blob: 7a25151c587041bc476d7a67d36dc6082c6fa71d [file] [log] [blame]
/*
* Copyright (c) 2013-2021, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <platform_def.h>
#include <arch.h>
#include <arch_helpers.h>
#include <arch_features.h>
#include <bl31/interrupt_mgmt.h>
#include <common/bl_common.h>
#include <context.h>
#include <lib/el3_runtime/context_mgmt.h>
#include <lib/el3_runtime/pubsub_events.h>
#include <lib/extensions/amu.h>
#include <lib/extensions/mpam.h>
#include <lib/extensions/spe.h>
#include <lib/extensions/sve.h>
#include <lib/extensions/twed.h>
#include <lib/utils.h>
/*******************************************************************************
* Context management library initialisation routine. This library is used by
* runtime services to share pointers to 'cpu_context' structures for the secure
* and non-secure states. Management of the structures and their associated
* memory is not done by the context management library e.g. the PSCI service
* manages the cpu context used for entry from and exit to the non-secure state.
* The Secure payload dispatcher service manages the context(s) corresponding to
* the secure state. It also uses this library to get access to the non-secure
* state cpu context pointers.
* Lastly, this library provides the api to make SP_EL3 point to the cpu context
* which will used for programming an entry into a lower EL. The same context
* will used to save state upon exception entry from that EL.
******************************************************************************/
void __init cm_init(void)
{
/*
* The context management library has only global data to intialize, but
* that will be done when the BSS is zeroed out
*/
}
/*******************************************************************************
* The following function initializes the cpu_context 'ctx' for
* first use, and sets the initial entrypoint state as specified by the
* entry_point_info structure.
*
* The security state to initialize is determined by the SECURE attribute
* of the entry_point_info.
*
* The EE and ST attributes are used to configure the endianness and secure
* timer availability for the new execution context.
*
* To prepare the register state for entry call cm_prepare_el3_exit() and
* el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
* cm_el1_sysregs_context_restore().
******************************************************************************/
void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
{
unsigned int security_state;
u_register_t scr_el3;
el3_state_t *state;
gp_regs_t *gp_regs;
u_register_t sctlr_elx, actlr_elx;
assert(ctx != NULL);
security_state = GET_SECURITY_STATE(ep->h.attr);
/* Clear any residual register values from the context */
zeromem(ctx, sizeof(*ctx));
/*
* SCR_EL3 was initialised during reset sequence in macro
* el3_arch_init_common. This code modifies the SCR_EL3 fields that
* affect the next EL.
*
* The following fields are initially set to zero and then updated to
* the required value depending on the state of the SPSR_EL3 and the
* Security state and entrypoint attributes of the next EL.
*/
scr_el3 = read_scr();
scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
SCR_ST_BIT | SCR_HCE_BIT);
/*
* SCR_NS: Set the security state of the next EL.
*/
if (security_state != SECURE)
scr_el3 |= SCR_NS_BIT;
/*
* SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
* Exception level as specified by SPSR.
*/
if (GET_RW(ep->spsr) == MODE_RW_64)
scr_el3 |= SCR_RW_BIT;
/*
* SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
* Secure timer registers to EL3, from AArch64 state only, if specified
* by the entrypoint attributes.
*/
if (EP_GET_ST(ep->h.attr) != 0U)
scr_el3 |= SCR_ST_BIT;
#if RAS_TRAP_LOWER_EL_ERR_ACCESS
/*
* SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
* and RAS ERX registers from EL1 and EL2 are trapped to EL3.
*/
scr_el3 |= SCR_TERR_BIT;
#endif
#if !HANDLE_EA_EL3_FIRST
/*
* SCR_EL3.EA: Do not route External Abort and SError Interrupt External
* to EL3 when executing at a lower EL. When executing at EL3, External
* Aborts are taken to EL3.
*/
scr_el3 &= ~SCR_EA_BIT;
#endif
#if FAULT_INJECTION_SUPPORT
/* Enable fault injection from lower ELs */
scr_el3 |= SCR_FIEN_BIT;
#endif
#if !CTX_INCLUDE_PAUTH_REGS
/*
* If the pointer authentication registers aren't saved during world
* switches the value of the registers can be leaked from the Secure to
* the Non-secure world. To prevent this, rather than enabling pointer
* authentication everywhere, we only enable it in the Non-secure world.
*
* If the Secure world wants to use pointer authentication,
* CTX_INCLUDE_PAUTH_REGS must be set to 1.
*/
if (security_state == NON_SECURE)
scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
#endif /* !CTX_INCLUDE_PAUTH_REGS */
#if !CTX_INCLUDE_MTE_REGS || ENABLE_ASSERTIONS
/* Get Memory Tagging Extension support level */
unsigned int mte = get_armv8_5_mte_support();
#endif
/*
* Enable MTE support. Support is enabled unilaterally for the normal
* world, and only for the secure world when CTX_INCLUDE_MTE_REGS is
* set.
*/
#if CTX_INCLUDE_MTE_REGS
assert((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY));
scr_el3 |= SCR_ATA_BIT;
#else
/*
* When MTE is only implemented at EL0, it can be enabled
* across both worlds as no MTE registers are used.
*/
if ((mte == MTE_IMPLEMENTED_EL0) ||
/*
* When MTE is implemented at all ELs, it can be only enabled
* in Non-Secure world without register saving.
*/
(((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY)) &&
(security_state == NON_SECURE))) {
scr_el3 |= SCR_ATA_BIT;
}
#endif /* CTX_INCLUDE_MTE_REGS */
#ifdef IMAGE_BL31
/*
* SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
* indicated by the interrupt routing model for BL31.
*/
scr_el3 |= get_scr_el3_from_routing_model(security_state);
#if ENABLE_SVE_FOR_NS
if (security_state == NON_SECURE) {
sve_enable(ctx);
}
#endif
#if ENABLE_SVE_FOR_SWD
if (security_state == SECURE) {
sve_enable(ctx);
}
#endif
#endif
/*
* SCR_EL3.HCE: Enable HVC instructions if next execution state is
* AArch64 and next EL is EL2, or if next execution state is AArch32 and
* next mode is Hyp.
* SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
* same conditions as HVC instructions and when the processor supports
* ARMv8.6-FGT.
* SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
* CNTPOFF_EL2 register under the same conditions as HVC instructions
* and when the processor supports ECV.
*/
if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
|| ((GET_RW(ep->spsr) != MODE_RW_64)
&& (GET_M32(ep->spsr) == MODE32_hyp))) {
scr_el3 |= SCR_HCE_BIT;
if (is_armv8_6_fgt_present()) {
scr_el3 |= SCR_FGTEN_BIT;
}
if (get_armv8_6_ecv_support()
== ID_AA64MMFR0_EL1_ECV_SELF_SYNCH) {
scr_el3 |= SCR_ECVEN_BIT;
}
}
/* Enable S-EL2 if the next EL is EL2 and security state is secure */
if ((security_state == SECURE) && (GET_EL(ep->spsr) == MODE_EL2)) {
if (GET_RW(ep->spsr) != MODE_RW_64) {
ERROR("S-EL2 can not be used in AArch32.");
panic();
}
scr_el3 |= SCR_EEL2_BIT;
}
/*
* FEAT_AMUv1p1 virtual offset registers are only accessible from EL3
* and EL2, when clear, this bit traps accesses from EL2 so we set it
* to 1 when EL2 is present.
*/
if (is_armv8_6_feat_amuv1p1_present() &&
(el_implemented(2) != EL_IMPL_NONE)) {
scr_el3 |= SCR_AMVOFFEN_BIT;
}
/*
* Initialise SCTLR_EL1 to the reset value corresponding to the target
* execution state setting all fields rather than relying of the hw.
* Some fields have architecturally UNKNOWN reset values and these are
* set to zero.
*
* SCTLR.EE: Endianness is taken from the entrypoint attributes.
*
* SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
* required by PSCI specification)
*/
sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0U;
if (GET_RW(ep->spsr) == MODE_RW_64)
sctlr_elx |= SCTLR_EL1_RES1;
else {
/*
* If the target execution state is AArch32 then the following
* fields need to be set.
*
* SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
* instructions are not trapped to EL1.
*
* SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
* instructions are not trapped to EL1.
*
* SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
* CP15DMB, CP15DSB, and CP15ISB instructions.
*/
sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
}
#if ERRATA_A75_764081
/*
* If workaround of errata 764081 for Cortex-A75 is used then set
* SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
*/
sctlr_elx |= SCTLR_IESB_BIT;
#endif
/* Enable WFE trap delay in SCR_EL3 if supported and configured */
if (is_armv8_6_twed_present()) {
uint32_t delay = plat_arm_set_twedel_scr_el3();
if (delay != TWED_DISABLED) {
/* Make sure delay value fits */
assert((delay & ~SCR_TWEDEL_MASK) == 0U);
/* Set delay in SCR_EL3 */
scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
scr_el3 |= ((delay & SCR_TWEDEL_MASK)
<< SCR_TWEDEL_SHIFT);
/* Enable WFE delay */
scr_el3 |= SCR_TWEDEn_BIT;
}
}
/*
* Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
* and other EL2 registers are set up by cm_prepare_el3_exit() as they
* are not part of the stored cpu_context.
*/
write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
/*
* Base the context ACTLR_EL1 on the current value, as it is
* implementation defined. The context restore process will write
* the value from the context to the actual register and can cause
* problems for processor cores that don't expect certain bits to
* be zero.
*/
actlr_elx = read_actlr_el1();
write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
/*
* Populate EL3 state so that we've the right context
* before doing ERET
*/
state = get_el3state_ctx(ctx);
write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
/*
* Store the X0-X7 value from the entrypoint into the context
* Use memcpy as we are in control of the layout of the structures
*/
gp_regs = get_gpregs_ctx(ctx);
memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
}
/*******************************************************************************
* Enable architecture extensions on first entry to Non-secure world.
* When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
* it is zero.
******************************************************************************/
static void enable_extensions_nonsecure(bool el2_unused)
{
#if IMAGE_BL31
#if ENABLE_SPE_FOR_LOWER_ELS
spe_enable(el2_unused);
#endif
#if ENABLE_AMU
amu_enable(el2_unused);
#endif
#if ENABLE_MPAM_FOR_LOWER_ELS
mpam_enable(el2_unused);
#endif
#endif
}
/*******************************************************************************
* The following function initializes the cpu_context for a CPU specified by
* its `cpu_idx` for first use, and sets the initial entrypoint state as
* specified by the entry_point_info structure.
******************************************************************************/
void cm_init_context_by_index(unsigned int cpu_idx,
const entry_point_info_t *ep)
{
cpu_context_t *ctx;
ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
cm_setup_context(ctx, ep);
}
/*******************************************************************************
* The following function initializes the cpu_context for the current CPU
* for first use, and sets the initial entrypoint state as specified by the
* entry_point_info structure.
******************************************************************************/
void cm_init_my_context(const entry_point_info_t *ep)
{
cpu_context_t *ctx;
ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
cm_setup_context(ctx, ep);
}
/*******************************************************************************
* Prepare the CPU system registers for first entry into secure or normal world
*
* If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
* If execution is requested to non-secure EL1 or svc mode, and the CPU supports
* EL2 then EL2 is disabled by configuring all necessary EL2 registers.
* For all entries, the EL1 registers are initialized from the cpu_context
******************************************************************************/
void cm_prepare_el3_exit(uint32_t security_state)
{
u_register_t sctlr_elx, scr_el3, mdcr_el2;
cpu_context_t *ctx = cm_get_context(security_state);
bool el2_unused = false;
uint64_t hcr_el2 = 0U;
assert(ctx != NULL);
if (security_state == NON_SECURE) {
scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
CTX_SCR_EL3);
if ((scr_el3 & SCR_HCE_BIT) != 0U) {
/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
CTX_SCTLR_EL1);
sctlr_elx &= SCTLR_EE_BIT;
sctlr_elx |= SCTLR_EL2_RES1;
#if ERRATA_A75_764081
/*
* If workaround of errata 764081 for Cortex-A75 is used
* then set SCTLR_EL2.IESB to enable Implicit Error
* Synchronization Barrier.
*/
sctlr_elx |= SCTLR_IESB_BIT;
#endif
write_sctlr_el2(sctlr_elx);
} else if (el_implemented(2) != EL_IMPL_NONE) {
el2_unused = true;
/*
* EL2 present but unused, need to disable safely.
* SCTLR_EL2 can be ignored in this case.
*
* Set EL2 register width appropriately: Set HCR_EL2
* field to match SCR_EL3.RW.
*/
if ((scr_el3 & SCR_RW_BIT) != 0U)
hcr_el2 |= HCR_RW_BIT;
/*
* For Armv8.3 pointer authentication feature, disable
* traps to EL2 when accessing key registers or using
* pointer authentication instructions from lower ELs.
*/
hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
write_hcr_el2(hcr_el2);
/*
* Initialise CPTR_EL2 setting all fields rather than
* relying on the hw. All fields have architecturally
* UNKNOWN reset values.
*
* CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
* accesses to the CPACR_EL1 or CPACR from both
* Execution states do not trap to EL2.
*
* CPTR_EL2.TTA: Set to zero so that Non-secure System
* register accesses to the trace registers from both
* Execution states do not trap to EL2.
*
* CPTR_EL2.TFP: Set to zero so that Non-secure accesses
* to SIMD and floating-point functionality from both
* Execution states do not trap to EL2.
*/
write_cptr_el2(CPTR_EL2_RESET_VAL &
~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
| CPTR_EL2_TFP_BIT));
/*
* Initialise CNTHCTL_EL2. All fields are
* architecturally UNKNOWN on reset and are set to zero
* except for field(s) listed below.
*
* CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
* Hyp mode of Non-secure EL0 and EL1 accesses to the
* physical timer registers.
*
* CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
* Hyp mode of Non-secure EL0 and EL1 accesses to the
* physical counter registers.
*/
write_cnthctl_el2(CNTHCTL_RESET_VAL |
EL1PCEN_BIT | EL1PCTEN_BIT);
/*
* Initialise CNTVOFF_EL2 to zero as it resets to an
* architecturally UNKNOWN value.
*/
write_cntvoff_el2(0);
/*
* Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
* MPIDR_EL1 respectively.
*/
write_vpidr_el2(read_midr_el1());
write_vmpidr_el2(read_mpidr_el1());
/*
* Initialise VTTBR_EL2. All fields are architecturally
* UNKNOWN on reset.
*
* VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
* 2 address translation is disabled, cache maintenance
* operations depend on the VMID.
*
* VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
* translation is disabled.
*/
write_vttbr_el2(VTTBR_RESET_VAL &
~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
/*
* Initialise MDCR_EL2, setting all fields rather than
* relying on hw. Some fields are architecturally
* UNKNOWN on reset.
*
* MDCR_EL2.HLP: Set to one so that event counter
* overflow, that is recorded in PMOVSCLR_EL0[0-30],
* occurs on the increment that changes
* PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is
* implemented. This bit is RES0 in versions of the
* architecture earlier than ARMv8.5, setting it to 1
* doesn't have any effect on them.
*
* MDCR_EL2.TTRF: Set to zero so that access to Trace
* Filter Control register TRFCR_EL1 at EL1 is not
* trapped to EL2. This bit is RES0 in versions of
* the architecture earlier than ARMv8.4.
*
* MDCR_EL2.HPMD: Set to one so that event counting is
* prohibited at EL2. This bit is RES0 in versions of
* the architecture earlier than ARMv8.1, setting it
* to 1 doesn't have any effect on them.
*
* MDCR_EL2.TPMS: Set to zero so that accesses to
* Statistical Profiling control registers from EL1
* do not trap to EL2. This bit is RES0 when SPE is
* not implemented.
*
* MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
* EL1 System register accesses to the Debug ROM
* registers are not trapped to EL2.
*
* MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
* System register accesses to the powerdown debug
* registers are not trapped to EL2.
*
* MDCR_EL2.TDA: Set to zero so that System register
* accesses to the debug registers do not trap to EL2.
*
* MDCR_EL2.TDE: Set to zero so that debug exceptions
* are not routed to EL2.
*
* MDCR_EL2.HPME: Set to zero to disable EL2 Performance
* Monitors.
*
* MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
* EL1 accesses to all Performance Monitors registers
* are not trapped to EL2.
*
* MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
* and EL1 accesses to the PMCR_EL0 or PMCR are not
* trapped to EL2.
*
* MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
* architecturally-defined reset value.
*/
mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP |
MDCR_EL2_HPMD) |
((read_pmcr_el0() & PMCR_EL0_N_BITS)
>> PMCR_EL0_N_SHIFT)) &
~(MDCR_EL2_TTRF | MDCR_EL2_TPMS |
MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT |
MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT |
MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT |
MDCR_EL2_TPMCR_BIT);
write_mdcr_el2(mdcr_el2);
/*
* Initialise HSTR_EL2. All fields are architecturally
* UNKNOWN on reset.
*
* HSTR_EL2.T<n>: Set all these fields to zero so that
* Non-secure EL0 or EL1 accesses to System registers
* do not trap to EL2.
*/
write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
/*
* Initialise CNTHP_CTL_EL2. All fields are
* architecturally UNKNOWN on reset.
*
* CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
* physical timer and prevent timer interrupts.
*/
write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
~(CNTHP_CTL_ENABLE_BIT));
}
enable_extensions_nonsecure(el2_unused);
}
cm_el1_sysregs_context_restore(security_state);
cm_set_next_eret_context(security_state);
}
#if CTX_INCLUDE_EL2_REGS
/*******************************************************************************
* Save EL2 sysreg context
******************************************************************************/
void cm_el2_sysregs_context_save(uint32_t security_state)
{
u_register_t scr_el3 = read_scr();
/*
* Always save the non-secure EL2 context, only save the
* S-EL2 context if S-EL2 is enabled.
*/
if ((security_state == NON_SECURE) ||
((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
cpu_context_t *ctx;
ctx = cm_get_context(security_state);
assert(ctx != NULL);
el2_sysregs_context_save(get_el2_sysregs_ctx(ctx));
}
}
/*******************************************************************************
* Restore EL2 sysreg context
******************************************************************************/
void cm_el2_sysregs_context_restore(uint32_t security_state)
{
u_register_t scr_el3 = read_scr();
/*
* Always restore the non-secure EL2 context, only restore the
* S-EL2 context if S-EL2 is enabled.
*/
if ((security_state == NON_SECURE) ||
((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
cpu_context_t *ctx;
ctx = cm_get_context(security_state);
assert(ctx != NULL);
el2_sysregs_context_restore(get_el2_sysregs_ctx(ctx));
}
}
#endif /* CTX_INCLUDE_EL2_REGS */
/*******************************************************************************
* The next four functions are used by runtime services to save and restore
* EL1 context on the 'cpu_context' structure for the specified security
* state.
******************************************************************************/
void cm_el1_sysregs_context_save(uint32_t security_state)
{
cpu_context_t *ctx;
ctx = cm_get_context(security_state);
assert(ctx != NULL);
el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
#if IMAGE_BL31
if (security_state == SECURE)
PUBLISH_EVENT(cm_exited_secure_world);
else
PUBLISH_EVENT(cm_exited_normal_world);
#endif
}
void cm_el1_sysregs_context_restore(uint32_t security_state)
{
cpu_context_t *ctx;
ctx = cm_get_context(security_state);
assert(ctx != NULL);
el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
#if IMAGE_BL31
if (security_state == SECURE)
PUBLISH_EVENT(cm_entering_secure_world);
else
PUBLISH_EVENT(cm_entering_normal_world);
#endif
}
/*******************************************************************************
* This function populates ELR_EL3 member of 'cpu_context' pertaining to the
* given security state with the given entrypoint
******************************************************************************/
void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
{
cpu_context_t *ctx;
el3_state_t *state;
ctx = cm_get_context(security_state);
assert(ctx != NULL);
/* Populate EL3 state so that ERET jumps to the correct entry */
state = get_el3state_ctx(ctx);
write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
}
/*******************************************************************************
* This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
* pertaining to the given security state
******************************************************************************/
void cm_set_elr_spsr_el3(uint32_t security_state,
uintptr_t entrypoint, uint32_t spsr)
{
cpu_context_t *ctx;
el3_state_t *state;
ctx = cm_get_context(security_state);
assert(ctx != NULL);
/* Populate EL3 state so that ERET jumps to the correct entry */
state = get_el3state_ctx(ctx);
write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
write_ctx_reg(state, CTX_SPSR_EL3, spsr);
}
/*******************************************************************************
* This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
* pertaining to the given security state using the value and bit position
* specified in the parameters. It preserves all other bits.
******************************************************************************/
void cm_write_scr_el3_bit(uint32_t security_state,
uint32_t bit_pos,
uint32_t value)
{
cpu_context_t *ctx;
el3_state_t *state;
u_register_t scr_el3;
ctx = cm_get_context(security_state);
assert(ctx != NULL);
/* Ensure that the bit position is a valid one */
assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
/* Ensure that the 'value' is only a bit wide */
assert(value <= 1U);
/*
* Get the SCR_EL3 value from the cpu context, clear the desired bit
* and set it to its new value.
*/
state = get_el3state_ctx(ctx);
scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
scr_el3 &= ~(1UL << bit_pos);
scr_el3 |= (u_register_t)value << bit_pos;
write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
}
/*******************************************************************************
* This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
* given security state.
******************************************************************************/
u_register_t cm_get_scr_el3(uint32_t security_state)
{
cpu_context_t *ctx;
el3_state_t *state;
ctx = cm_get_context(security_state);
assert(ctx != NULL);
/* Populate EL3 state so that ERET jumps to the correct entry */
state = get_el3state_ctx(ctx);
return read_ctx_reg(state, CTX_SCR_EL3);
}
/*******************************************************************************
* This function is used to program the context that's used for exception
* return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
* the required security state
******************************************************************************/
void cm_set_next_eret_context(uint32_t security_state)
{
cpu_context_t *ctx;
ctx = cm_get_context(security_state);
assert(ctx != NULL);
cm_set_next_context(ctx);
}