| Runtime Security Engine (RSE) |
| ============================= |
| |
| This document focuses on the relationship between the Runtime Security Engine |
| (RSE) and the application processor (AP). According to the ARM reference design |
| the RSE is an independent core next to the AP and the SCP on the same die. It |
| provides fundamental security guarantees and runtime services for the rest of |
| the system (e.g.: trusted boot, measured boot, platform attestation, |
| key management, and key derivation). |
| |
| At power up RSE boots first from its private ROM code. It validates and loads |
| its own images and the initial images of SCP and AP. When AP and SCP are |
| released from reset and their initial code is loaded then they continue their |
| own boot process, which is the same as on non-RSE systems. Please refer to the |
| ``RSE documentation`` [1]_ for more details about the RSE boot flow. |
| |
| The last stage of the RSE firmware is a persistent, runtime component. Much |
| like AP_BL31, this is a passive entity which has no periodical task to do and |
| just waits for external requests from other subsystems. RSE and other |
| subsystems can communicate with each other over message exchange. RSE waits |
| in idle for the incoming request, handles them, and sends a response then goes |
| back to idle. |
| |
| RSE communication layer |
| ----------------------- |
| |
| The communication between RSE and other subsystems are primarily relying on the |
| Message Handling Unit (MHU) module. The number of MHU interfaces between RSE |
| and other cores is IMPDEF. Besides MHU other modules also could take part in |
| the communication. RSE is capable of mapping the AP memory to its address space. |
| Thereby either RSE core itself or a DMA engine if it is present, can move the |
| data between memory belonging to RSE or AP. In this way, a bigger amount of data |
| can be transferred in a short time. |
| |
| The MHU comes in pairs. There is a sender and receiver side. They are connected |
| to each other. An MHU interface consists of two pairs of MHUs, one sender and |
| one receiver on both sides. Bidirectional communication is possible over an |
| interface. One pair provides message sending from AP to RSE and the other pair |
| from RSE to AP. The sender and receiver are connected via channels. There is an |
| IMPDEF number of channels (e.g: 4-16) between a sender and a receiver module. |
| |
| The RSE communication layer provides two ways for message exchange: |
| |
| - ``Embedded messaging``: The full message, including header and payload, are |
| exchanged over the MHU channels. A channel is capable of delivering a single |
| word. The sender writes the data to the channel register on its side and the |
| receiver can read the data from the channel on the other side. One dedicated |
| channel is used for signalling. It does not deliver any payload it is just |
| meant for signalling that the sender loaded the data to the channel registers |
| so the receiver can read them. The receiver uses the same channel to signal |
| that data was read. Signalling happens via IRQ. If the message is longer than |
| the data fit to the channel registers then the message is sent over in |
| multiple rounds. Both, sender and receiver allocate a local buffer for the |
| messages. Data is copied from/to these buffers to/from the channel registers. |
| - ``Pointer-access messaging``: The message header and the payload are |
| separated and they are conveyed in different ways. The header is sent |
| over the channels, similar to the embedded messaging but the payload is |
| copied over by RSE core (or by DMA) between the sender and the receiver. This |
| could be useful in the case of long messages because transaction time is less |
| compared to the embedded messaging mode. Small payloads are copied by the RSE |
| core because setting up DMA would require more CPU cycles. The payload is |
| either copied into an internal buffer or directly read-written by RSE. Actual |
| behavior depends on RSE setup, whether the partition supports memory-mapped |
| ``iovec``. Therefore, the sender must handle both cases and prevent access to |
| the memory, where payload data lives, while the RSE handles the request. |
| |
| The RSE communication layer supports both ways of messaging in parallel. It is |
| decided at runtime based on the message size which way to transfer the message. |
| |
| .. code-block:: bash |
| |
| +----------------------------------------------+ +-------------------+ |
| | | | | |
| | AP | | | |
| | | +--->| SRAM | |
| +----------------------------------------------| | | | |
| | BL1 / BL2 / BL31 | | | | |
| +----------------------------------------------+ | +-------------------+ |
| | ^ | ^ ^ |
| | send IRQ | receive |direct | | |
| V | |access | | |
| +--------------------+ +--------------------+ | | | |
| | MHU sender | | MHU receiver | | | Copy data | |
| +--------------------+ +--------------------+ | | | |
| | | | | | | | | | | | |
| | | channels | | | | channels | | | | | |
| | | e.g: 4-16 | | | | e.g: 4-16 | | | V | |
| +--------------------+ +--------------------+ | +-------+ | |
| | MHU receiver | | MHU sender | | +->| DMA | | |
| +--------------------+ +--------------------+ | | +-------+ | |
| | ^ | | ^ | |
| IRQ | receive | send | | | Copy data | |
| V | | | V V |
| +----------------------------------------------+ | | +-------------------+ |
| | |--+-+ | | |
| | RSE | | SRAM | |
| | | | | |
| +----------------------------------------------+ +-------------------+ |
| |
| .. Note:: |
| |
| The RSE communication layer is not prepared for concurrent execution. The |
| current use case only requires message exchange during the boot phase. In |
| the boot phase, only a single core is running and the rest of the cores are |
| in reset. |
| |
| Message structure |
| ^^^^^^^^^^^^^^^^^ |
| A description of the message format can be found in the ``RSE communication |
| design`` [2]_ document. |
| |
| Source files |
| ^^^^^^^^^^^^ |
| - RSE comms: ``drivers/arm/rse`` |
| - MHU driver: ``drivers/arm/mhu`` |
| |
| |
| API for communication over MHU |
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
| The API is defined in these header files: |
| |
| - ``include/drivers/arm/rse_comms.h`` |
| - ``include/drivers/arm/mhu.h`` |
| |
| RSE provided runtime services |
| ----------------------------- |
| |
| RSE provides the following runtime services: |
| |
| - ``Measured boot``: Securely store the firmware measurements which were |
| computed during the boot process and the associated metadata (image |
| description, measurement algorithm, etc.). More info on measured boot service |
| in RSE can be found in the ``measured_boot_integration_guide`` [3]_ . |
| - ``Delegated attestation``: Query the platform attestation token and derive a |
| delegated attestation key. More info on the delegated attestation service |
| in RSE can be found in the ``delegated_attestation_integration_guide`` [4]_ . |
| - ``OTP assets management``: Public keys used by AP during the trusted boot |
| process can be requested from RSE. Furthermore, AP can request RSE to |
| increase a non-volatile counter. Please refer to the |
| ``RSE key management`` [5]_ document for more details. |
| |
| Runtime service API |
| ^^^^^^^^^^^^^^^^^^^ |
| The RSE provided runtime services implement a PSA aligned API. The parameter |
| encoding follows the PSA client protocol described in the |
| ``Firmware Framework for M`` [6]_ document in chapter 4.4. The implementation is |
| restricted to the static handle use case therefore only the ``psa_call`` API is |
| implemented. |
| |
| |
| Software and API layers |
| ^^^^^^^^^^^^^^^^^^^^^^^ |
| |
| .. code-block:: bash |
| |
| +----------------+ +---------------------+ |
| | BL1 / BL2 | | BL31 | |
| +----------------+ +---------------------+ |
| | | |
| | extend_measurement() | get_delegated_key() |
| | | get_platform_token() |
| V V |
| +----------------+ +---------------------+ |
| | PSA protocol | | PSA protocol | |
| +----------------+ +---------------------+ |
| | | |
| | psa_call() | psa_call() |
| | | |
| V V |
| +------------------------------------------------+ |
| | RSE communication protocol | |
| +------------------------------------------------+ |
| | ^ |
| | mhu_send_data() | mhu_receive_data() |
| | | |
| V | |
| +------------------------------------------------+ |
| | MHU driver | |
| +------------------------------------------------+ |
| | ^ |
| | Register access | IRQ |
| V | |
| +------------------------------------------------+ |
| | MHU HW on AP side | |
| +------------------------------------------------+ |
| ^ |
| | Physical wires |
| | |
| V |
| +------------------------------------------------+ |
| | MHU HW on RSE side | |
| +------------------------------------------------+ |
| | ^ |
| | IRQ | Register access |
| V | |
| +------------------------------------------------+ |
| | MHU driver | |
| +------------------------------------------------+ |
| | | |
| V V |
| +---------------+ +------------------------+ |
| | Measured boot | | Delegated attestation | |
| | service | | service | |
| +---------------+ +------------------------+ |
| |
| |
| RSE based Measured Boot |
| ----------------------- |
| |
| Measured Boot is the process of cryptographically measuring (computing the hash |
| value of a binary) the code and critical data used at boot time. The |
| measurement must be stored in a tamper-resistant way, so the security state |
| of the device can be attested later to an external party. RSE provides a runtime |
| service which is meant to store measurements and associated metadata alongside. |
| |
| Data is stored in internal SRAM which is only accessible by the secure runtime |
| firmware of RSE. Data is stored in so-called measurement slots. A platform has |
| IMPDEF number of measurement slots. The measurement storage follows extend |
| semantics. This means that measurements are not stored directly (as it was |
| taken) instead they contribute to the current value of the measurement slot. |
| The extension implements this logic, where ``||`` stands for concatenation: |
| |
| .. code-block:: bash |
| |
| new_value_of_measurement_slot = Hash(old_value_of_measurement_slot || measurement) |
| |
| Supported hash algorithms: sha-256, sha-512 |
| |
| Measured Boot API |
| ^^^^^^^^^^^^^^^^^ |
| |
| Defined here: |
| |
| - ``include/lib/psa/measured_boot.h`` |
| |
| .. code-block:: c |
| |
| psa_status_t |
| rse_measured_boot_extend_measurement(uint8_t index, |
| const uint8_t *signer_id, |
| size_t signer_id_size, |
| const uint8_t *version, |
| size_t version_size, |
| uint32_t measurement_algo, |
| const uint8_t *sw_type, |
| size_t sw_type_size, |
| const uint8_t *measurement_value, |
| size_t measurement_value_size, |
| bool lock_measurement); |
| |
| Measured Boot Metadata |
| ^^^^^^^^^^^^^^^^^^^^^^ |
| |
| The following metadata can be stored alongside the measurement: |
| |
| - ``Signer-id``: Mandatory. The hash of the firmware image signing public key. |
| - ``Measurement algorithm``: Optional. The hash algorithm which was used to |
| compute the measurement (e.g.: sha-256, etc.). |
| - ``Version info``: Optional. The firmware version info (e.g.: 2.7). |
| - ``SW type``: Optional. Short text description (e.g.: BL1, BL2, BL31, etc.) |
| |
| .. Note:: |
| Version info is not implemented in TF-A yet. |
| |
| |
| The caller must specify in which measurement slot to extend a certain |
| measurement and metadata. A measurement slot can be extended by multiple |
| measurements. The default value is IMPDEF. All measurement slot is cleared at |
| reset, there is no other way to clear them. In the reference implementation, |
| the measurement slots are initialized to 0. At the first call to extend the |
| measurement in a slot, the extend operation uses the default value of the |
| measurement slot. All upcoming extend operation on the same slot contributes |
| to the previous value of that measurement slot. |
| |
| The following rules are kept when a slot is extended multiple times: |
| |
| - ``Signer-id`` must be the same as the previous call(s), otherwise a |
| PSA_ERROR_NOT_PERMITTED error code is returned. |
| |
| - ``Measurement algorithm``: must be the same as the previous call(s), |
| otherwise, a PSA_ERROR_NOT_PERMITTED error code is returned. |
| |
| In case of error no further action is taken (slot is not locked). If there is |
| a valid data in a sub-sequent call then measurement slot will be extended. The |
| rest of the metadata is handled as follows when a measurement slot is extended |
| multiple times: |
| |
| - ``SW type``: Cleared. |
| - ``Version info``: Cleared. |
| |
| .. Note:: |
| |
| Extending multiple measurements in the same slot leads to some metadata |
| information loss. Since RSE is not constrained on special HW resources to |
| store the measurements and metadata, therefore it is worth considering to |
| store all of them one by one in distinct slots. However, they are one-by-one |
| included in the platform attestation token. So, the number of distinct |
| firmware image measurements has an impact on the size of the attestation |
| token. |
| |
| The allocation of the measurement slot among RSE, Root and Realm worlds is |
| platform dependent. The platform must provide an allocation of the measurement |
| slot at build time. An example can be found in |
| ``tf-a/plat/arm/board/tc/tc_bl1_measured_boot.c`` |
| Furthermore, the memory, which holds the metadata is also statically allocated |
| in RSE memory. Some of the fields have a static value (measurement algorithm), |
| and some of the values have a dynamic value (measurement value) which is updated |
| by the bootloaders when the firmware image is loaded and measured. The metadata |
| structure is defined in |
| ``include/drivers/measured_boot/rse/rse_measured_boot.h``. |
| |
| .. code-block:: c |
| |
| struct rse_mboot_metadata { |
| unsigned int id; |
| uint8_t slot; |
| uint8_t signer_id[SIGNER_ID_MAX_SIZE]; |
| size_t signer_id_size; |
| uint8_t version[VERSION_MAX_SIZE]; |
| size_t version_size; |
| uint8_t sw_type[SW_TYPE_MAX_SIZE]; |
| size_t sw_type_size; |
| void *pk_oid; |
| bool lock_measurement; |
| }; |
| |
| Signer-ID API |
| ^^^^^^^^^^^^^ |
| |
| This function calculates the hash of a public key (signer-ID) using the |
| ``Measurement algorithm`` and stores it in the ``rse_mboot_metadata`` field |
| named ``signer_id``. |
| Prior to calling this function, the caller must ensure that the ``signer_id`` |
| field points to the zero-filled buffer. |
| |
| Defined here: |
| |
| - ``include/drivers/measured_boot/rse/rse_measured_boot.h`` |
| |
| .. code-block:: c |
| |
| int rse_mboot_set_signer_id(struct rse_mboot_metadata *metadata_ptr, |
| const void *pk_oid, |
| const void *pk_ptr, |
| size_t pk_len) |
| |
| |
| - First parameter is the pointer to the ``rse_mboot_metadata`` structure. |
| - Second parameter is the pointer to the key-OID of the public key. |
| - Third parameter is the pointer to the public key buffer. |
| - Fourth parameter is the size of public key buffer. |
| - This function returns 0 on success, a signed integer error code |
| otherwise. |
| |
| Build time config options |
| ^^^^^^^^^^^^^^^^^^^^^^^^^ |
| |
| - ``MEASURED_BOOT``: Enable measured boot. It depends on the platform |
| implementation whether RSE or TPM (or both) backend based measured boot is |
| enabled. |
| - ``MBOOT_RSE_HASH_ALG``: Determine the hash algorithm to measure the images. |
| The default value is sha-256. |
| |
| Measured boot flow |
| ^^^^^^^^^^^^^^^^^^ |
| |
| .. figure:: ../resources/diagrams/rse_measured_boot_flow.svg |
| :align: center |
| |
| Sample console log |
| ^^^^^^^^^^^^^^^^^^ |
| |
| .. code-block:: bash |
| |
| INFO: Measured boot extend measurement: |
| INFO: - slot : 6 |
| INFO: - signer_id : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
| INFO: : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
| INFO: - version : |
| INFO: - version_size: 0 |
| INFO: - sw_type : FW_CONFIG |
| INFO: - sw_type_size: 10 |
| INFO: - algorithm : 2000009 |
| INFO: - measurement : aa ea d3 a7 a8 e2 ab 7d 13 a6 cb 34 99 10 b9 a1 |
| INFO: : 1b 9f a0 52 c5 a8 b1 d7 76 f2 c1 c1 ef ca 1a df |
| INFO: - locking : true |
| INFO: FCONF: Config file with image ID:31 loaded at address = 0x4001010 |
| INFO: Loading image id=24 at address 0x4001300 |
| INFO: Image id=24 loaded: 0x4001300 - 0x400153a |
| INFO: Measured boot extend measurement: |
| INFO: - slot : 7 |
| INFO: - signer_id : b0 f3 82 09 12 97 d8 3a 37 7a 72 47 1b ec 32 73 |
| INFO: : e9 92 32 e2 49 59 f6 5e 8b 4a 4a 46 d8 22 9a da |
| INFO: - version : |
| INFO: - version_size: 0 |
| INFO: - sw_type : TB_FW_CONFIG |
| INFO: - sw_type_size: 13 |
| INFO: - algorithm : 2000009 |
| INFO: - measurement : 05 b9 dc 98 62 26 a7 1c 2d e5 bb af f0 90 52 28 |
| INFO: : f2 24 15 8a 3a 56 60 95 d6 51 3a 7a 1a 50 9b b7 |
| INFO: - locking : true |
| INFO: FCONF: Config file with image ID:24 loaded at address = 0x4001300 |
| INFO: BL1: Loading BL2 |
| INFO: Loading image id=1 at address 0x404d000 |
| INFO: Image id=1 loaded: 0x404d000 - 0x406412a |
| INFO: Measured boot extend measurement: |
| INFO: - slot : 8 |
| INFO: - signer_id : b0 f3 82 09 12 97 d8 3a 37 7a 72 47 1b ec 32 73 |
| INFO: : e9 92 32 e2 49 59 f6 5e 8b 4a 4a 46 d8 22 9a da |
| INFO: - version : |
| INFO: - version_size: 0 |
| INFO: - sw_type : BL_2 |
| INFO: - sw_type_size: 5 |
| INFO: - algorithm : 2000009 |
| INFO: - measurement : 53 a1 51 75 25 90 fb a1 d9 b8 c8 34 32 3a 01 16 |
| INFO: : c9 9e 74 91 7d 28 02 56 3f 5c 40 94 37 58 50 68 |
| INFO: - locking : true |
| |
| Delegated Attestation |
| --------------------- |
| |
| Delegated Attestation Service was mainly developed to support the attestation |
| flow on the ``ARM Confidential Compute Architecture`` (ARM CCA) [7]_. |
| The detailed description of the delegated attestation service can be found in |
| the ``Delegated Attestation Service Integration Guide`` [4]_ document. |
| |
| In the CCA use case, the Realm Management Monitor (RMM) relies on the delegated |
| attestation service of the RSE to get a realm attestation key and the CCA |
| platform token. BL31 does not use the service for its own purpose, only calls |
| it on behalf of RMM. The access to MHU interface and thereby to RSE is |
| restricted to BL31 only. Therefore, RMM does not have direct access, all calls |
| need to go through BL31. The RMM dispatcher module of the BL31 is responsible |
| for delivering the calls between the two parties. |
| |
| .. Note:: |
| Currently the connection between the RMM dispatcher and the PSA/RSE layer |
| is not yet implemented. RMM dispatcher just returns hard coded data. |
| |
| Delegated Attestation API |
| ^^^^^^^^^^^^^^^^^^^^^^^^^ |
| Defined here: |
| |
| - ``include/lib/psa/delegated_attestation.h`` |
| |
| .. code-block:: c |
| |
| psa_status_t |
| rse_delegated_attest_get_delegated_key(uint8_t ecc_curve, |
| uint32_t key_bits, |
| uint8_t *key_buf, |
| size_t key_buf_size, |
| size_t *key_size, |
| uint32_t hash_algo); |
| |
| psa_status_t |
| rse_delegated_attest_get_token(const uint8_t *dak_pub_hash, |
| size_t dak_pub_hash_size, |
| uint8_t *token_buf, |
| size_t token_buf_size, |
| size_t *token_size); |
| |
| Attestation flow |
| ^^^^^^^^^^^^^^^^ |
| |
| .. figure:: ../resources/diagrams/rse_attestation_flow.svg |
| :align: center |
| |
| Sample attestation token |
| ^^^^^^^^^^^^^^^^^^^^^^^^ |
| |
| Binary format: |
| |
| .. code-block:: bash |
| |
| INFO: DELEGATED ATTEST TEST START |
| INFO: Get delegated attestation key start |
| INFO: Get delegated attest key succeeds, len: 48 |
| INFO: Delegated attest key: |
| INFO: 0d 2a 66 61 d4 89 17 e1 70 c6 73 56 df f4 11 fd |
| INFO: 7d 1f 3b 8a a3 30 3d 70 4c d9 06 c3 c7 ef 29 43 |
| INFO: 0f ee b5 e7 56 e0 71 74 1b c4 39 39 fd 85 f6 7b |
| INFO: Get platform token start |
| INFO: Get platform token succeeds, len: 1086 |
| INFO: Platform attestation token: |
| INFO: d2 84 44 a1 01 38 22 a0 59 05 7a a9 19 01 09 78 |
| INFO: 1c 68 74 74 70 3a 2f 2f 61 72 6d 2e 63 6f 6d 2f |
| INFO: 43 43 41 2d 53 53 44 2f 31 2e 30 2e 30 0a 58 20 |
| INFO: b5 97 3c b6 8b aa 9f c5 55 58 78 6b 7e c6 7f 69 |
| INFO: e4 0d f5 ba 5a a9 21 cd 0c 27 f4 05 87 a0 11 ea |
| INFO: 19 09 5c 58 20 7f 45 4c 46 02 01 01 00 00 00 00 |
| INFO: 00 00 00 00 00 03 00 3e 00 01 00 00 00 50 58 00 |
| INFO: 00 00 00 00 00 19 01 00 58 21 01 07 06 05 04 03 |
| INFO: 02 01 00 0f 0e 0d 0c 0b 0a 09 08 17 16 15 14 13 |
| INFO: 12 11 10 1f 1e 1d 1c 1b 1a 19 18 19 09 61 44 cf |
| INFO: cf cf cf 19 09 5b 19 30 03 19 09 62 67 73 68 61 |
| INFO: 2d 32 35 36 19 09 60 78 3a 68 74 74 70 73 3a 2f |
| INFO: 2f 76 65 72 61 69 73 6f 6e 2e 65 78 61 6d 70 6c |
| INFO: 65 2f 2e 77 65 6c 6c 2d 6b 6e 6f 77 6e 2f 76 65 |
| INFO: 72 61 69 73 6f 6e 2f 76 65 72 69 66 69 63 61 74 |
| INFO: 69 6f 6e 19 09 5f 8d a4 01 69 52 53 45 5f 42 4c |
| INFO: 31 5f 32 05 58 20 53 78 79 63 07 53 5d f3 ec 8d |
| INFO: 8b 15 a2 e2 dc 56 41 41 9c 3d 30 60 cf e3 22 38 |
| INFO: c0 fa 97 3f 7a a3 02 58 20 9a 27 1f 2a 91 6b 0b |
| INFO: 6e e6 ce cb 24 26 f0 b3 20 6e f0 74 57 8b e5 5d |
| INFO: 9b c9 4f 6f 3f e3 ab 86 aa 06 67 73 68 61 2d 32 |
| INFO: 35 36 a4 01 67 52 53 45 5f 42 4c 32 05 58 20 53 |
| INFO: 78 79 63 07 53 5d f3 ec 8d 8b 15 a2 e2 dc 56 41 |
| INFO: 41 9c 3d 30 60 cf e3 22 38 c0 fa 97 3f 7a a3 02 |
| INFO: 58 20 53 c2 34 e5 e8 47 2b 6a c5 1c 1a e1 ca b3 |
| INFO: fe 06 fa d0 53 be b8 eb fd 89 77 b0 10 65 5b fd |
| INFO: d3 c3 06 67 73 68 61 2d 32 35 36 a4 01 65 52 53 |
| INFO: 45 5f 53 05 58 20 53 78 79 63 07 53 5d f3 ec 8d |
| INFO: 8b 15 a2 e2 dc 56 41 41 9c 3d 30 60 cf e3 22 38 |
| INFO: c0 fa 97 3f 7a a3 02 58 20 11 21 cf cc d5 91 3f |
| INFO: 0a 63 fe c4 0a 6f fd 44 ea 64 f9 dc 13 5c 66 63 |
| INFO: 4b a0 01 d1 0b cf 43 02 a2 06 67 73 68 61 2d 32 |
| INFO: 35 36 a4 01 66 41 50 5f 42 4c 31 05 58 20 53 78 |
| INFO: 79 63 07 53 5d f3 ec 8d 8b 15 a2 e2 dc 56 41 41 |
| INFO: 9c 3d 30 60 cf e3 22 38 c0 fa 97 3f 7a a3 02 58 |
| INFO: 20 15 71 b5 ec 78 bd 68 51 2b f7 83 0b b6 a2 a4 |
| INFO: 4b 20 47 c7 df 57 bc e7 9e b8 a1 c0 e5 be a0 a5 |
| INFO: 01 06 67 73 68 61 2d 32 35 36 a4 01 66 41 50 5f |
| INFO: 42 4c 32 05 58 20 53 78 79 63 07 53 5d f3 ec 8d |
| INFO: 8b 15 a2 e2 dc 56 41 41 9c 3d 30 60 cf e3 22 38 |
| INFO: c0 fa 97 3f 7a a3 02 58 20 10 15 9b af 26 2b 43 |
| INFO: a9 2d 95 db 59 da e1 f7 2c 64 51 27 30 16 61 e0 |
| INFO: a3 ce 4e 38 b2 95 a9 7c 58 06 67 73 68 61 2d 32 |
| INFO: 35 36 a4 01 67 53 43 50 5f 42 4c 31 05 58 20 53 |
| INFO: 78 79 63 07 53 5d f3 ec 8d 8b 15 a2 e2 dc 56 41 |
| INFO: 41 9c 3d 30 60 cf e3 22 38 c0 fa 97 3f 7a a3 02 |
| INFO: 58 20 10 12 2e 85 6b 3f cd 49 f0 63 63 63 17 47 |
| INFO: 61 49 cb 73 0a 1a a1 cf aa d8 18 55 2b 72 f5 6d |
| INFO: 6f 68 06 67 73 68 61 2d 32 35 36 a4 01 67 53 43 |
| INFO: 50 5f 42 4c 32 05 58 20 f1 4b 49 87 90 4b cb 58 |
| INFO: 14 e4 45 9a 05 7e d4 d2 0f 58 a6 33 15 22 88 a7 |
| INFO: 61 21 4d cd 28 78 0b 56 02 58 20 aa 67 a1 69 b0 |
| INFO: bb a2 17 aa 0a a8 8a 65 34 69 20 c8 4c 42 44 7c |
| INFO: 36 ba 5f 7e a6 5f 42 2c 1f e5 d8 06 67 73 68 61 |
| INFO: 2d 32 35 36 a4 01 67 41 50 5f 42 4c 33 31 05 58 |
| INFO: 20 53 78 79 63 07 53 5d f3 ec 8d 8b 15 a2 e2 dc |
| INFO: 56 41 41 9c 3d 30 60 cf e3 22 38 c0 fa 97 3f 7a |
| INFO: a3 02 58 20 2e 6d 31 a5 98 3a 91 25 1b fa e5 ae |
| INFO: fa 1c 0a 19 d8 ba 3c f6 01 d0 e8 a7 06 b4 cf a9 |
| INFO: 66 1a 6b 8a 06 67 73 68 61 2d 32 35 36 a4 01 63 |
| INFO: 52 4d 4d 05 58 20 53 78 79 63 07 53 5d f3 ec 8d |
| INFO: 8b 15 a2 e2 dc 56 41 41 9c 3d 30 60 cf e3 22 38 |
| INFO: c0 fa 97 3f 7a a3 02 58 20 a1 fb 50 e6 c8 6f ae |
| INFO: 16 79 ef 33 51 29 6f d6 71 34 11 a0 8c f8 dd 17 |
| INFO: 90 a4 fd 05 fa e8 68 81 64 06 67 73 68 61 2d 32 |
| INFO: 35 36 a4 01 69 48 57 5f 43 4f 4e 46 49 47 05 58 |
| INFO: 20 53 78 79 63 07 53 5d f3 ec 8d 8b 15 a2 e2 dc |
| INFO: 56 41 41 9c 3d 30 60 cf e3 22 38 c0 fa 97 3f 7a |
| INFO: a3 02 58 20 1a 25 24 02 97 2f 60 57 fa 53 cc 17 |
| INFO: 2b 52 b9 ff ca 69 8e 18 31 1f ac d0 f3 b0 6e ca |
| INFO: ae f7 9e 17 06 67 73 68 61 2d 32 35 36 a4 01 69 |
| INFO: 46 57 5f 43 4f 4e 46 49 47 05 58 20 53 78 79 63 |
| INFO: 07 53 5d f3 ec 8d 8b 15 a2 e2 dc 56 41 41 9c 3d |
| INFO: 30 60 cf e3 22 38 c0 fa 97 3f 7a a3 02 58 20 9a |
| INFO: 92 ad bc 0c ee 38 ef 65 8c 71 ce 1b 1b f8 c6 56 |
| INFO: 68 f1 66 bf b2 13 64 4c 89 5c cb 1a d0 7a 25 06 |
| INFO: 67 73 68 61 2d 32 35 36 a4 01 6c 54 42 5f 46 57 |
| INFO: 5f 43 4f 4e 46 49 47 05 58 20 53 78 79 63 07 53 |
| INFO: 5d f3 ec 8d 8b 15 a2 e2 dc 56 41 41 9c 3d 30 60 |
| INFO: cf e3 22 38 c0 fa 97 3f 7a a3 02 58 20 23 89 03 |
| INFO: 18 0c c1 04 ec 2c 5d 8b 3f 20 c5 bc 61 b3 89 ec |
| INFO: 0a 96 7d f8 cc 20 8c dc 7c d4 54 17 4f 06 67 73 |
| INFO: 68 61 2d 32 35 36 a4 01 6d 53 4f 43 5f 46 57 5f |
| INFO: 43 4f 4e 46 49 47 05 58 20 53 78 79 63 07 53 5d |
| INFO: f3 ec 8d 8b 15 a2 e2 dc 56 41 41 9c 3d 30 60 cf |
| INFO: e3 22 38 c0 fa 97 3f 7a a3 02 58 20 e6 c2 1e 8d |
| INFO: 26 0f e7 18 82 de bd b3 39 d2 40 2a 2c a7 64 85 |
| INFO: 29 bc 23 03 f4 86 49 bc e0 38 00 17 06 67 73 68 |
| INFO: 61 2d 32 35 36 58 60 21 51 20 92 d6 d0 2a e6 be |
| INFO: 2f e3 93 0e a5 1f d6 98 96 32 24 56 e9 df c7 32 |
| INFO: 5e 0b 78 68 b6 90 73 2a 0c 0f 07 77 c1 15 40 4b |
| INFO: e1 fc 83 9b 7d 30 4f 4f e6 fa 46 ae 12 a3 08 3a |
| INFO: cf 24 06 67 91 06 bf ae 50 31 79 dd 50 33 49 12 |
| INFO: bf c6 da 33 6d d6 18 25 43 54 4d b5 88 d6 ae 67 |
| INFO: 35 7a fd b0 5f 95 b7 |
| INFO: DELEGATED ATTEST TEST END |
| |
| JSON format: |
| |
| .. code-block:: JSON |
| |
| { |
| "CCA_ATTESTATION_PROFILE": "http://arm.com/CCA-SSD/1.0.0", |
| "CCA_PLATFORM_CHALLENGE": "b'B5973CB68BAA9FC55558786B7EC67F69E40DF5BA5AA921CD0C27F40587A011EA'", |
| "CCA_PLATFORM_IMPLEMENTATION_ID": "b'7F454C4602010100000000000000000003003E00010000005058000000000000'", |
| "CCA_PLATFORM_INSTANCE_ID": "b'0107060504030201000F0E0D0C0B0A090817161514131211101F1E1D1C1B1A1918'", |
| "CCA_PLATFORM_CONFIG": "b'CFCFCFCF'", |
| "CCA_PLATFORM_LIFECYCLE": "secured_3003", |
| "CCA_PLATFORM_HASH_ALGO_ID": "sha-256", |
| "CCA_PLATFORM_VERIFICATION_SERVICE": "https://veraison.example/.well-known/veraison/verification", |
| "CCA_PLATFORM_SW_COMPONENTS": [ |
| { |
| "SW_COMPONENT_TYPE": "RSE_BL1_2", |
| "SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'", |
| "MEASUREMENT_VALUE": "b'9A271F2A916B0B6EE6CECB2426F0B3206EF074578BE55D9BC94F6F3FE3AB86AA'", |
| "CCA_SW_COMPONENT_HASH_ID": "sha-256" |
| }, |
| { |
| "SW_COMPONENT_TYPE": "RSE_BL2", |
| "SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'", |
| "MEASUREMENT_VALUE": "b'53C234E5E8472B6AC51C1AE1CAB3FE06FAD053BEB8EBFD8977B010655BFDD3C3'", |
| "CCA_SW_COMPONENT_HASH_ID": "sha-256" |
| }, |
| { |
| "SW_COMPONENT_TYPE": "RSE_S", |
| "SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'", |
| "MEASUREMENT_VALUE": "b'1121CFCCD5913F0A63FEC40A6FFD44EA64F9DC135C66634BA001D10BCF4302A2'", |
| "CCA_SW_COMPONENT_HASH_ID": "sha-256" |
| }, |
| { |
| "SW_COMPONENT_TYPE": "AP_BL1", |
| "SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'", |
| "MEASUREMENT_VALUE": "b'1571B5EC78BD68512BF7830BB6A2A44B2047C7DF57BCE79EB8A1C0E5BEA0A501'", |
| "CCA_SW_COMPONENT_HASH_ID": "sha-256" |
| }, |
| { |
| "SW_COMPONENT_TYPE": "AP_BL2", |
| "SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'", |
| "MEASUREMENT_VALUE": "b'10159BAF262B43A92D95DB59DAE1F72C645127301661E0A3CE4E38B295A97C58'", |
| "CCA_SW_COMPONENT_HASH_ID": "sha-256" |
| }, |
| { |
| "SW_COMPONENT_TYPE": "SCP_BL1", |
| "SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'", |
| "MEASUREMENT_VALUE": "b'10122E856B3FCD49F063636317476149CB730A1AA1CFAAD818552B72F56D6F68'", |
| "CCA_SW_COMPONENT_HASH_ID": "sha-256" |
| }, |
| { |
| "SW_COMPONENT_TYPE": "SCP_BL2", |
| "SIGNER_ID": "b'F14B4987904BCB5814E4459A057ED4D20F58A633152288A761214DCD28780B56'", |
| "MEASUREMENT_VALUE": "b'AA67A169B0BBA217AA0AA88A65346920C84C42447C36BA5F7EA65F422C1FE5D8'", |
| "CCA_SW_COMPONENT_HASH_ID": "sha-256" |
| }, |
| { |
| "SW_COMPONENT_TYPE": "AP_BL31", |
| "SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'", |
| "MEASUREMENT_VALUE": "b'2E6D31A5983A91251BFAE5AEFA1C0A19D8BA3CF601D0E8A706B4CFA9661A6B8A'", |
| "CCA_SW_COMPONENT_HASH_ID": "sha-256" |
| }, |
| { |
| "SW_COMPONENT_TYPE": "RMM", |
| "SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'", |
| "MEASUREMENT_VALUE": "b'A1FB50E6C86FAE1679EF3351296FD6713411A08CF8DD1790A4FD05FAE8688164'", |
| "CCA_SW_COMPONENT_HASH_ID": "sha-256" |
| }, |
| { |
| "SW_COMPONENT_TYPE": "HW_CONFIG", |
| "SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'", |
| "MEASUREMENT_VALUE": "b'1A252402972F6057FA53CC172B52B9FFCA698E18311FACD0F3B06ECAAEF79E17'", |
| "CCA_SW_COMPONENT_HASH_ID": "sha-256" |
| }, |
| { |
| "SW_COMPONENT_TYPE": "FW_CONFIG", |
| "SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'", |
| "MEASUREMENT_VALUE": "b'9A92ADBC0CEE38EF658C71CE1B1BF8C65668F166BFB213644C895CCB1AD07A25'", |
| "CCA_SW_COMPONENT_HASH_ID": "sha-256" |
| }, |
| { |
| "SW_COMPONENT_TYPE": "TB_FW_CONFIG", |
| "SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'", |
| "MEASUREMENT_VALUE": "b'238903180CC104EC2C5D8B3F20C5BC61B389EC0A967DF8CC208CDC7CD454174F'", |
| "CCA_SW_COMPONENT_HASH_ID": "sha-256" |
| }, |
| { |
| "SW_COMPONENT_TYPE": "SOC_FW_CONFIG", |
| "SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'", |
| "MEASUREMENT_VALUE": "b'E6C21E8D260FE71882DEBDB339D2402A2CA7648529BC2303F48649BCE0380017'", |
| "CCA_SW_COMPONENT_HASH_ID": "sha-256" |
| } |
| ] |
| } |
| |
| RSE OTP Assets Management |
| ------------------------- |
| |
| RSE provides access for AP to assets in OTP, which include keys for image |
| signature verification and non-volatile counters for anti-rollback protection. |
| |
| Non-Volatile Counter API |
| ^^^^^^^^^^^^^^^^^^^^^^^^ |
| |
| AP/RSE interface for retrieving and incrementing non-volatile counters API is |
| as follows. |
| |
| Defined here: |
| |
| - ``include/lib/psa/rse_platform_api.h`` |
| |
| .. code-block:: c |
| |
| psa_status_t rse_platform_nv_counter_increment(uint32_t counter_id) |
| |
| psa_status_t rse_platform_nv_counter_read(uint32_t counter_id, |
| uint32_t size, uint8_t *val) |
| |
| Through this service, we can read/increment any of the 3 non-volatile |
| counters used on an Arm CCA platform: |
| |
| - ``Non-volatile counter for CCA firmware (BL2, BL31, RMM).`` |
| - ``Non-volatile counter for secure firmware.`` |
| - ``Non-volatile counter for non-secure firmware.`` |
| |
| Public Key API |
| ^^^^^^^^^^^^^^ |
| |
| AP/RSE interface for reading the ROTPK is as follows. |
| |
| Defined here: |
| |
| - ``include/lib/psa/rse_platform_api.h`` |
| |
| .. code-block:: c |
| |
| psa_status_t rse_platform_key_read(enum rse_key_id_builtin_t key, |
| uint8_t *data, size_t data_size, size_t *data_length) |
| |
| Through this service, we can read any of the 3 ROTPKs used on an |
| Arm CCA platform: |
| |
| - ``ROTPK for CCA firmware (BL2, BL31, RMM).`` |
| - ``ROTPK for secure firmware.`` |
| - ``ROTPK for non-secure firmware.`` |
| |
| References |
| ---------- |
| |
| .. [1] https://tf-m-user-guide.trustedfirmware.org/platform/arm/rse/readme.html |
| .. [2] https://tf-m-user-guide.trustedfirmware.org/platform/arm/rse/rse_comms.html |
| .. [3] https://git.trustedfirmware.org/TF-M/tf-m-extras.git/tree/partitions/measured_boot/measured_boot_integration_guide.rst |
| .. [4] https://git.trustedfirmware.org/TF-M/tf-m-extras.git/tree/partitions/delegated_attestation/delegated_attest_integration_guide.rst |
| .. [5] https://tf-m-user-guide.trustedfirmware.org/platform/arm/rse/rse_key_management.html |
| .. [6] https://developer.arm.com/-/media/Files/pdf/PlatformSecurityArchitecture/Architect/DEN0063-PSA_Firmware_Framework-1.0.0-2.pdf?revision=2d1429fa-4b5b-461a-a60e-4ef3d8f7f4b4&hash=3BFD6F3E687F324672F18E5BE9F08EDC48087C93 |
| .. [7] https://developer.arm.com/documentation/DEN0096/A_a/?lang=en |
| |
| -------------- |
| |
| *Copyright (c) 2023, Arm Limited. All rights reserved.* |
| *Copyright (c) 2024, Linaro Limited. All rights reserved.* |