_write_igroupr(gicv3_get_multichip_base(i, gicd_base), i, ~0U); |
| } |
| } else { |
| INFO("ESPI range is not implemented.\n"); |
| } |
| #endif |
| |
| /* Setup the default (E)SPI priorities doing four at a time */ |
| for (i = MIN_SPI_ID; i < num_ints; i += (1U << IPRIORITYR_SHIFT)) { |
| gicd_write_ipriorityr(gicv3_get_multichip_base(i, gicd_base), i, GICD_IPRIORITYR_DEF_VAL); |
| } |
| |
| #if GIC_EXT_INTID |
| for (i = MIN_ESPI_ID; i < num_eints; |
| i += (1U << IPRIORITYR_SHIFT)) { |
| gicd_write_ipriorityr(gicv3_get_multichip_base(i, gicd_base), i, GICD_IPRIORITYR_DEF_VAL); |
| } |
| #endif |
| /* |
| * Treat all (E)SPIs as level triggered by default, write 16 at a time |
| */ |
| for (i = MIN_SPI_ID; i < num_ints; i += (1U << ICFGR_SHIFT)) { |
| gicd_write_icfgr(gicv3_get_multichip_base(i, gicd_base), i, 0U); |
| } |
| |
| #if GIC_EXT_INTID |
| for (i = MIN_ESPI_ID; i < num_eints; i += (1U << ICFGR_SHIFT)) { |
| gicd_write_icfgr(gicv3_get_multichip_base(i, gicd_base), i, 0U); |
| } |
| #endif |
| } |
| |
| /******************************************************************************* |
| * Helper function to configure properties of secure (E)SPIs |
| ******************************************************************************/ |
| unsigned int gicv3_secure_spis_config_props(uintptr_t gicd_base, |
| const interrupt_prop_t *interrupt_props, |
| unsigned int interrupt_props_num) |
| { |
| unsigned int i; |
| const interrupt_prop_t *current_prop; |
| unsigned long long gic_affinity_val; |
| unsigned int ctlr_enable = 0U; |
| |
| /* Make sure there's a valid property array */ |
| if (interrupt_props_num > 0U) { |
| assert(interrupt_props != NULL); |
| } |
| |
| for (i = 0U; i < interrupt_props_num; i++) { |
| current_prop = &interrupt_props[i]; |
| |
| unsigned int intr_num = current_prop->intr_num; |
| uintptr_t multichip_gicd_base = gicv3_get_multichip_base(intr_num, gicd_base); |
| |
| /* Skip SGI, (E)PPI and LPI interrupts */ |
| if (!IS_SPI(intr_num)) { |
| continue; |
| } |
| |
| /* Configure this interrupt as a secure interrupt */ |
| gicd_clr_igroupr(multichip_gicd_base, intr_num); |
| |
| /* Configure this interrupt as G0 or a G1S interrupt */ |
| assert((current_prop->intr_grp == INTR_GROUP0) || |
| (current_prop->intr_grp == INTR_GROUP1S)); |
| |
| if (current_prop->intr_grp == INTR_GROUP1S) { |
| gicd_set_igrpmodr(multichip_gicd_base, intr_num); |
| ctlr_enable |= CTLR_ENABLE_G1S_BIT; |
| } else { |
| gicd_clr_igrpmodr(multichip_gicd_base, intr_num); |
| ctlr_enable |= CTLR_ENABLE_G0_BIT; |
| } |
| |
| /* Set interrupt configuration */ |
| gicd_set_icfgr(multichip_gicd_base, intr_num, |
| current_prop->intr_cfg); |
| |
| /* Set the priority of this interrupt */ |
| gicd_set_ipriorityr(multichip_gicd_base, intr_num, |
| current_prop->intr_pri); |
| |
| /* Target (E)SPIs to the primary CPU */ |
| gic_affinity_val = |
| gicd_irouter_val_from_mpidr(read_mpidr(), 0U); |
| gicd_write_irouter(multichip_gicd_base, intr_num, |
| gic_affinity_val); |
| |
| /* Enable this interrupt */ |
| gicd_set_isenabler(multichip_gicd_base, intr_num); |
| } |
| |
| return ctlr_enable; |
| } |
| |
| /******************************************************************************* |
| * Helper function to configure the default attributes of (E)PPIs/SGIs |
| ******************************************************************************/ |
| void gicv3_ppi_sgi_config_defaults(uintptr_t gicr_base) |
| { |
| unsigned int i, ppi_regs_num, regs_num; |
| |
| #if GIC_EXT_INTID |
| /* Calculate number of PPI registers */ |
| ppi_regs_num = (unsigned int)((gicr_read_typer(gicr_base) >> |
| TYPER_PPI_NUM_SHIFT) & TYPER_PPI_NUM_MASK) + 1; |
| /* All other values except PPInum [0-2] are reserved */ |
| if (ppi_regs_num > 3U) { |
| ppi_regs_num = 1U; |
| } |
| #else |
| ppi_regs_num = 1U; |
| #endif |
| /* |
| * Disable all SGIs (imp. def.)/(E)PPIs before configuring them. |
| * This is a more scalable approach as it avoids clearing |
| * the enable bits in the GICD_CTLR. |
| */ |
| for (i = 0U; i < ppi_regs_num; ++i) { |
| gicr_write_icenabler(gicr_base, i, ~0U); |
| } |
| |
| /* Wait for pending writes to GICR_ICENABLER */ |
| gicr_wait_for_pending_write(gicr_base); |
| |
| /* 32 interrupt IDs per GICR_IGROUPR register */ |
| for (i = 0U; i < ppi_regs_num; ++i) { |
| /* Treat all SGIs/(E)PPIs as G1NS by default */ |
| gicr_write_igroupr(gicr_base, i, ~0U); |
| } |
| |
| /* 4 interrupt IDs per GICR_IPRIORITYR register */ |
| regs_num = ppi_regs_num << 3; |
| for (i = 0U; i < regs_num; ++i) { |
| /* Setup the default (E)PPI/SGI priorities doing 4 at a time */ |
| gicr_write_ipriorityr(gicr_base, i << 2, GICD_IPRIORITYR_DEF_VAL); |
| } |
| |
| /* 16 interrupt IDs per GICR_ICFGR register */ |
| regs_num = ppi_regs_num << 1; |
| for (i = (MIN_PPI_ID >> ICFGR_SHIFT); i < regs_num; ++i) { |
| /* Configure all (E)PPIs as level triggered by default */ |
| gicr_write_icfgr(gicr_base, i, 0U); |
| } |
| } |
| |
| /******************************************************************************* |
| * Helper function to configure properties of secure G0 and G1S (E)PPIs and SGIs |
| ******************************************************************************/ |
| unsigned int gicv3_secure_ppi_sgi_config_props(uintptr_t gicr_base, |
| const interrupt_prop_t *interrupt_props, |
| unsigned int interrupt_props_num) |
| { |
| unsigned int i; |
| const interrupt_prop_t *current_prop; |
| unsigned int ctlr_enable = 0U; |
| |
| /* Make sure there's a valid property array */ |
| if (interrupt_props_num > 0U) { |
| assert(interrupt_props != NULL); |
| } |
| |
| for (i = 0U; i < interrupt_props_num; i++) { |
| current_prop = &interrupt_props[i]; |
| |
| unsigned int intr_num = current_prop->intr_num; |
| |
| /* Skip (E)SPI interrupt */ |
| if (!IS_SGI_PPI(intr_num)) { |
| continue; |
| } |
| |
| /* Configure this interrupt as a secure interrupt */ |
| gicr_clr_igroupr(gicr_base, intr_num); |
| |
| /* Configure this interrupt as G0 or a G1S interrupt */ |
| assert((current_prop->intr_grp == INTR_GROUP0) || |
| (current_prop->intr_grp == INTR_GROUP1S)); |
| |
| if (current_prop->intr_grp == INTR_GROUP1S) { |
| gicr_set_igrpmodr(gicr_base, intr_num); |
| ctlr_enable |= CTLR_ENABLE_G1S_BIT; |
| } else { |
| gicr_clr_igrpmodr(gicr_base, intr_num); |
| ctlr_enable |= CTLR_ENABLE_G0_BIT; |
| } |
| |
| /* Set the priority of this interrupt */ |
| gicr_set_ipriorityr(gicr_base, intr_num, |
| current_prop->intr_pri); |
| |
| /* |
| * Set interrupt configuration for (E)PPIs. |
| * Configurations for SGIs 0-15 are ignored. |
| */ |
| if (intr_num >= MIN_PPI_ID) { |
| gicr_set_icfgr(gicr_base, intr_num, |
| current_prop->intr_cfg); |
| } |
| |
| /* Enable this interrupt */ |
| gicr_set_isenabler(gicr_base, intr_num); |
| } |
| |
| return ctlr_enable; |
| } |
| |
| /** |
| * gicv3_rdistif_get_number_frames() - determine size of GICv3 GICR region |
| * @gicr_frame: base address of the GICR region to check |
| * |
| * This iterates over the GICR_TYPER registers of multiple GICR frames in |
| * a GICR region, to find the instance which has the LAST bit set. For most |
| * systems this corresponds to the number of cores handled by a redistributor, |
| * but there could be disabled cores among them. |
| * It assumes that each GICR region is fully accessible (till the LAST bit |
| * marks the end of the region). |
| * If a platform has multiple GICR regions, this function would need to be |
| * called multiple times, providing the respective GICR base address each time. |
| * |
| * Return: number of valid GICR frames (at least 1, up to PLATFORM_CORE_COUNT) |
| ******************************************************************************/ |
| unsigned int gicv3_rdistif_get_number_frames(const uintptr_t gicr_frame) |
| { |
| uintptr_t rdistif_base = gicr_frame; |
| unsigned int count; |
| |
| for (count = 1U; count < PLATFORM_CORE_COUNT; count++) { |
| uint64_t typer_val = gicr_read_typer(rdistif_base); |
| |
| if ((typer_val & TYPER_LAST_BIT) != 0U) { |
| break; |
| } |
| rdistif_base += gicv3_redist_size(typer_val); |
| } |
| |
| return count; |
| } |
| |
| unsigned int gicv3_get_component_partnum(const uintptr_t gic_frame) |
| { |
| unsigned int part_id; |
| |
| /* |
| * The lower 8 bits of PIDR0, complemented by the lower 4 bits of |
| * PIDR1 contain a part number identifying the GIC component at a |
| * particular base address. |
| */ |
| part_id = mmio_read_32(gic_frame + GICD_PIDR0_GICV3) & 0xff; |
| part_id |= (mmio_read_32(gic_frame + GICD_PIDR1_GICV3) << 8) & 0xf00; |
| |
| return part_id; |
| } |
| |
| /******************************************************************************* |
| * Helper function to return product ID and revision of GIC |
| * @gicd_base: base address of the GIC distributor |
| * @gic_prod_id: retrieved product id of GIC |
| * @gic_rev: retrieved revision of GIC |
| ******************************************************************************/ |
| void gicv3_get_component_prodid_rev(const uintptr_t gicd_base, |
| unsigned int *gic_prod_id, |
| uint8_t *gic_rev) |
| { |
| unsigned int gicd_iidr; |
| uint8_t gic_variant; |
| |
| gicd_iidr = gicd_read_iidr(gicd_base); |
| *gic_prod_id = gicd_iidr >> IIDR_PRODUCT_ID_SHIFT; |
| *gic_prod_id &= IIDR_PRODUCT_ID_MASK; |
| |
| gic_variant = gicd_iidr >> IIDR_VARIANT_SHIFT; |
| gic_variant &= IIDR_VARIANT_MASK; |
| |
| *gic_rev = gicd_iidr >> IIDR_REV_SHIFT; |
| *gic_rev &= IIDR_REV_MASK; |
| |
| /* |
| * pack gic variant and gic_rev in 1 byte |
| * gic_rev = gic_variant[7:4] and gic_rev[0:3] |
| */ |
| *gic_rev = *gic_rev | gic_variant << 0x4; |
| |
| } |