blob: c5482403a29ee9d1f435b095b418c8dfbb89e59f [file] [log] [blame]
/*
* Copyright (c) 2018-2023, Renesas Electronics Corporation. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <inttypes.h>
#include <stdint.h>
#include <string.h>
#include <libfdt.h>
#include <platform_def.h>
#include <arch_helpers.h>
#include <bl1/bl1.h>
#include <common/bl_common.h>
#include <common/debug.h>
#include <common/desc_image_load.h>
#include <common/image_decompress.h>
#include <drivers/console.h>
#include <drivers/io/io_driver.h>
#include <drivers/io/io_storage.h>
#include <lib/mmio.h>
#include <lib/xlat_tables/xlat_tables_defs.h>
#include <plat/common/platform.h>
#if RCAR_GEN3_BL33_GZIP == 1
#include <tf_gunzip.h>
#endif
#include "avs_driver.h"
#include "boot_init_dram.h"
#include "cpg_registers.h"
#include "board.h"
#include "emmc_def.h"
#include "emmc_hal.h"
#include "emmc_std.h"
#if PMIC_ROHM_BD9571 && RCAR_SYSTEM_RESET_KEEPON_DDR
#include "iic_dvfs.h"
#endif
#include "io_common.h"
#include "io_rcar.h"
#include "qos_init.h"
#include "rcar_def.h"
#include "rcar_private.h"
#include "rcar_version.h"
#include "rom_api.h"
/*
* Following symbols are only used during plat_arch_setup()
*/
static const uint64_t BL2_RO_BASE = BL_CODE_BASE;
static const uint64_t BL2_RO_LIMIT = BL_CODE_END;
#if USE_COHERENT_MEM
static const uint64_t BL2_COHERENT_RAM_BASE = BL_COHERENT_RAM_BASE;
static const uint64_t BL2_COHERENT_RAM_LIMIT = BL_COHERENT_RAM_END;
#endif
extern void plat_rcar_gic_driver_init(void);
extern void plat_rcar_gic_init(void);
extern void bl2_enter_bl31(const struct entry_point_info *bl_ep_info);
extern void bl2_system_cpg_init(void);
extern void bl2_secure_setting(void);
extern void bl2_ram_security_setting_finish(void);
extern void bl2_cpg_init(void);
extern void rcar_io_emmc_setup(void);
extern void rcar_io_setup(void);
extern void rcar_swdt_release(void);
extern void rcar_swdt_init(void);
extern void rcar_rpc_init(void);
extern void rcar_pfc_init(void);
extern void rcar_dma_init(void);
static void bl2_init_generic_timer(void);
/* R-Car Gen3 product check */
#if (RCAR_LSI == RCAR_H3) || (RCAR_LSI == RCAR_H3N)
#define TARGET_PRODUCT PRR_PRODUCT_H3
#define TARGET_NAME "R-Car H3"
#elif RCAR_LSI == RCAR_M3
#define TARGET_PRODUCT PRR_PRODUCT_M3
#define TARGET_NAME "R-Car M3"
#elif RCAR_LSI == RCAR_M3N
#define TARGET_PRODUCT PRR_PRODUCT_M3N
#define TARGET_NAME "R-Car M3N"
#elif RCAR_LSI == RCAR_V3M
#define TARGET_PRODUCT PRR_PRODUCT_V3M
#define TARGET_NAME "R-Car V3M"
#elif RCAR_LSI == RCAR_E3
#define TARGET_PRODUCT PRR_PRODUCT_E3
#define TARGET_NAME "R-Car E3"
#elif RCAR_LSI == RCAR_D3
#define TARGET_PRODUCT PRR_PRODUCT_D3
#define TARGET_NAME "R-Car D3"
#elif RCAR_LSI == RCAR_AUTO
#define TARGET_NAME "R-Car H3/M3/M3N/V3M"
#endif
#if (RCAR_LSI == RCAR_E3)
#define GPIO_INDT (GPIO_INDT6)
#define GPIO_BKUP_TRG_SHIFT ((uint32_t)1U<<13U)
#else
#define GPIO_INDT (GPIO_INDT1)
#define GPIO_BKUP_TRG_SHIFT ((uint32_t)1U<<8U)
#endif
CASSERT((PARAMS_BASE + sizeof(bl2_to_bl31_params_mem_t) + 0x100)
< (RCAR_SHARED_MEM_BASE + RCAR_SHARED_MEM_SIZE),
assert_bl31_params_do_not_fit_in_shared_memory);
static meminfo_t bl2_tzram_layout __aligned(CACHE_WRITEBACK_GRANULE);
/* FDT with DRAM configuration */
uint64_t fdt_blob[PAGE_SIZE_4KB / sizeof(uint64_t)];
static void *fdt = (void *)fdt_blob;
static void unsigned_num_print(unsigned long long int unum, unsigned int radix,
char *string)
{
/* Just need enough space to store 64 bit decimal integer */
char num_buf[20];
int i = 0;
unsigned int rem;
do {
rem = unum % radix;
if (rem < 0xa)
num_buf[i] = '0' + rem;
else
num_buf[i] = 'a' + (rem - 0xa);
i++;
unum /= radix;
} while (unum > 0U);
while (--i >= 0)
*string++ = num_buf[i];
*string = 0;
}
#if (RCAR_LOSSY_ENABLE == 1)
typedef struct bl2_lossy_info {
uint32_t magic;
uint32_t a0;
uint32_t b0;
} bl2_lossy_info_t;
static void bl2_lossy_gen_fdt(uint32_t no, uint64_t start_addr,
uint64_t end_addr, uint32_t format,
uint32_t enable, int fcnlnode)
{
const uint64_t fcnlsize = cpu_to_fdt64(end_addr - start_addr);
char nodename[40] = { 0 };
int ret, node;
/* Ignore undefined addresses */
if (start_addr == 0 && end_addr == 0)
return;
snprintf(nodename, sizeof(nodename), "lossy-decompression@");
unsigned_num_print(start_addr, 16, nodename + strlen(nodename));
node = ret = fdt_add_subnode(fdt, fcnlnode, nodename);
if (ret < 0) {
NOTICE("BL2: Cannot create FCNL node (ret=%i)\n", ret);
panic();
}
ret = fdt_setprop_string(fdt, node, "compatible",
"renesas,lossy-decompression");
if (ret < 0) {
NOTICE("BL2: Cannot add FCNL compat string (ret=%i)\n", ret);
panic();
}
ret = fdt_appendprop_string(fdt, node, "compatible",
"shared-dma-pool");
if (ret < 0) {
NOTICE("BL2: Cannot append FCNL compat string (ret=%i)\n", ret);
panic();
}
ret = fdt_setprop_u64(fdt, node, "reg", start_addr);
if (ret < 0) {
NOTICE("BL2: Cannot add FCNL reg prop (ret=%i)\n", ret);
panic();
}
ret = fdt_appendprop(fdt, node, "reg", &fcnlsize, sizeof(fcnlsize));
if (ret < 0) {
NOTICE("BL2: Cannot append FCNL reg size prop (ret=%i)\n", ret);
panic();
}
ret = fdt_setprop(fdt, node, "no-map", NULL, 0);
if (ret < 0) {
NOTICE("BL2: Cannot add FCNL no-map prop (ret=%i)\n", ret);
panic();
}
ret = fdt_setprop_u32(fdt, node, "renesas,formats", format);
if (ret < 0) {
NOTICE("BL2: Cannot add FCNL formats prop (ret=%i)\n", ret);
panic();
}
}
static void bl2_lossy_setting(uint32_t no, uint64_t start_addr,
uint64_t end_addr, uint32_t format,
uint32_t enable, int fcnlnode)
{
bl2_lossy_info_t info;
uint32_t reg;
bl2_lossy_gen_fdt(no, start_addr, end_addr, format, enable, fcnlnode);
reg = format | (start_addr >> 20);
mmio_write_32(AXI_DCMPAREACRA0 + 0x8 * no, reg);
mmio_write_32(AXI_DCMPAREACRB0 + 0x8 * no, end_addr >> 20);
mmio_write_32(AXI_DCMPAREACRA0 + 0x8 * no, reg | enable);
info.magic = 0x12345678U;
info.a0 = mmio_read_32(AXI_DCMPAREACRA0 + 0x8 * no);
info.b0 = mmio_read_32(AXI_DCMPAREACRB0 + 0x8 * no);
mmio_write_32(LOSSY_PARAMS_BASE + sizeof(info) * no, info.magic);
mmio_write_32(LOSSY_PARAMS_BASE + sizeof(info) * no + 0x4, info.a0);
mmio_write_32(LOSSY_PARAMS_BASE + sizeof(info) * no + 0x8, info.b0);
NOTICE(" Entry %d: DCMPAREACRAx:0x%x DCMPAREACRBx:0x%x\n", no,
mmio_read_32(AXI_DCMPAREACRA0 + 0x8 * no),
mmio_read_32(AXI_DCMPAREACRB0 + 0x8 * no));
}
static int bl2_create_reserved_memory(void)
{
int ret;
int fcnlnode = fdt_add_subnode(fdt, 0, "reserved-memory");
if (fcnlnode < 0) {
NOTICE("BL2: Cannot create reserved mem node (ret=%i)\n",
fcnlnode);
panic();
}
ret = fdt_setprop(fdt, fcnlnode, "ranges", NULL, 0);
if (ret < 0) {
NOTICE("BL2: Cannot add FCNL ranges prop (ret=%i)\n", ret);
panic();
}
ret = fdt_setprop_u32(fdt, fcnlnode, "#address-cells", 2);
if (ret < 0) {
NOTICE("BL2: Cannot add FCNL #address-cells prop (ret=%i)\n", ret);
panic();
}
ret = fdt_setprop_u32(fdt, fcnlnode, "#size-cells", 2);
if (ret < 0) {
NOTICE("BL2: Cannot add FCNL #size-cells prop (ret=%i)\n", ret);
panic();
}
return fcnlnode;
}
static void bl2_create_fcnl_reserved_memory(void)
{
int fcnlnode;
NOTICE("BL2: Lossy Decomp areas\n");
fcnlnode = bl2_create_reserved_memory();
bl2_lossy_setting(0, LOSSY_ST_ADDR0, LOSSY_END_ADDR0,
LOSSY_FMT0, LOSSY_ENA_DIS0, fcnlnode);
bl2_lossy_setting(1, LOSSY_ST_ADDR1, LOSSY_END_ADDR1,
LOSSY_FMT1, LOSSY_ENA_DIS1, fcnlnode);
bl2_lossy_setting(2, LOSSY_ST_ADDR2, LOSSY_END_ADDR2,
LOSSY_FMT2, LOSSY_ENA_DIS2, fcnlnode);
}
#else
static void bl2_create_fcnl_reserved_memory(void) {}
#endif
void bl2_plat_flush_bl31_params(void)
{
uint32_t product_cut, product, cut;
uint32_t boot_dev, boot_cpu;
uint32_t lcs, reg, val;
reg = mmio_read_32(RCAR_MODEMR);
boot_dev = reg & MODEMR_BOOT_DEV_MASK;
if (boot_dev == MODEMR_BOOT_DEV_EMMC_25X1 ||
boot_dev == MODEMR_BOOT_DEV_EMMC_50X8)
emmc_terminate();
if ((reg & MODEMR_BOOT_CPU_MASK) != MODEMR_BOOT_CPU_CR7)
bl2_secure_setting();
reg = mmio_read_32(RCAR_PRR);
product_cut = reg & (PRR_PRODUCT_MASK | PRR_CUT_MASK);
product = reg & PRR_PRODUCT_MASK;
cut = reg & PRR_CUT_MASK;
if (product == PRR_PRODUCT_M3 && PRR_PRODUCT_30 > cut)
goto tlb;
if (product == PRR_PRODUCT_H3 && PRR_PRODUCT_20 > cut)
goto tlb;
/* Disable MFIS write protection */
mmio_write_32(MFISWPCNTR, MFISWPCNTR_PASSWORD | 1);
tlb:
reg = mmio_read_32(RCAR_MODEMR);
boot_cpu = reg & MODEMR_BOOT_CPU_MASK;
if (boot_cpu != MODEMR_BOOT_CPU_CA57 &&
boot_cpu != MODEMR_BOOT_CPU_CA53)
goto mmu;
if (product_cut == PRR_PRODUCT_H3_CUT20) {
mmio_write_32(IPMMUVI0_IMSCTLR, IMSCTLR_DISCACHE);
mmio_write_32(IPMMUVI1_IMSCTLR, IMSCTLR_DISCACHE);
mmio_write_32(IPMMUPV0_IMSCTLR, IMSCTLR_DISCACHE);
mmio_write_32(IPMMUPV1_IMSCTLR, IMSCTLR_DISCACHE);
mmio_write_32(IPMMUPV2_IMSCTLR, IMSCTLR_DISCACHE);
mmio_write_32(IPMMUPV3_IMSCTLR, IMSCTLR_DISCACHE);
} else if (product_cut == (PRR_PRODUCT_M3N | PRR_PRODUCT_10) ||
product_cut == (PRR_PRODUCT_M3N | PRR_PRODUCT_11)) {
mmio_write_32(IPMMUVI0_IMSCTLR, IMSCTLR_DISCACHE);
mmio_write_32(IPMMUPV0_IMSCTLR, IMSCTLR_DISCACHE);
} else if ((product_cut == (PRR_PRODUCT_E3 | PRR_PRODUCT_10)) ||
(product_cut == (PRR_PRODUCT_E3 | PRR_PRODUCT_11))) {
mmio_write_32(IPMMUVI0_IMSCTLR, IMSCTLR_DISCACHE);
mmio_write_32(IPMMUVP0_IMSCTLR, IMSCTLR_DISCACHE);
mmio_write_32(IPMMUPV0_IMSCTLR, IMSCTLR_DISCACHE);
}
if (product_cut == (PRR_PRODUCT_H3_CUT20) ||
product_cut == (PRR_PRODUCT_M3N | PRR_PRODUCT_10) ||
product_cut == (PRR_PRODUCT_M3N | PRR_PRODUCT_11) ||
product_cut == (PRR_PRODUCT_E3 | PRR_PRODUCT_10)) {
mmio_write_32(IPMMUHC_IMSCTLR, IMSCTLR_DISCACHE);
mmio_write_32(IPMMURT_IMSCTLR, IMSCTLR_DISCACHE);
mmio_write_32(IPMMUMP_IMSCTLR, IMSCTLR_DISCACHE);
mmio_write_32(IPMMUDS0_IMSCTLR, IMSCTLR_DISCACHE);
mmio_write_32(IPMMUDS1_IMSCTLR, IMSCTLR_DISCACHE);
}
mmu:
mmio_write_32(IPMMUMM_IMSCTLR, IPMMUMM_IMSCTLR_ENABLE);
mmio_write_32(IPMMUMM_IMAUXCTLR, IPMMUMM_IMAUXCTLR_NMERGE40_BIT);
val = rcar_rom_get_lcs(&lcs);
if (val) {
ERROR("BL2: Failed to get the LCS. (%d)\n", val);
panic();
}
if (lcs == LCS_SE)
mmio_clrbits_32(P_ARMREG_SEC_CTRL, P_ARMREG_SEC_CTRL_PROT);
rcar_swdt_release();
bl2_system_cpg_init();
/* Disable data cache (clean and invalidate) */
disable_mmu_el3();
#if RCAR_BL2_DCACHE == 1
dcsw_op_all(DCCISW);
#endif
tlbialle3();
disable_mmu_icache_el3();
plat_invalidate_icache();
dsbsy();
isb();
}
static uint32_t is_ddr_backup_mode(void)
{
#if RCAR_SYSTEM_SUSPEND
static uint32_t reason = RCAR_COLD_BOOT;
static uint32_t once;
#if PMIC_ROHM_BD9571 && RCAR_SYSTEM_RESET_KEEPON_DDR
uint8_t data;
#endif
if (once)
return reason;
once = 1;
if ((mmio_read_32(GPIO_INDT) & GPIO_BKUP_TRG_SHIFT) == 0)
return reason;
#if PMIC_ROHM_BD9571 && RCAR_SYSTEM_RESET_KEEPON_DDR
if (rcar_iic_dvfs_receive(PMIC, REG_KEEP10, &data)) {
ERROR("BL2: REG Keep10 READ ERROR.\n");
panic();
}
if (KEEP10_MAGIC != data)
reason = RCAR_WARM_BOOT;
#else
reason = RCAR_WARM_BOOT;
#endif
return reason;
#else
return RCAR_COLD_BOOT;
#endif
}
#if RCAR_GEN3_BL33_GZIP == 1
void bl2_plat_preload_setup(void)
{
image_decompress_init(BL33_COMP_BASE, BL33_COMP_SIZE, gunzip);
}
#endif
static uint64_t check_secure_load_area(uintptr_t base, uint32_t size,
uintptr_t dest, uint32_t len)
{
uintptr_t free_end, requested_end;
/*
* Handle corner cases first.
*
* The order of the 2 tests is important, because if there's no space
* left (i.e. free_size == 0) but we don't ask for any memory
* (i.e. size == 0) then we should report that the memory is free.
*/
if (len == 0U) {
WARN("BL2: load data size is zero\n");
return 0; /* A zero-byte region is always free */
}
if (size == 0U) {
goto err;
}
/*
* Check that the end addresses don't overflow.
* If they do, consider that this memory region is not free, as this
* is an invalid scenario.
*/
if (check_uptr_overflow(base, size - 1U)) {
goto err;
}
free_end = base + (size - 1U);
if (check_uptr_overflow(dest, len - 1U)) {
goto err;
}
requested_end = dest + (len - 1U);
/*
* Finally, check that the requested memory region lies within the free
* region.
*/
if ((dest < base) || (requested_end > free_end)) {
goto err;
}
return 0;
err:
ERROR("BL2: load data is outside the loadable area.\n");
ERROR("BL2: dst=0x%lx, len=%d(0x%x)\n", dest, len, len);
return 1;
}
static uint64_t rcar_get_dest_addr_from_cert(uint32_t certid, uintptr_t *dest,
uint32_t *len)
{
uint32_t cert;
int ret;
ret = rcar_get_certificate(certid, &cert);
if (ret) {
ERROR("%s : cert file load error", __func__);
return 1;
}
rcar_read_certificate((uint64_t) cert, len, dest);
return 0;
}
int bl2_plat_handle_pre_image_load(unsigned int image_id)
{
u_register_t *boot_kind = (void *) BOOT_KIND_BASE;
bl_mem_params_node_t *bl_mem_params;
uintptr_t dev_handle;
uintptr_t image_spec;
uintptr_t dest;
uint32_t len;
uint64_t ui64_ret;
int iret;
bl_mem_params = get_bl_mem_params_node(image_id);
if (bl_mem_params == NULL) {
ERROR("BL2: Failed to get loading parameter.\n");
return 1;
}
switch (image_id) {
case BL31_IMAGE_ID:
if (is_ddr_backup_mode() == RCAR_COLD_BOOT) {
iret = plat_get_image_source(image_id, &dev_handle,
&image_spec);
if (iret != 0) {
return 1;
}
ui64_ret = rcar_get_dest_addr_from_cert(
SOC_FW_CONTENT_CERT_ID, &dest, &len);
if (ui64_ret != 0U) {
return 1;
}
ui64_ret = check_secure_load_area(
BL31_BASE, BL31_LIMIT - BL31_BASE,
dest, len);
if (ui64_ret != 0U) {
return 1;
}
*boot_kind = RCAR_COLD_BOOT;
flush_dcache_range(BOOT_KIND_BASE, sizeof(*boot_kind));
bl_mem_params->image_info.image_base = dest;
bl_mem_params->image_info.image_size = len;
} else {
*boot_kind = RCAR_WARM_BOOT;
flush_dcache_range(BOOT_KIND_BASE, sizeof(*boot_kind));
console_flush();
bl2_plat_flush_bl31_params();
/* will not return */
bl2_enter_bl31(&bl_mem_params->ep_info);
}
return 0;
#ifndef SPD_NONE
case BL32_IMAGE_ID:
ui64_ret = rcar_get_dest_addr_from_cert(
TRUSTED_OS_FW_CONTENT_CERT_ID, &dest, &len);
if (ui64_ret != 0U) {
return 1;
}
ui64_ret = check_secure_load_area(
BL32_BASE, BL32_LIMIT - BL32_BASE, dest, len);
if (ui64_ret != 0U) {
return 1;
}
bl_mem_params->image_info.image_base = dest;
bl_mem_params->image_info.image_size = len;
return 0;
#endif
case BL33_IMAGE_ID:
/* case of image_id == BL33_IMAGE_ID */
ui64_ret = rcar_get_dest_addr_from_cert(
NON_TRUSTED_FW_CONTENT_CERT_ID,
&dest, &len);
if (ui64_ret != 0U) {
return 1;
}
#if RCAR_GEN3_BL33_GZIP == 1
image_decompress_prepare(&bl_mem_params->image_info);
#endif
return 0;
default:
return 1;
}
return 0;
}
int bl2_plat_handle_post_image_load(unsigned int image_id)
{
static bl2_to_bl31_params_mem_t *params;
bl_mem_params_node_t *bl_mem_params;
if (!params) {
params = (bl2_to_bl31_params_mem_t *) PARAMS_BASE;
memset((void *)PARAMS_BASE, 0, sizeof(*params));
}
bl_mem_params = get_bl_mem_params_node(image_id);
if (!bl_mem_params) {
ERROR("BL2: Failed to get loading parameter.\n");
return 1;
}
switch (image_id) {
case BL31_IMAGE_ID:
bl_mem_params->ep_info.pc = bl_mem_params->image_info.image_base;
return 0;
case BL32_IMAGE_ID:
bl_mem_params->ep_info.pc = bl_mem_params->image_info.image_base;
memcpy(&params->bl32_ep_info, &bl_mem_params->ep_info,
sizeof(entry_point_info_t));
return 0;
case BL33_IMAGE_ID:
#if RCAR_GEN3_BL33_GZIP == 1
int ret;
if ((mmio_read_32(BL33_COMP_BASE) & 0xffff) == 0x8b1f) {
/* decompress gzip-compressed image */
ret = image_decompress(&bl_mem_params->image_info);
if (ret != 0) {
return ret;
}
} else {
/* plain image, copy it in place */
memcpy((void *)BL33_BASE, (void *)BL33_COMP_BASE,
bl_mem_params->image_info.image_size);
}
#endif
memcpy(&params->bl33_ep_info, &bl_mem_params->ep_info,
sizeof(entry_point_info_t));
return 0;
default:
return 1;
}
return 0;
}
struct meminfo *bl2_plat_sec_mem_layout(void)
{
return &bl2_tzram_layout;
}
static void bl2_populate_compatible_string(void *dt)
{
uint32_t board_type;
uint32_t board_rev;
uint32_t reg;
int ret;
fdt_setprop_u32(dt, 0, "#address-cells", 2);
fdt_setprop_u32(dt, 0, "#size-cells", 2);
/* Populate compatible string */
rcar_get_board_type(&board_type, &board_rev);
switch (board_type) {
case BOARD_SALVATOR_X:
ret = fdt_setprop_string(dt, 0, "compatible",
"renesas,salvator-x");
break;
case BOARD_SALVATOR_XS:
ret = fdt_setprop_string(dt, 0, "compatible",
"renesas,salvator-xs");
break;
case BOARD_STARTER_KIT:
ret = fdt_setprop_string(dt, 0, "compatible",
"renesas,m3ulcb");
break;
case BOARD_STARTER_KIT_PRE:
ret = fdt_setprop_string(dt, 0, "compatible",
"renesas,h3ulcb");
break;
case BOARD_EAGLE:
ret = fdt_setprop_string(dt, 0, "compatible",
"renesas,eagle");
break;
case BOARD_EBISU:
case BOARD_EBISU_4D:
ret = fdt_setprop_string(dt, 0, "compatible",
"renesas,ebisu");
break;
case BOARD_DRAAK:
ret = fdt_setprop_string(dt, 0, "compatible",
"renesas,draak");
break;
default:
NOTICE("BL2: Cannot set compatible string, board unsupported\n");
panic();
}
if (ret < 0) {
NOTICE("BL2: Cannot set compatible string (ret=%i)\n", ret);
panic();
}
reg = mmio_read_32(RCAR_PRR);
switch (reg & PRR_PRODUCT_MASK) {
case PRR_PRODUCT_H3:
ret = fdt_appendprop_string(dt, 0, "compatible",
"renesas,r8a7795");
break;
case PRR_PRODUCT_M3:
ret = fdt_appendprop_string(dt, 0, "compatible",
"renesas,r8a7796");
break;
case PRR_PRODUCT_M3N:
ret = fdt_appendprop_string(dt, 0, "compatible",
"renesas,r8a77965");
break;
case PRR_PRODUCT_V3M:
ret = fdt_appendprop_string(dt, 0, "compatible",
"renesas,r8a77970");
break;
case PRR_PRODUCT_E3:
ret = fdt_appendprop_string(dt, 0, "compatible",
"renesas,r8a77990");
break;
case PRR_PRODUCT_D3:
ret = fdt_appendprop_string(dt, 0, "compatible",
"renesas,r8a77995");
break;
default:
NOTICE("BL2: Cannot set compatible string, SoC unsupported\n");
panic();
}
if (ret < 0) {
NOTICE("BL2: Cannot set compatible string (ret=%i)\n", ret);
panic();
}
}
static void bl2_add_rpc_node(void)
{
#if (RCAR_RPC_HYPERFLASH_LOCKED == 0)
int ret, node;
node = ret = fdt_add_subnode(fdt, 0, "soc");
if (ret < 0) {
goto err;
}
node = ret = fdt_add_subnode(fdt, node, "spi@ee200000");
if (ret < 0) {
goto err;
}
ret = fdt_setprop_string(fdt, node, "status", "okay");
if (ret < 0) {
goto err;
}
return;
err:
NOTICE("BL2: Cannot add RPC node to FDT (ret=%i)\n", ret);
panic();
#endif
}
static void bl2_add_kaslr_seed(void)
{
uint32_t cnt, isr, prr;
uint64_t seed;
int ret, node;
/* SCEG is only available on H3/M3-W/M3-N */
prr = mmio_read_32(RCAR_PRR);
switch (prr & PRR_PRODUCT_MASK) {
case PRR_PRODUCT_H3:
case PRR_PRODUCT_M3:
case PRR_PRODUCT_M3N:
break;
default:
return;
}
mmio_write_32(RCAR_CC63_BASE + CC63_TRNG_SW_RESET_REG_ADDR,
CC63_TRNG_SW_RESET_REG_SET);
do {
mmio_write_32(RCAR_CC63_BASE + CC63_TRNG_CLK_ENABLE_REG_ADDR,
CC63_TRNG_CLK_ENABLE_REG_SET);
mmio_write_32(RCAR_CC63_BASE + CC63_TRNG_SAMPLE_CNT1_REG_ADDR,
CC63_TRNG_SAMPLE_CNT1_REG_SAMPLE_COUNT);
cnt = mmio_read_32(RCAR_CC63_BASE + CC63_TRNG_SAMPLE_CNT1_REG_ADDR);
} while (cnt != CC63_TRNG_SAMPLE_CNT1_REG_SAMPLE_COUNT);
mmio_write_32(RCAR_CC63_BASE + CC63_TRNG_CONFIG_REG_ADDR,
CC63_TRNG_CONFIG_REG_ROSC_MAX_LENGTH);
mmio_write_32(RCAR_CC63_BASE + CC63_TRNG_DEBUG_CONTROL_REG_ADDR,
CC63_TRNG_DEBUG_CONTROL_REG_80090B);
mmio_write_32(RCAR_CC63_BASE + CC63_TRNG_SOURCE_ENABLE_REG_ADDR,
CC63_TRNG_SOURCE_ENABLE_REG_SET);
do {
isr = mmio_read_32(RCAR_CC63_BASE + CC63_TRNG_ISR_REG_ADDR);
if ((isr & CC63_TRNG_ISR_REG_AUTOCORR_ERR) != 0U) {
panic();
}
} while ((isr & CC63_TRNG_ISR_REG_EHR_VALID) == 0U);
mmio_write_32(RCAR_CC63_BASE + CC63_TRNG_ICR_REG_ADDR, UINT32_MAX);
seed = mmio_read_64(RCAR_CC63_BASE + CC63_TRNG_EHR_DATA_ADDR_0_REG_ADDR);
mmio_write_32(RCAR_CC63_BASE + CC63_TRNG_SOURCE_ENABLE_REG_ADDR,
CC63_TRNG_SOURCE_ENABLE_REG_CLR);
node = ret = fdt_add_subnode(fdt, 0, "chosen");
if (ret < 0) {
goto err;
}
ret = fdt_setprop_u64(fdt, node, "kaslr-seed", seed);
if (ret < 0) {
goto err;
}
return;
err:
NOTICE("BL2: Cannot add KASLR seed to FDT (ret=%i)\n", ret);
panic();
}
static void bl2_add_dram_entry(uint64_t start, uint64_t size)
{
char nodename[32] = { 0 };
uint64_t fdtsize;
int ret, node;
fdtsize = cpu_to_fdt64(size);
snprintf(nodename, sizeof(nodename), "memory@");
unsigned_num_print(start, 16, nodename + strlen(nodename));
node = ret = fdt_add_subnode(fdt, 0, nodename);
if (ret < 0) {
goto err;
}
ret = fdt_setprop_string(fdt, node, "device_type", "memory");
if (ret < 0) {
goto err;
}
ret = fdt_setprop_u64(fdt, node, "reg", start);
if (ret < 0) {
goto err;
}
ret = fdt_appendprop(fdt, node, "reg", &fdtsize,
sizeof(fdtsize));
if (ret < 0) {
goto err;
}
return;
err:
NOTICE("BL2: Cannot add memory node [%" PRIx64 " - %" PRIx64 "] to FDT (ret=%i)\n",
start, start + size - 1, ret);
panic();
}
static void bl2_advertise_dram_entries(uint64_t dram_config[8])
{
uint64_t start, size, size32;
int chan;
for (chan = 0; chan < 4; chan++) {
start = dram_config[2 * chan];
size = dram_config[2 * chan + 1];
if (!size)
continue;
NOTICE("BL2: CH%d: %" PRIx64 " - %" PRIx64 ", %" PRId64 " %siB\n",
chan, start, start + size - 1,
(size >> 30) ? : size >> 20,
(size >> 30) ? "G" : "M");
}
/*
* We add the DT nodes in reverse order here. The fdt_add_subnode()
* adds the DT node before the first existing DT node, so we have
* to add them in reverse order to get nodes sorted by address in
* the resulting DT.
*/
for (chan = 3; chan >= 0; chan--) {
start = dram_config[2 * chan];
size = dram_config[2 * chan + 1];
if (!size)
continue;
/*
* Channel 0 is mapped in 32bit space and the first
* 128 MiB are reserved and the maximum size is 2GiB.
*/
if (chan == 0) {
/* Limit the 32bit entry to 2 GiB - 128 MiB */
size32 = size - 0x8000000U;
if (size32 >= 0x78000000U) {
size32 = 0x78000000U;
}
/* Emit 32bit entry, up to 2 GiB - 128 MiB long. */
bl2_add_dram_entry(0x48000000, size32);
/*
* If channel 0 is less than 2 GiB long, the
* entire memory fits into the 32bit space entry,
* so move on to the next channel.
*/
if (size <= 0x80000000U) {
continue;
}
/*
* If channel 0 is more than 2 GiB long, emit
* another entry which covers the rest of the
* memory in channel 0, in the 64bit space.
*
* Start of this new entry is at 2 GiB offset
* from the beginning of the 64bit channel 0
* address, size is 2 GiB shorter than total
* size of the channel.
*/
start += 0x80000000U;
size -= 0x80000000U;
}
bl2_add_dram_entry(start, size);
}
}
static void bl2_advertise_dram_size(uint32_t product)
{
uint64_t dram_config[8] = {
[0] = 0x400000000ULL,
[2] = 0x500000000ULL,
[4] = 0x600000000ULL,
[6] = 0x700000000ULL,
};
uint32_t cut = mmio_read_32(RCAR_PRR) & PRR_CUT_MASK;
switch (product) {
case PRR_PRODUCT_H3:
#if (RCAR_DRAM_LPDDR4_MEMCONF == 0)
/* 4GB(1GBx4) */
dram_config[1] = 0x40000000ULL;
dram_config[3] = 0x40000000ULL;
dram_config[5] = 0x40000000ULL;
dram_config[7] = 0x40000000ULL;
#elif (RCAR_DRAM_LPDDR4_MEMCONF == 1) && \
(RCAR_DRAM_CHANNEL == 5) && \
(RCAR_DRAM_SPLIT == 2)
/* 4GB(2GBx2 2ch split) */
dram_config[1] = 0x80000000ULL;
dram_config[3] = 0x80000000ULL;
#elif (RCAR_DRAM_LPDDR4_MEMCONF == 1) && (RCAR_DRAM_CHANNEL == 15)
/* 8GB(2GBx4: default) */
dram_config[1] = 0x80000000ULL;
dram_config[3] = 0x80000000ULL;
dram_config[5] = 0x80000000ULL;
dram_config[7] = 0x80000000ULL;
#endif /* RCAR_DRAM_LPDDR4_MEMCONF == 0 */
break;
case PRR_PRODUCT_M3:
if (cut < PRR_PRODUCT_30) {
#if (RCAR_GEN3_ULCB == 1)
/* 2GB(1GBx2 2ch split) */
dram_config[1] = 0x40000000ULL;
dram_config[5] = 0x40000000ULL;
#else
/* 4GB(2GBx2 2ch split) */
dram_config[1] = 0x80000000ULL;
dram_config[5] = 0x80000000ULL;
#endif
} else {
/* 8GB(2GBx4 2ch split) */
dram_config[1] = 0x100000000ULL;
dram_config[5] = 0x100000000ULL;
}
break;
case PRR_PRODUCT_M3N:
#if (RCAR_DRAM_LPDDR4_MEMCONF == 2)
/* 4GB(4GBx1) */
dram_config[1] = 0x100000000ULL;
#elif (RCAR_DRAM_LPDDR4_MEMCONF == 1)
/* 2GB(1GBx2) */
dram_config[1] = 0x80000000ULL;
#endif
break;
case PRR_PRODUCT_V3M:
/* 1GB(512MBx2) */
dram_config[1] = 0x40000000ULL;
break;
case PRR_PRODUCT_E3:
#if (RCAR_DRAM_DDR3L_MEMCONF == 0)
/* 1GB(512MBx2) */
dram_config[1] = 0x40000000ULL;
#elif (RCAR_DRAM_DDR3L_MEMCONF == 1)
/* 2GB(512MBx4) */
dram_config[1] = 0x80000000ULL;
#elif (RCAR_DRAM_DDR3L_MEMCONF == 2)
/* 4GB(1GBx4) */
dram_config[1] = 0x100000000ULL;
#endif /* RCAR_DRAM_DDR3L_MEMCONF == 0 */
break;
case PRR_PRODUCT_D3:
/* 512MB */
dram_config[1] = 0x20000000ULL;
break;
}
bl2_advertise_dram_entries(dram_config);
}
void bl2_el3_early_platform_setup(u_register_t arg1, u_register_t arg2,
u_register_t arg3, u_register_t arg4)
{
uint32_t reg, midr, lcs, boot_dev, boot_cpu, sscg, type, rev;
uint32_t product, product_cut, major, minor;
int32_t ret;
const char *str;
const char *unknown = "unknown";
const char *cpu_ca57 = "CA57";
const char *cpu_ca53 = "CA53";
const char *product_m3n = "M3N";
const char *product_h3 = "H3";
const char *product_m3 = "M3";
const char *product_e3 = "E3";
const char *product_d3 = "D3";
const char *product_v3m = "V3M";
const char *lcs_secure = "SE";
const char *lcs_cm = "CM";
const char *lcs_dm = "DM";
const char *lcs_sd = "SD";
const char *lcs_fa = "FA";
const char *sscg_off = "PLL1 nonSSCG Clock select";
const char *sscg_on = "PLL1 SSCG Clock select";
const char *boot_hyper80 = "HyperFlash(80MHz)";
const char *boot_qspi40 = "QSPI Flash(40MHz)";
const char *boot_qspi80 = "QSPI Flash(80MHz)";
const char *boot_emmc25x1 = "eMMC(25MHz x1)";
const char *boot_emmc50x8 = "eMMC(50MHz x8)";
#if (RCAR_LSI == RCAR_E3) || (RCAR_LSI == RCAR_D3)
const char *boot_hyper160 = "HyperFlash(150MHz)";
#else
const char *boot_hyper160 = "HyperFlash(160MHz)";
#endif
bl2_init_generic_timer();
reg = mmio_read_32(RCAR_MODEMR);
boot_dev = reg & MODEMR_BOOT_DEV_MASK;
boot_cpu = reg & MODEMR_BOOT_CPU_MASK;
bl2_cpg_init();
if (boot_cpu == MODEMR_BOOT_CPU_CA57 ||
boot_cpu == MODEMR_BOOT_CPU_CA53) {
rcar_pfc_init();
rcar_console_boot_init();
}
plat_rcar_gic_driver_init();
plat_rcar_gic_init();
rcar_swdt_init();
/* FIQ interrupts are taken to EL3 */
write_scr_el3(read_scr_el3() | SCR_FIQ_BIT);
write_daifclr(DAIF_FIQ_BIT);
reg = read_midr();
midr = reg & (MIDR_PN_MASK << MIDR_PN_SHIFT);
switch (midr) {
case MIDR_CA57:
str = cpu_ca57;
break;
case MIDR_CA53:
str = cpu_ca53;
break;
default:
str = unknown;
break;
}
NOTICE("BL2: R-Car Gen3 Initial Program Loader(%s) Rev.%s\n", str,
version_of_renesas);
reg = mmio_read_32(RCAR_PRR);
product_cut = reg & (PRR_PRODUCT_MASK | PRR_CUT_MASK);
product = reg & PRR_PRODUCT_MASK;
switch (product) {
case PRR_PRODUCT_H3:
str = product_h3;
break;
case PRR_PRODUCT_M3:
str = product_m3;
break;
case PRR_PRODUCT_M3N:
str = product_m3n;
break;
case PRR_PRODUCT_V3M:
str = product_v3m;
break;
case PRR_PRODUCT_E3:
str = product_e3;
break;
case PRR_PRODUCT_D3:
str = product_d3;
break;
default:
str = unknown;
break;
}
if ((PRR_PRODUCT_M3 == product) &&
(PRR_PRODUCT_20 == (reg & RCAR_MAJOR_MASK))) {
if (RCAR_M3_CUT_VER11 == (reg & PRR_CUT_MASK)) {
/* M3 Ver.1.1 or Ver.1.2 */
NOTICE("BL2: PRR is R-Car %s Ver.1.1 / Ver.1.2\n",
str);
} else {
NOTICE("BL2: PRR is R-Car %s Ver.1.%d\n",
str,
(reg & RCAR_MINOR_MASK) + RCAR_M3_MINOR_OFFSET);
}
} else if (product == PRR_PRODUCT_D3) {
if (RCAR_D3_CUT_VER10 == (reg & PRR_CUT_MASK)) {
NOTICE("BL2: PRR is R-Car %s Ver.1.0\n", str);
} else if (RCAR_D3_CUT_VER11 == (reg & PRR_CUT_MASK)) {
NOTICE("BL2: PRR is R-Car %s Ver.1.1\n", str);
} else {
NOTICE("BL2: PRR is R-Car %s Ver.X.X\n", str);
}
} else {
major = (reg & RCAR_MAJOR_MASK) >> RCAR_MAJOR_SHIFT;
major = major + RCAR_MAJOR_OFFSET;
minor = reg & RCAR_MINOR_MASK;
NOTICE("BL2: PRR is R-Car %s Ver.%d.%d\n", str, major, minor);
}
if (PRR_PRODUCT_E3 == product || PRR_PRODUCT_D3 == product) {
reg = mmio_read_32(RCAR_MODEMR);
sscg = reg & RCAR_SSCG_MASK;
str = sscg == RCAR_SSCG_ENABLE ? sscg_on : sscg_off;
NOTICE("BL2: %s\n", str);
}
rcar_get_board_type(&type, &rev);
switch (type) {
case BOARD_SALVATOR_X:
case BOARD_KRIEK:
case BOARD_STARTER_KIT:
case BOARD_SALVATOR_XS:
case BOARD_EBISU:
case BOARD_STARTER_KIT_PRE:
case BOARD_EBISU_4D:
case BOARD_DRAAK:
case BOARD_EAGLE:
break;
default:
type = BOARD_UNKNOWN;
break;
}
if (type == BOARD_UNKNOWN || rev == BOARD_REV_UNKNOWN)
NOTICE("BL2: Board is %s Rev.---\n", GET_BOARD_NAME(type));
else {
NOTICE("BL2: Board is %s Rev.%d.%d\n",
GET_BOARD_NAME(type),
GET_BOARD_MAJOR(rev), GET_BOARD_MINOR(rev));
}
#if RCAR_LSI != RCAR_AUTO
if (product != TARGET_PRODUCT) {
ERROR("BL2: IPL was been built for the %s.\n", TARGET_NAME);
ERROR("BL2: Please write the correct IPL to flash memory.\n");
panic();
}
#endif
rcar_avs_init();
rcar_avs_setting();
switch (boot_dev) {
case MODEMR_BOOT_DEV_HYPERFLASH160:
str = boot_hyper160;
break;
case MODEMR_BOOT_DEV_HYPERFLASH80:
str = boot_hyper80;
break;
case MODEMR_BOOT_DEV_QSPI_FLASH40:
str = boot_qspi40;
break;
case MODEMR_BOOT_DEV_QSPI_FLASH80:
str = boot_qspi80;
break;
case MODEMR_BOOT_DEV_EMMC_25X1:
#if RCAR_LSI == RCAR_D3
ERROR("BL2: Failed to Initialize. eMMC is not supported.\n");
panic();
#endif
str = boot_emmc25x1;
break;
case MODEMR_BOOT_DEV_EMMC_50X8:
str = boot_emmc50x8;
break;
default:
str = unknown;
break;
}
NOTICE("BL2: Boot device is %s\n", str);
rcar_avs_setting();
reg = rcar_rom_get_lcs(&lcs);
if (reg) {
str = unknown;
goto lcm_state;
}
switch (lcs) {
case LCS_CM:
str = lcs_cm;
break;
case LCS_DM:
str = lcs_dm;
break;
case LCS_SD:
str = lcs_sd;
break;
case LCS_SE:
str = lcs_secure;
break;
case LCS_FA:
str = lcs_fa;
break;
default:
str = unknown;
break;
}
lcm_state:
NOTICE("BL2: LCM state is %s\n", str);
rcar_avs_end();
is_ddr_backup_mode();
bl2_tzram_layout.total_base = BL31_BASE;
bl2_tzram_layout.total_size = BL31_LIMIT - BL31_BASE;
if (boot_cpu == MODEMR_BOOT_CPU_CA57 ||
boot_cpu == MODEMR_BOOT_CPU_CA53) {
ret = rcar_dram_init();
if (ret) {
NOTICE("BL2: Failed to DRAM initialize (%d).\n", ret);
panic();
}
rcar_qos_init();
}
/* Set up FDT */
ret = fdt_create_empty_tree(fdt, sizeof(fdt_blob));
if (ret) {
NOTICE("BL2: Cannot allocate FDT for U-Boot (ret=%i)\n", ret);
panic();
}
/* Add platform compatible string */
bl2_populate_compatible_string(fdt);
/* Enable RPC if unlocked */
bl2_add_rpc_node();
/* Print DRAM layout */
bl2_advertise_dram_size(product);
/* Add KASLR seed */
bl2_add_kaslr_seed();
if (boot_dev == MODEMR_BOOT_DEV_EMMC_25X1 ||
boot_dev == MODEMR_BOOT_DEV_EMMC_50X8) {
if (rcar_emmc_init() != EMMC_SUCCESS) {
NOTICE("BL2: Failed to eMMC driver initialize.\n");
panic();
}
rcar_emmc_memcard_power(EMMC_POWER_ON);
if (rcar_emmc_mount() != EMMC_SUCCESS) {
NOTICE("BL2: Failed to eMMC mount operation.\n");
panic();
}
} else {
rcar_rpc_init();
rcar_dma_init();
}
reg = mmio_read_32(RST_WDTRSTCR);
reg &= ~WDTRSTCR_RWDT_RSTMSK;
reg |= WDTRSTCR_PASSWORD;
mmio_write_32(RST_WDTRSTCR, reg);
mmio_write_32(CPG_CPGWPR, CPGWPR_PASSWORD);
mmio_write_32(CPG_CPGWPCR, CPGWPCR_PASSWORD);
reg = mmio_read_32(RCAR_PRR);
if ((reg & RCAR_CPU_MASK_CA57) == RCAR_CPU_HAVE_CA57)
mmio_write_32(CPG_CA57DBGRCR,
DBGCPUPREN | mmio_read_32(CPG_CA57DBGRCR));
if ((reg & RCAR_CPU_MASK_CA53) == RCAR_CPU_HAVE_CA53)
mmio_write_32(CPG_CA53DBGRCR,
DBGCPUPREN | mmio_read_32(CPG_CA53DBGRCR));
if (product_cut == PRR_PRODUCT_H3_CUT10) {
reg = mmio_read_32(CPG_PLL2CR);
reg &= ~((uint32_t) 1 << 5);
mmio_write_32(CPG_PLL2CR, reg);
reg = mmio_read_32(CPG_PLL4CR);
reg &= ~((uint32_t) 1 << 5);
mmio_write_32(CPG_PLL4CR, reg);
reg = mmio_read_32(CPG_PLL0CR);
reg &= ~((uint32_t) 1 << 12);
mmio_write_32(CPG_PLL0CR, reg);
}
bl2_create_fcnl_reserved_memory();
fdt_pack(fdt);
NOTICE("BL2: FDT at %p\n", fdt);
if (boot_dev == MODEMR_BOOT_DEV_EMMC_25X1 ||
boot_dev == MODEMR_BOOT_DEV_EMMC_50X8)
rcar_io_emmc_setup();
else
rcar_io_setup();
}
void bl2_el3_plat_arch_setup(void)
{
rcar_configure_mmu_el3(BL2_BASE,
BL2_END - BL2_BASE,
BL2_RO_BASE, BL2_RO_LIMIT
#if USE_COHERENT_MEM
, BL2_COHERENT_RAM_BASE, BL2_COHERENT_RAM_LIMIT
#endif
);
}
void bl2_el3_plat_prepare_exit(void)
{
bl2_ram_security_setting_finish();
}
void bl2_platform_setup(void)
{
}
static void bl2_init_generic_timer(void)
{
/* FIXME: V3M 16.666 MHz ? */
#if RCAR_LSI == RCAR_D3
uint32_t reg_cntfid = EXTAL_DRAAK;
#elif RCAR_LSI == RCAR_E3
uint32_t reg_cntfid = EXTAL_EBISU;
#else /* RCAR_LSI == RCAR_E3 */
uint32_t reg;
uint32_t reg_cntfid;
uint32_t modemr;
uint32_t modemr_pll;
uint32_t board_type;
uint32_t board_rev;
uint32_t pll_table[] = {
EXTAL_MD14_MD13_TYPE_0, /* MD14/MD13 : 0b00 */
EXTAL_MD14_MD13_TYPE_1, /* MD14/MD13 : 0b01 */
EXTAL_MD14_MD13_TYPE_2, /* MD14/MD13 : 0b10 */
EXTAL_MD14_MD13_TYPE_3 /* MD14/MD13 : 0b11 */
};
modemr = mmio_read_32(RCAR_MODEMR);
modemr_pll = (modemr & MODEMR_BOOT_PLL_MASK);
/* Set frequency data in CNTFID0 */
reg_cntfid = pll_table[modemr_pll >> MODEMR_BOOT_PLL_SHIFT];
reg = mmio_read_32(RCAR_PRR) & (PRR_PRODUCT_MASK | PRR_CUT_MASK);
switch (modemr_pll) {
case MD14_MD13_TYPE_0:
rcar_get_board_type(&board_type, &board_rev);
if (BOARD_SALVATOR_XS == board_type) {
reg_cntfid = EXTAL_SALVATOR_XS;
}
break;
case MD14_MD13_TYPE_3:
if (PRR_PRODUCT_H3_CUT10 == reg) {
reg_cntfid = reg_cntfid >> 1U;
}
break;
default:
/* none */
break;
}
#endif /* RCAR_LSI == RCAR_E3 */
/* Update memory mapped and register based frequency */
write_cntfrq_el0((u_register_t )reg_cntfid);
mmio_write_32(ARM_SYS_CNTCTL_BASE + (uintptr_t)CNTFID_OFF, reg_cntfid);
/* Enable counter */
mmio_setbits_32(RCAR_CNTC_BASE + (uintptr_t)CNTCR_OFF,
(uint32_t)CNTCR_EN);
}