blob: 345850b82745c01f62c3d62260f60015c236e38e [file] [log] [blame]
/*
* Copyright (c) 2023-2024, STMicroelectronics - All Rights Reserved
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <cdefs.h>
#include <errno.h>
#include <stdint.h>
#include <common/debug.h>
#include <common/desc_image_load.h>
#include <drivers/clk.h>
#include <drivers/mmc.h>
#include <drivers/st/regulator_fixed.h>
#include <drivers/st/stm32mp2_ddr_helpers.h>
#include <drivers/st/stm32mp2_ram.h>
#include <drivers/st/stm32mp_pmic2.h>
#include <drivers/st/stm32mp_risab_regs.h>
#include <lib/fconf/fconf.h>
#include <lib/fconf/fconf_dyn_cfg_getter.h>
#include <lib/mmio.h>
#include <lib/optee_utils.h>
#include <lib/xlat_tables/xlat_tables_v2.h>
#include <plat/common/platform.h>
#include <platform_def.h>
#include <stm32mp_common.h>
#include <stm32mp_dt.h>
#define BOOT_CTX_ADDR 0x0e000020UL
static void print_reset_reason(void)
{
uint32_t rstsr = mmio_read_32(stm32mp_rcc_base() + RCC_C1BOOTRSTSCLRR);
if (rstsr == 0U) {
WARN("Reset reason unknown\n");
return;
}
INFO("Reset reason (0x%x):\n", rstsr);
if ((rstsr & RCC_C1BOOTRSTSCLRR_PADRSTF) == 0U) {
if ((rstsr & RCC_C1BOOTRSTSCLRR_STBYC1RSTF) != 0U) {
INFO("System exits from Standby for CA35\n");
return;
}
if ((rstsr & RCC_C1BOOTRSTSCLRR_D1STBYRSTF) != 0U) {
INFO("D1 domain exits from DStandby\n");
return;
}
}
if ((rstsr & RCC_C1BOOTRSTSCLRR_PORRSTF) != 0U) {
INFO(" Power-on Reset (rst_por)\n");
return;
}
if ((rstsr & RCC_C1BOOTRSTSCLRR_BORRSTF) != 0U) {
INFO(" Brownout Reset (rst_bor)\n");
return;
}
if ((rstsr & RCC_C1BOOTRSTSSETR_SYSC2RSTF) != 0U) {
INFO(" System reset (SYSRST) by M33\n");
return;
}
if ((rstsr & RCC_C1BOOTRSTSSETR_SYSC1RSTF) != 0U) {
INFO(" System reset (SYSRST) by A35\n");
return;
}
if ((rstsr & RCC_C1BOOTRSTSCLRR_HCSSRSTF) != 0U) {
INFO(" Clock failure on HSE\n");
return;
}
if ((rstsr & RCC_C1BOOTRSTSCLRR_IWDG1SYSRSTF) != 0U) {
INFO(" IWDG1 system reset (rst_iwdg1)\n");
return;
}
if ((rstsr & RCC_C1BOOTRSTSCLRR_IWDG2SYSRSTF) != 0U) {
INFO(" IWDG2 system reset (rst_iwdg2)\n");
return;
}
if ((rstsr & RCC_C1BOOTRSTSCLRR_IWDG3SYSRSTF) != 0U) {
INFO(" IWDG3 system reset (rst_iwdg3)\n");
return;
}
if ((rstsr & RCC_C1BOOTRSTSCLRR_IWDG4SYSRSTF) != 0U) {
INFO(" IWDG4 system reset (rst_iwdg4)\n");
return;
}
if ((rstsr & RCC_C1BOOTRSTSCLRR_IWDG5SYSRSTF) != 0U) {
INFO(" IWDG5 system reset (rst_iwdg5)\n");
return;
}
if ((rstsr & RCC_C1BOOTRSTSCLRR_C1P1RSTF) != 0U) {
INFO(" A35 processor core 1 reset\n");
return;
}
if ((rstsr & RCC_C1BOOTRSTSCLRR_PADRSTF) != 0U) {
INFO(" Pad Reset from NRST\n");
return;
}
if ((rstsr & RCC_C1BOOTRSTSCLRR_VCORERSTF) != 0U) {
INFO(" Reset due to a failure of VDD_CORE\n");
return;
}
if ((rstsr & RCC_C1BOOTRSTSCLRR_C1RSTF) != 0U) {
INFO(" A35 processor reset\n");
return;
}
ERROR(" Unidentified reset reason\n");
}
void bl2_el3_early_platform_setup(u_register_t arg0 __unused,
u_register_t arg1 __unused,
u_register_t arg2 __unused,
u_register_t arg3 __unused)
{
stm32mp_save_boot_ctx_address(BOOT_CTX_ADDR);
}
void bl2_platform_setup(void)
{
int ret;
ret = stm32mp2_ddr_probe();
if (ret != 0) {
ERROR("DDR probe: error %d\n", ret);
panic();
}
/* Map DDR for binary load, now with cacheable attribute */
ret = mmap_add_dynamic_region(STM32MP_DDR_BASE, STM32MP_DDR_BASE,
STM32MP_DDR_MAX_SIZE, MT_MEMORY | MT_RW | MT_SECURE);
if (ret < 0) {
ERROR("DDR mapping: error %d\n", ret);
panic();
}
}
static void reset_backup_domain(void)
{
uintptr_t pwr_base = stm32mp_pwr_base();
uintptr_t rcc_base = stm32mp_rcc_base();
/*
* Disable the backup domain write protection.
* The protection is enable at each reset by hardware
* and must be disabled by software.
*/
mmio_setbits_32(pwr_base + PWR_BDCR1, PWR_BDCR1_DBD3P);
while ((mmio_read_32(pwr_base + PWR_BDCR1) & PWR_BDCR1_DBD3P) == 0U) {
;
}
/* Reset backup domain on cold boot cases */
if ((mmio_read_32(rcc_base + RCC_BDCR) & RCC_BDCR_RTCCKEN) == 0U) {
mmio_setbits_32(rcc_base + RCC_BDCR, RCC_BDCR_VSWRST);
while ((mmio_read_32(rcc_base + RCC_BDCR) & RCC_BDCR_VSWRST) == 0U) {
;
}
mmio_clrbits_32(rcc_base + RCC_BDCR, RCC_BDCR_VSWRST);
}
}
void bl2_el3_plat_arch_setup(void)
{
const char *board_model;
boot_api_context_t *boot_context =
(boot_api_context_t *)stm32mp_get_boot_ctx_address();
if (stm32_otp_probe() != 0U) {
EARLY_ERROR("OTP probe failed\n");
panic();
}
mmap_add_region(BL_CODE_BASE, BL_CODE_BASE,
BL_CODE_END - BL_CODE_BASE,
MT_CODE | MT_SECURE);
configure_mmu();
if (dt_open_and_check(STM32MP_DTB_BASE) < 0) {
panic();
}
reset_backup_domain();
/*
* Initialize DDR sub-system clock. This needs to be done before enabling DDR PLL (PLL2),
* and so before stm32mp2_clk_init().
*/
ddr_sub_system_clk_init();
if (stm32mp2_clk_init() < 0) {
panic();
}
#if STM32MP_DDR_FIP_IO_STORAGE
/*
* RISAB3 setup (dedicated for SRAM1)
*
* Allow secure read/writes data accesses to non-secure
* blocks or pages, all RISAB registers are writable.
* DDR firmwares are saved there before being loaded in DDRPHY memory.
*/
mmio_write_32(RISAB3_BASE + RISAB_CR, RISAB_CR_SRWIAD);
#endif
stm32_save_boot_info(boot_context);
if (stm32mp_uart_console_setup() != 0) {
goto skip_console_init;
}
stm32mp_print_cpuinfo();
board_model = dt_get_board_model();
if (board_model != NULL) {
NOTICE("Model: %s\n", board_model);
}
stm32mp_print_boardinfo();
print_reset_reason();
skip_console_init:
if (fixed_regulator_register() != 0) {
panic();
}
if (dt_pmic_status() > 0) {
initialize_pmic();
}
fconf_populate("TB_FW", STM32MP_DTB_BASE);
/*
* RISAB5 setup (dedicated for RETRAM)
*
* Allow secure read/writes data accesses to non-secure
* blocks or pages, all RISAB registers are writable.
* DDR retention registers are saved there and restored
* when exiting standby low power state.
*/
mmio_write_32(RISAB5_BASE + RISAB_CR, RISAB_CR_SRWIAD);
stm32mp_io_setup();
}
/*******************************************************************************
* This function can be used by the platforms to update/use image
* information for given `image_id`.
******************************************************************************/
int bl2_plat_handle_post_image_load(unsigned int image_id)
{
int err = 0;
bl_mem_params_node_t *bl_mem_params = get_bl_mem_params_node(image_id);
bl_mem_params_node_t *pager_mem_params;
const struct dyn_cfg_dtb_info_t *config_info;
unsigned int i;
const unsigned int image_ids[] = {
BL31_IMAGE_ID,
BL32_IMAGE_ID,
BL33_IMAGE_ID,
HW_CONFIG_ID,
};
assert(bl_mem_params != NULL);
#if STM32MP_SDMMC || STM32MP_EMMC
/*
* Invalidate remaining data read from MMC but not flushed by load_image_flush().
* We take the worst case which is 2 MMC blocks.
*/
if ((image_id != FW_CONFIG_ID) &&
((bl_mem_params->image_info.h.attr & IMAGE_ATTRIB_SKIP_LOADING) == 0U)) {
inv_dcache_range(bl_mem_params->image_info.image_base +
bl_mem_params->image_info.image_size,
2U * MMC_BLOCK_SIZE);
}
#endif /* STM32MP_SDMMC || STM32MP_EMMC */
switch (image_id) {
case FW_CONFIG_ID:
/* Set global DTB info for fixed fw_config information */
set_config_info(STM32MP_FW_CONFIG_BASE, ~0UL, STM32MP_FW_CONFIG_MAX_SIZE,
FW_CONFIG_ID);
fconf_populate("FW_CONFIG", STM32MP_FW_CONFIG_BASE);
/* Iterate through all the fw config IDs */
for (i = 0U; i < ARRAY_SIZE(image_ids); i++) {
bl_mem_params = get_bl_mem_params_node(image_ids[i]);
assert(bl_mem_params != NULL);
config_info = FCONF_GET_PROPERTY(dyn_cfg, dtb, image_ids[i]);
if (config_info == NULL) {
continue;
}
bl_mem_params->image_info.image_base = config_info->config_addr;
bl_mem_params->image_info.image_max_size = config_info->config_max_size;
bl_mem_params->image_info.h.attr &= ~IMAGE_ATTRIB_SKIP_LOADING;
switch (image_ids[i]) {
case BL31_IMAGE_ID:
bl_mem_params->ep_info.pc = config_info->config_addr;
break;
case BL32_IMAGE_ID:
bl_mem_params->ep_info.pc = config_info->config_addr;
/* In case of OPTEE, initialize address space with tos_fw addr */
pager_mem_params = get_bl_mem_params_node(BL32_EXTRA1_IMAGE_ID);
if (pager_mem_params != NULL) {
pager_mem_params->image_info.image_base =
config_info->config_addr;
pager_mem_params->image_info.image_max_size =
config_info->config_max_size;
}
break;
case BL33_IMAGE_ID:
bl_mem_params->ep_info.pc = config_info->config_addr;
break;
case HW_CONFIG_ID:
break;
default:
return -EINVAL;
}
}
/*
* After this step, the BL2 device tree area will be overwritten
* with BL31 binary, no other data should be read from BL2 DT.
*/
break;
case BL32_IMAGE_ID:
if ((bl_mem_params->image_info.image_base != 0UL) &&
(optee_header_is_valid(bl_mem_params->image_info.image_base))) {
/* BL32 is OP-TEE header */
bl_mem_params->ep_info.pc = bl_mem_params->image_info.image_base;
pager_mem_params = get_bl_mem_params_node(BL32_EXTRA1_IMAGE_ID);
assert(pager_mem_params != NULL);
err = parse_optee_header(&bl_mem_params->ep_info,
&pager_mem_params->image_info,
NULL);
if (err != 0) {
ERROR("OPTEE header parse error.\n");
panic();
}
/* Set optee boot info from parsed header data */
bl_mem_params->ep_info.args.arg0 = 0U; /* Unused */
bl_mem_params->ep_info.args.arg1 = 0U; /* Unused */
bl_mem_params->ep_info.args.arg2 = 0U; /* No DT supported */
}
break;
case BL33_IMAGE_ID:
default:
/* Do nothing in default case */
break;
}
return err;
}