blob: 9b57607534198c3fc38bda583a25858b30000fe2 [file] [log] [blame]
/*
* Copyright 2024 NXP
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <errno.h>
#include <common/debug.h>
#include <drivers/clk.h>
#include <lib/mmio.h>
#include <s32cc-clk-ids.h>
#include <s32cc-clk-modules.h>
#include <s32cc-clk-regs.h>
#include <s32cc-clk-utils.h>
#include <s32cc-mc-me.h>
#define MAX_STACK_DEPTH (40U)
/* This is used for floating-point precision calculations. */
#define FP_PRECISION (100000000UL)
struct s32cc_clk_drv {
uintptr_t fxosc_base;
uintptr_t armpll_base;
uintptr_t periphpll_base;
uintptr_t armdfs_base;
uintptr_t cgm0_base;
uintptr_t cgm1_base;
uintptr_t cgm5_base;
uintptr_t ddrpll_base;
uintptr_t mc_me;
uintptr_t mc_rgm;
uintptr_t rdc;
};
static int update_stack_depth(unsigned int *depth)
{
if (*depth == 0U) {
return -ENOMEM;
}
(*depth)--;
return 0;
}
static struct s32cc_clk_drv *get_drv(void)
{
static struct s32cc_clk_drv driver = {
.fxosc_base = FXOSC_BASE_ADDR,
.armpll_base = ARMPLL_BASE_ADDR,
.periphpll_base = PERIPHPLL_BASE_ADDR,
.armdfs_base = ARM_DFS_BASE_ADDR,
.cgm0_base = CGM0_BASE_ADDR,
.cgm1_base = CGM1_BASE_ADDR,
.cgm5_base = MC_CGM5_BASE_ADDR,
.ddrpll_base = DDRPLL_BASE_ADDR,
.mc_me = MC_ME_BASE_ADDR,
.mc_rgm = MC_RGM_BASE_ADDR,
.rdc = RDC_BASE_ADDR,
};
return &driver;
}
static int enable_module(struct s32cc_clk_obj *module,
const struct s32cc_clk_drv *drv,
unsigned int depth);
static struct s32cc_clk_obj *get_clk_parent(const struct s32cc_clk_obj *module)
{
const struct s32cc_clk *clk = s32cc_obj2clk(module);
if (clk->module != NULL) {
return clk->module;
}
if (clk->pclock != NULL) {
return &clk->pclock->desc;
}
return NULL;
}
static int get_base_addr(enum s32cc_clk_source id, const struct s32cc_clk_drv *drv,
uintptr_t *base)
{
int ret = 0;
switch (id) {
case S32CC_FXOSC:
*base = drv->fxosc_base;
break;
case S32CC_ARM_PLL:
*base = drv->armpll_base;
break;
case S32CC_PERIPH_PLL:
*base = drv->periphpll_base;
break;
case S32CC_DDR_PLL:
*base = drv->ddrpll_base;
break;
case S32CC_ARM_DFS:
*base = drv->armdfs_base;
break;
case S32CC_CGM0:
*base = drv->cgm0_base;
break;
case S32CC_CGM1:
*base = drv->cgm1_base;
break;
case S32CC_CGM5:
*base = drv->cgm5_base;
break;
case S32CC_FIRC:
break;
case S32CC_SIRC:
break;
default:
ret = -EINVAL;
break;
}
if (ret != 0) {
ERROR("Unknown clock source id: %u\n", id);
}
return ret;
}
static void enable_fxosc(const struct s32cc_clk_drv *drv)
{
uintptr_t fxosc_base = drv->fxosc_base;
uint32_t ctrl;
ctrl = mmio_read_32(FXOSC_CTRL(fxosc_base));
if ((ctrl & FXOSC_CTRL_OSCON) != U(0)) {
return;
}
ctrl = FXOSC_CTRL_COMP_EN;
ctrl &= ~FXOSC_CTRL_OSC_BYP;
ctrl |= FXOSC_CTRL_EOCV(0x1);
ctrl |= FXOSC_CTRL_GM_SEL(0x7);
mmio_write_32(FXOSC_CTRL(fxosc_base), ctrl);
/* Switch ON the crystal oscillator. */
mmio_setbits_32(FXOSC_CTRL(fxosc_base), FXOSC_CTRL_OSCON);
/* Wait until the clock is stable. */
while ((mmio_read_32(FXOSC_STAT(fxosc_base)) & FXOSC_STAT_OSC_STAT) == U(0)) {
}
}
static int enable_osc(struct s32cc_clk_obj *module,
const struct s32cc_clk_drv *drv,
unsigned int depth)
{
const struct s32cc_osc *osc = s32cc_obj2osc(module);
unsigned int ldepth = depth;
int ret = 0;
ret = update_stack_depth(&ldepth);
if (ret != 0) {
return ret;
}
switch (osc->source) {
case S32CC_FXOSC:
enable_fxosc(drv);
break;
/* FIRC and SIRC oscillators are enabled by default */
case S32CC_FIRC:
break;
case S32CC_SIRC:
break;
default:
ERROR("Invalid oscillator %d\n", osc->source);
ret = -EINVAL;
break;
};
return ret;
}
static struct s32cc_clk_obj *get_pll_parent(const struct s32cc_clk_obj *module)
{
const struct s32cc_pll *pll = s32cc_obj2pll(module);
if (pll->source == NULL) {
ERROR("Failed to identify PLL's parent\n");
}
return pll->source;
}
static int get_pll_mfi_mfn(unsigned long pll_vco, unsigned long ref_freq,
uint32_t *mfi, uint32_t *mfn)
{
unsigned long vco;
unsigned long mfn64;
/* FRAC-N mode */
*mfi = (uint32_t)(pll_vco / ref_freq);
/* MFN formula : (double)(pll_vco % ref_freq) / ref_freq * 18432.0 */
mfn64 = pll_vco % ref_freq;
mfn64 *= FP_PRECISION;
mfn64 /= ref_freq;
mfn64 *= 18432UL;
mfn64 /= FP_PRECISION;
if (mfn64 > UINT32_MAX) {
return -EINVAL;
}
*mfn = (uint32_t)mfn64;
vco = ((unsigned long)*mfn * FP_PRECISION) / 18432UL;
vco += (unsigned long)*mfi * FP_PRECISION;
vco *= ref_freq;
vco /= FP_PRECISION;
if (vco != pll_vco) {
ERROR("Failed to find MFI and MFN settings for PLL freq %lu. Nearest freq = %lu\n",
pll_vco, vco);
return -EINVAL;
}
return 0;
}
static struct s32cc_clkmux *get_pll_mux(const struct s32cc_pll *pll)
{
const struct s32cc_clk_obj *source = pll->source;
const struct s32cc_clk *clk;
if (source == NULL) {
ERROR("Failed to identify PLL's parent\n");
return NULL;
}
if (source->type != s32cc_clk_t) {
ERROR("The parent of the PLL isn't a clock\n");
return NULL;
}
clk = s32cc_obj2clk(source);
if (clk->module == NULL) {
ERROR("The clock isn't connected to a module\n");
return NULL;
}
source = clk->module;
if ((source->type != s32cc_clkmux_t) &&
(source->type != s32cc_shared_clkmux_t)) {
ERROR("The parent of the PLL isn't a MUX\n");
return NULL;
}
return s32cc_obj2clkmux(source);
}
static void disable_odiv(uintptr_t pll_addr, uint32_t div_index)
{
mmio_clrbits_32(PLLDIG_PLLODIV(pll_addr, div_index), PLLDIG_PLLODIV_DE);
}
static void enable_odiv(uintptr_t pll_addr, uint32_t div_index)
{
mmio_setbits_32(PLLDIG_PLLODIV(pll_addr, div_index), PLLDIG_PLLODIV_DE);
}
static void disable_odivs(uintptr_t pll_addr, uint32_t ndivs)
{
uint32_t i;
for (i = 0; i < ndivs; i++) {
disable_odiv(pll_addr, i);
}
}
static void enable_pll_hw(uintptr_t pll_addr)
{
/* Enable the PLL. */
mmio_write_32(PLLDIG_PLLCR(pll_addr), 0x0);
/* Poll until PLL acquires lock. */
while ((mmio_read_32(PLLDIG_PLLSR(pll_addr)) & PLLDIG_PLLSR_LOCK) == 0U) {
}
}
static void disable_pll_hw(uintptr_t pll_addr)
{
mmio_write_32(PLLDIG_PLLCR(pll_addr), PLLDIG_PLLCR_PLLPD);
}
static int program_pll(const struct s32cc_pll *pll, uintptr_t pll_addr,
const struct s32cc_clk_drv *drv, uint32_t sclk_id,
unsigned long sclk_freq)
{
uint32_t rdiv = 1, mfi, mfn;
int ret;
ret = get_pll_mfi_mfn(pll->vco_freq, sclk_freq, &mfi, &mfn);
if (ret != 0) {
return -EINVAL;
}
/* Disable ODIVs*/
disable_odivs(pll_addr, pll->ndividers);
/* Disable PLL */
disable_pll_hw(pll_addr);
/* Program PLLCLKMUX */
mmio_write_32(PLLDIG_PLLCLKMUX(pll_addr), sclk_id);
/* Program VCO */
mmio_clrsetbits_32(PLLDIG_PLLDV(pll_addr),
PLLDIG_PLLDV_RDIV_MASK | PLLDIG_PLLDV_MFI_MASK,
PLLDIG_PLLDV_RDIV_SET(rdiv) | PLLDIG_PLLDV_MFI(mfi));
mmio_write_32(PLLDIG_PLLFD(pll_addr),
PLLDIG_PLLFD_MFN_SET(mfn) | PLLDIG_PLLFD_SMDEN);
enable_pll_hw(pll_addr);
return ret;
}
static int enable_pll(struct s32cc_clk_obj *module,
const struct s32cc_clk_drv *drv,
unsigned int depth)
{
const struct s32cc_pll *pll = s32cc_obj2pll(module);
const struct s32cc_clkmux *mux;
uintptr_t pll_addr = UL(0x0);
unsigned int ldepth = depth;
unsigned long sclk_freq;
uint32_t sclk_id;
int ret;
ret = update_stack_depth(&ldepth);
if (ret != 0) {
return ret;
}
mux = get_pll_mux(pll);
if (mux == NULL) {
return -EINVAL;
}
if (pll->instance != mux->module) {
ERROR("MUX type is not in sync with PLL ID\n");
return -EINVAL;
}
ret = get_base_addr(pll->instance, drv, &pll_addr);
if (ret != 0) {
ERROR("Failed to detect PLL instance\n");
return ret;
}
switch (mux->source_id) {
case S32CC_CLK_FIRC:
sclk_freq = 48U * MHZ;
sclk_id = 0;
break;
case S32CC_CLK_FXOSC:
sclk_freq = 40U * MHZ;
sclk_id = 1;
break;
default:
ERROR("Invalid source selection for PLL 0x%lx\n",
pll_addr);
return -EINVAL;
};
return program_pll(pll, pll_addr, drv, sclk_id, sclk_freq);
}
static inline struct s32cc_pll *get_div_pll(const struct s32cc_pll_out_div *pdiv)
{
const struct s32cc_clk_obj *parent;
parent = pdiv->parent;
if (parent == NULL) {
ERROR("Failed to identify PLL divider's parent\n");
return NULL;
}
if (parent->type != s32cc_pll_t) {
ERROR("The parent of the divider is not a PLL instance\n");
return NULL;
}
return s32cc_obj2pll(parent);
}
static void config_pll_out_div(uintptr_t pll_addr, uint32_t div_index, uint32_t dc)
{
uint32_t pllodiv;
uint32_t pdiv;
pllodiv = mmio_read_32(PLLDIG_PLLODIV(pll_addr, div_index));
pdiv = PLLDIG_PLLODIV_DIV(pllodiv);
if (((pdiv + 1U) == dc) && ((pllodiv & PLLDIG_PLLODIV_DE) != 0U)) {
return;
}
if ((pllodiv & PLLDIG_PLLODIV_DE) != 0U) {
disable_odiv(pll_addr, div_index);
}
pllodiv = PLLDIG_PLLODIV_DIV_SET(dc - 1U);
mmio_write_32(PLLDIG_PLLODIV(pll_addr, div_index), pllodiv);
enable_odiv(pll_addr, div_index);
}
static struct s32cc_clk_obj *get_pll_div_parent(const struct s32cc_clk_obj *module)
{
const struct s32cc_pll_out_div *pdiv = s32cc_obj2plldiv(module);
if (pdiv->parent == NULL) {
ERROR("Failed to identify PLL DIV's parent\n");
}
return pdiv->parent;
}
static int enable_pll_div(struct s32cc_clk_obj *module,
const struct s32cc_clk_drv *drv,
unsigned int depth)
{
const struct s32cc_pll_out_div *pdiv = s32cc_obj2plldiv(module);
uintptr_t pll_addr = 0x0ULL;
unsigned int ldepth = depth;
const struct s32cc_pll *pll;
uint32_t dc;
int ret;
ret = update_stack_depth(&ldepth);
if (ret != 0) {
return ret;
}
pll = get_div_pll(pdiv);
if (pll == NULL) {
ERROR("The parent of the PLL DIV is invalid\n");
return 0;
}
ret = get_base_addr(pll->instance, drv, &pll_addr);
if (ret != 0) {
ERROR("Failed to detect PLL instance\n");
return -EINVAL;
}
dc = (uint32_t)(pll->vco_freq / pdiv->freq);
config_pll_out_div(pll_addr, pdiv->index, dc);
return 0;
}
static int cgm_mux_clk_config(uintptr_t cgm_addr, uint32_t mux, uint32_t source,
bool safe_clk)
{
uint32_t css, csc;
css = mmio_read_32(CGM_MUXn_CSS(cgm_addr, mux));
/* Already configured */
if ((MC_CGM_MUXn_CSS_SELSTAT(css) == source) &&
(MC_CGM_MUXn_CSS_SWTRG(css) == MC_CGM_MUXn_CSS_SWTRG_SUCCESS) &&
((css & MC_CGM_MUXn_CSS_SWIP) == 0U) && !safe_clk) {
return 0;
}
/* Ongoing clock switch? */
while ((mmio_read_32(CGM_MUXn_CSS(cgm_addr, mux)) &
MC_CGM_MUXn_CSS_SWIP) != 0U) {
}
csc = mmio_read_32(CGM_MUXn_CSC(cgm_addr, mux));
/* Clear previous source. */
csc &= ~(MC_CGM_MUXn_CSC_SELCTL_MASK);
if (!safe_clk) {
/* Select the clock source and trigger the clock switch. */
csc |= MC_CGM_MUXn_CSC_SELCTL(source) | MC_CGM_MUXn_CSC_CLK_SW;
} else {
/* Switch to safe clock */
csc |= MC_CGM_MUXn_CSC_SAFE_SW;
}
mmio_write_32(CGM_MUXn_CSC(cgm_addr, mux), csc);
/* Wait for configuration bit to auto-clear. */
while ((mmio_read_32(CGM_MUXn_CSC(cgm_addr, mux)) &
MC_CGM_MUXn_CSC_CLK_SW) != 0U) {
}
/* Is the clock switch completed? */
while ((mmio_read_32(CGM_MUXn_CSS(cgm_addr, mux)) &
MC_CGM_MUXn_CSS_SWIP) != 0U) {
}
/*
* Check if the switch succeeded.
* Check switch trigger cause and the source.
*/
css = mmio_read_32(CGM_MUXn_CSS(cgm_addr, mux));
if (!safe_clk) {
if ((MC_CGM_MUXn_CSS_SWTRG(css) == MC_CGM_MUXn_CSS_SWTRG_SUCCESS) &&
(MC_CGM_MUXn_CSS_SELSTAT(css) == source)) {
return 0;
}
ERROR("Failed to change the source of mux %" PRIu32 " to %" PRIu32 " (CGM=%lu)\n",
mux, source, cgm_addr);
} else {
if (((MC_CGM_MUXn_CSS_SWTRG(css) == MC_CGM_MUXn_CSS_SWTRG_SAFE_CLK) ||
(MC_CGM_MUXn_CSS_SWTRG(css) == MC_CGM_MUXn_CSS_SWTRG_SAFE_CLK_INACTIVE)) &&
((MC_CGM_MUXn_CSS_SAFE_SW & css) != 0U)) {
return 0;
}
ERROR("The switch of mux %" PRIu32 " (CGM=%lu) to safe clock failed\n",
mux, cgm_addr);
}
return -EINVAL;
}
static int enable_cgm_mux(const struct s32cc_clkmux *mux,
const struct s32cc_clk_drv *drv)
{
uintptr_t cgm_addr = UL(0x0);
uint32_t mux_hw_clk;
int ret;
ret = get_base_addr(mux->module, drv, &cgm_addr);
if (ret != 0) {
return ret;
}
mux_hw_clk = (uint32_t)S32CC_CLK_ID(mux->source_id);
return cgm_mux_clk_config(cgm_addr, mux->index,
mux_hw_clk, false);
}
static struct s32cc_clk_obj *get_mux_parent(const struct s32cc_clk_obj *module)
{
const struct s32cc_clkmux *mux = s32cc_obj2clkmux(module);
struct s32cc_clk *clk;
if (mux == NULL) {
return NULL;
}
clk = s32cc_get_arch_clk(mux->source_id);
if (clk == NULL) {
ERROR("Invalid parent (%lu) for mux %" PRIu8 "\n",
mux->source_id, mux->index);
return NULL;
}
return &clk->desc;
}
static int enable_mux(struct s32cc_clk_obj *module,
const struct s32cc_clk_drv *drv,
unsigned int depth)
{
const struct s32cc_clkmux *mux = s32cc_obj2clkmux(module);
unsigned int ldepth = depth;
const struct s32cc_clk *clk;
int ret = 0;
ret = update_stack_depth(&ldepth);
if (ret != 0) {
return ret;
}
if (mux == NULL) {
return -EINVAL;
}
clk = s32cc_get_arch_clk(mux->source_id);
if (clk == NULL) {
ERROR("Invalid parent (%lu) for mux %" PRIu8 "\n",
mux->source_id, mux->index);
return -EINVAL;
}
switch (mux->module) {
/* PLL mux will be enabled by PLL setup */
case S32CC_ARM_PLL:
case S32CC_PERIPH_PLL:
case S32CC_DDR_PLL:
break;
case S32CC_CGM1:
ret = enable_cgm_mux(mux, drv);
break;
case S32CC_CGM0:
ret = enable_cgm_mux(mux, drv);
break;
case S32CC_CGM5:
ret = enable_cgm_mux(mux, drv);
break;
default:
ERROR("Unknown mux parent type: %d\n", mux->module);
ret = -EINVAL;
break;
};
return ret;
}
static struct s32cc_clk_obj *get_dfs_parent(const struct s32cc_clk_obj *module)
{
const struct s32cc_dfs *dfs = s32cc_obj2dfs(module);
if (dfs->parent == NULL) {
ERROR("Failed to identify DFS's parent\n");
}
return dfs->parent;
}
static int enable_dfs(struct s32cc_clk_obj *module,
const struct s32cc_clk_drv *drv,
unsigned int depth)
{
unsigned int ldepth = depth;
int ret = 0;
ret = update_stack_depth(&ldepth);
if (ret != 0) {
return ret;
}
return 0;
}
static struct s32cc_dfs *get_div_dfs(const struct s32cc_dfs_div *dfs_div)
{
const struct s32cc_clk_obj *parent = dfs_div->parent;
if (parent->type != s32cc_dfs_t) {
ERROR("DFS DIV doesn't have a DFS as parent\n");
return NULL;
}
return s32cc_obj2dfs(parent);
}
static struct s32cc_pll *dfsdiv2pll(const struct s32cc_dfs_div *dfs_div)
{
const struct s32cc_clk_obj *parent;
const struct s32cc_dfs *dfs;
dfs = get_div_dfs(dfs_div);
if (dfs == NULL) {
return NULL;
}
parent = dfs->parent;
if (parent->type != s32cc_pll_t) {
return NULL;
}
return s32cc_obj2pll(parent);
}
static int get_dfs_mfi_mfn(unsigned long dfs_freq, const struct s32cc_dfs_div *dfs_div,
uint32_t *mfi, uint32_t *mfn)
{
uint64_t factor64, tmp64, ofreq;
uint32_t factor32;
unsigned long in = dfs_freq;
unsigned long out = dfs_div->freq;
/**
* factor = (IN / OUT) / 2
* MFI = integer(factor)
* MFN = (factor - MFI) * 36
*/
factor64 = ((((uint64_t)in) * FP_PRECISION) / ((uint64_t)out)) / 2ULL;
tmp64 = factor64 / FP_PRECISION;
if (tmp64 > UINT32_MAX) {
return -EINVAL;
}
factor32 = (uint32_t)tmp64;
*mfi = factor32;
tmp64 = ((factor64 - ((uint64_t)*mfi * FP_PRECISION)) * 36UL) / FP_PRECISION;
if (tmp64 > UINT32_MAX) {
return -EINVAL;
}
*mfn = (uint32_t)tmp64;
/* div_freq = in / (2 * (*mfi + *mfn / 36.0)) */
factor64 = (((uint64_t)*mfn) * FP_PRECISION) / 36ULL;
factor64 += ((uint64_t)*mfi) * FP_PRECISION;
factor64 *= 2ULL;
ofreq = (((uint64_t)in) * FP_PRECISION) / factor64;
if (ofreq != dfs_div->freq) {
ERROR("Failed to find MFI and MFN settings for DFS DIV freq %lu\n",
dfs_div->freq);
ERROR("Nearest freq = %" PRIx64 "\n", ofreq);
return -EINVAL;
}
return 0;
}
static int init_dfs_port(uintptr_t dfs_addr, uint32_t port,
uint32_t mfi, uint32_t mfn)
{
uint32_t portsr, portolsr;
uint32_t mask, old_mfi, old_mfn;
uint32_t dvport;
bool init_dfs;
dvport = mmio_read_32(DFS_DVPORTn(dfs_addr, port));
old_mfi = DFS_DVPORTn_MFI(dvport);
old_mfn = DFS_DVPORTn_MFN(dvport);
portsr = mmio_read_32(DFS_PORTSR(dfs_addr));
portolsr = mmio_read_32(DFS_PORTOLSR(dfs_addr));
/* Skip configuration if it's not needed */
if (((portsr & BIT_32(port)) != 0U) &&
((portolsr & BIT_32(port)) == 0U) &&
(mfi == old_mfi) && (mfn == old_mfn)) {
return 0;
}
init_dfs = (portsr == 0U);
if (init_dfs) {
mask = DFS_PORTRESET_MASK;
} else {
mask = DFS_PORTRESET_SET(BIT_32(port));
}
mmio_write_32(DFS_PORTOLSR(dfs_addr), mask);
mmio_write_32(DFS_PORTRESET(dfs_addr), mask);
while ((mmio_read_32(DFS_PORTSR(dfs_addr)) & mask) != 0U) {
}
if (init_dfs) {
mmio_write_32(DFS_CTL(dfs_addr), DFS_CTL_RESET);
}
mmio_write_32(DFS_DVPORTn(dfs_addr, port),
DFS_DVPORTn_MFI_SET(mfi) | DFS_DVPORTn_MFN_SET(mfn));
if (init_dfs) {
/* DFS clk enable programming */
mmio_clrbits_32(DFS_CTL(dfs_addr), DFS_CTL_RESET);
}
mmio_clrbits_32(DFS_PORTRESET(dfs_addr), BIT_32(port));
while ((mmio_read_32(DFS_PORTSR(dfs_addr)) & BIT_32(port)) != BIT_32(port)) {
}
portolsr = mmio_read_32(DFS_PORTOLSR(dfs_addr));
if ((portolsr & DFS_PORTOLSR_LOL(port)) != 0U) {
ERROR("Failed to lock DFS divider\n");
return -EINVAL;
}
return 0;
}
static struct s32cc_clk_obj *
get_dfs_div_parent(const struct s32cc_clk_obj *module)
{
const struct s32cc_dfs_div *dfs_div = s32cc_obj2dfsdiv(module);
if (dfs_div->parent == NULL) {
ERROR("Failed to identify DFS divider's parent\n");
}
return dfs_div->parent;
}
static int enable_dfs_div(struct s32cc_clk_obj *module,
const struct s32cc_clk_drv *drv,
unsigned int depth)
{
const struct s32cc_dfs_div *dfs_div = s32cc_obj2dfsdiv(module);
unsigned int ldepth = depth;
const struct s32cc_pll *pll;
const struct s32cc_dfs *dfs;
uintptr_t dfs_addr = 0UL;
uint32_t mfi, mfn;
int ret = 0;
ret = update_stack_depth(&ldepth);
if (ret != 0) {
return ret;
}
dfs = get_div_dfs(dfs_div);
if (dfs == NULL) {
return -EINVAL;
}
pll = dfsdiv2pll(dfs_div);
if (pll == NULL) {
ERROR("Failed to identify DFS divider's parent\n");
return -EINVAL;
}
ret = get_base_addr(dfs->instance, drv, &dfs_addr);
if ((ret != 0) || (dfs_addr == 0UL)) {
return -EINVAL;
}
ret = get_dfs_mfi_mfn(pll->vco_freq, dfs_div, &mfi, &mfn);
if (ret != 0) {
return -EINVAL;
}
return init_dfs_port(dfs_addr, dfs_div->index, mfi, mfn);
}
typedef int (*enable_clk_t)(struct s32cc_clk_obj *module,
const struct s32cc_clk_drv *drv,
unsigned int depth);
static int enable_part(struct s32cc_clk_obj *module,
const struct s32cc_clk_drv *drv,
unsigned int depth)
{
const struct s32cc_part *part = s32cc_obj2part(module);
uint32_t part_no = part->partition_id;
if ((drv->mc_me == 0UL) || (drv->mc_rgm == 0UL) || (drv->rdc == 0UL)) {
return -EINVAL;
}
return mc_me_enable_partition(drv->mc_me, drv->mc_rgm, drv->rdc, part_no);
}
static int enable_part_block(struct s32cc_clk_obj *module,
const struct s32cc_clk_drv *drv,
unsigned int depth)
{
const struct s32cc_part_block *block = s32cc_obj2partblock(module);
const struct s32cc_part *part = block->part;
uint32_t part_no = part->partition_id;
unsigned int ldepth = depth;
uint32_t cofb;
int ret;
ret = update_stack_depth(&ldepth);
if (ret != 0) {
return ret;
}
if ((block->block >= s32cc_part_block0) &&
(block->block <= s32cc_part_block15)) {
cofb = (uint32_t)block->block - (uint32_t)s32cc_part_block0;
mc_me_enable_part_cofb(drv->mc_me, part_no, cofb, block->status);
} else {
ERROR("Unknown partition block type: %d\n", block->block);
return -EINVAL;
}
return 0;
}
static struct s32cc_clk_obj *
get_part_block_parent(const struct s32cc_clk_obj *module)
{
const struct s32cc_part_block *block = s32cc_obj2partblock(module);
return &block->part->desc;
}
static int enable_module_with_refcount(struct s32cc_clk_obj *module,
const struct s32cc_clk_drv *drv,
unsigned int depth);
static int enable_part_block_link(struct s32cc_clk_obj *module,
const struct s32cc_clk_drv *drv,
unsigned int depth)
{
const struct s32cc_part_block_link *link = s32cc_obj2partblocklink(module);
struct s32cc_part_block *block = link->block;
unsigned int ldepth = depth;
int ret;
ret = update_stack_depth(&ldepth);
if (ret != 0) {
return ret;
}
/* Move the enablement algorithm to partition tree */
return enable_module_with_refcount(&block->desc, drv, ldepth);
}
static struct s32cc_clk_obj *
get_part_block_link_parent(const struct s32cc_clk_obj *module)
{
const struct s32cc_part_block_link *link = s32cc_obj2partblocklink(module);
return link->parent;
}
static int no_enable(struct s32cc_clk_obj *module,
const struct s32cc_clk_drv *drv,
unsigned int depth)
{
return 0;
}
static int exec_cb_with_refcount(enable_clk_t en_cb, struct s32cc_clk_obj *mod,
const struct s32cc_clk_drv *drv, bool leaf_node,
unsigned int depth)
{
unsigned int ldepth = depth;
int ret = 0;
if (mod == NULL) {
return 0;
}
ret = update_stack_depth(&ldepth);
if (ret != 0) {
return ret;
}
/* Refcount will be updated as part of the recursivity */
if (leaf_node) {
return en_cb(mod, drv, ldepth);
}
if (mod->refcount == 0U) {
ret = en_cb(mod, drv, ldepth);
}
if (ret == 0) {
mod->refcount++;
}
return ret;
}
static struct s32cc_clk_obj *get_module_parent(const struct s32cc_clk_obj *module);
static int enable_module(struct s32cc_clk_obj *module,
const struct s32cc_clk_drv *drv,
unsigned int depth)
{
struct s32cc_clk_obj *parent = get_module_parent(module);
static const enable_clk_t enable_clbs[12] = {
[s32cc_clk_t] = no_enable,
[s32cc_osc_t] = enable_osc,
[s32cc_pll_t] = enable_pll,
[s32cc_pll_out_div_t] = enable_pll_div,
[s32cc_clkmux_t] = enable_mux,
[s32cc_shared_clkmux_t] = enable_mux,
[s32cc_dfs_t] = enable_dfs,
[s32cc_dfs_div_t] = enable_dfs_div,
[s32cc_part_t] = enable_part,
[s32cc_part_block_t] = enable_part_block,
[s32cc_part_block_link_t] = enable_part_block_link,
};
unsigned int ldepth = depth;
uint32_t index;
int ret = 0;
ret = update_stack_depth(&ldepth);
if (ret != 0) {
return ret;
}
if (drv == NULL) {
return -EINVAL;
}
index = (uint32_t)module->type;
if (index >= ARRAY_SIZE(enable_clbs)) {
ERROR("Undefined module type: %d\n", module->type);
return -EINVAL;
}
if (enable_clbs[index] == NULL) {
ERROR("Undefined callback for the clock type: %d\n",
module->type);
return -EINVAL;
}
parent = get_module_parent(module);
ret = exec_cb_with_refcount(enable_module, parent, drv,
false, ldepth);
if (ret != 0) {
return ret;
}
ret = exec_cb_with_refcount(enable_clbs[index], module, drv,
true, ldepth);
if (ret != 0) {
return ret;
}
return ret;
}
static int enable_module_with_refcount(struct s32cc_clk_obj *module,
const struct s32cc_clk_drv *drv,
unsigned int depth)
{
return exec_cb_with_refcount(enable_module, module, drv, false, depth);
}
static int s32cc_clk_enable(unsigned long id)
{
const struct s32cc_clk_drv *drv = get_drv();
unsigned int depth = MAX_STACK_DEPTH;
struct s32cc_clk *clk;
clk = s32cc_get_arch_clk(id);
if (clk == NULL) {
return -EINVAL;
}
return enable_module_with_refcount(&clk->desc, drv, depth);
}
static void s32cc_clk_disable(unsigned long id)
{
}
static bool s32cc_clk_is_enabled(unsigned long id)
{
return false;
}
static unsigned long s32cc_clk_get_rate(unsigned long id)
{
return 0;
}
static int set_module_rate(const struct s32cc_clk_obj *module,
unsigned long rate, unsigned long *orate,
unsigned int *depth);
static int set_osc_freq(const struct s32cc_clk_obj *module, unsigned long rate,
unsigned long *orate, unsigned int *depth)
{
struct s32cc_osc *osc = s32cc_obj2osc(module);
int ret;
ret = update_stack_depth(depth);
if (ret != 0) {
return ret;
}
if ((osc->freq != 0UL) && (rate != osc->freq)) {
ERROR("Already initialized oscillator. freq = %lu\n",
osc->freq);
return -EINVAL;
}
osc->freq = rate;
*orate = osc->freq;
return 0;
}
static int set_clk_freq(const struct s32cc_clk_obj *module, unsigned long rate,
unsigned long *orate, unsigned int *depth)
{
const struct s32cc_clk *clk = s32cc_obj2clk(module);
int ret;
ret = update_stack_depth(depth);
if (ret != 0) {
return ret;
}
if ((clk->min_freq != 0UL) && (clk->max_freq != 0UL) &&
((rate < clk->min_freq) || (rate > clk->max_freq))) {
ERROR("%lu frequency is out of the allowed range: [%lu:%lu]\n",
rate, clk->min_freq, clk->max_freq);
return -EINVAL;
}
if (clk->module != NULL) {
return set_module_rate(clk->module, rate, orate, depth);
}
if (clk->pclock != NULL) {
return set_clk_freq(&clk->pclock->desc, rate, orate, depth);
}
return -EINVAL;
}
static int set_pll_freq(const struct s32cc_clk_obj *module, unsigned long rate,
unsigned long *orate, unsigned int *depth)
{
struct s32cc_pll *pll = s32cc_obj2pll(module);
int ret;
ret = update_stack_depth(depth);
if (ret != 0) {
return ret;
}
if ((pll->vco_freq != 0UL) && (pll->vco_freq != rate)) {
ERROR("PLL frequency was already set\n");
return -EINVAL;
}
pll->vco_freq = rate;
*orate = pll->vco_freq;
return 0;
}
static int set_pll_div_freq(const struct s32cc_clk_obj *module, unsigned long rate,
unsigned long *orate, unsigned int *depth)
{
struct s32cc_pll_out_div *pdiv = s32cc_obj2plldiv(module);
const struct s32cc_pll *pll;
unsigned long prate, dc;
int ret;
ret = update_stack_depth(depth);
if (ret != 0) {
return ret;
}
if (pdiv->parent == NULL) {
ERROR("Failed to identify PLL divider's parent\n");
return -EINVAL;
}
pll = s32cc_obj2pll(pdiv->parent);
if (pll == NULL) {
ERROR("The parent of the PLL DIV is invalid\n");
return -EINVAL;
}
prate = pll->vco_freq;
/**
* The PLL is not initialized yet, so let's take a risk
* and accept the proposed rate.
*/
if (prate == 0UL) {
pdiv->freq = rate;
*orate = rate;
return 0;
}
/* Decline in case the rate cannot fit PLL's requirements. */
dc = prate / rate;
if ((prate / dc) != rate) {
return -EINVAL;
}
pdiv->freq = rate;
*orate = pdiv->freq;
return 0;
}
static int set_fixed_div_freq(const struct s32cc_clk_obj *module, unsigned long rate,
unsigned long *orate, unsigned int *depth)
{
const struct s32cc_fixed_div *fdiv = s32cc_obj2fixeddiv(module);
int ret;
ret = update_stack_depth(depth);
if (ret != 0) {
return ret;
}
if (fdiv->parent == NULL) {
ERROR("The divider doesn't have a valid parent\b");
return -EINVAL;
}
ret = set_module_rate(fdiv->parent, rate * fdiv->rate_div, orate, depth);
/* Update the output rate based on the parent's rate */
*orate /= fdiv->rate_div;
return ret;
}
static int set_mux_freq(const struct s32cc_clk_obj *module, unsigned long rate,
unsigned long *orate, unsigned int *depth)
{
const struct s32cc_clkmux *mux = s32cc_obj2clkmux(module);
const struct s32cc_clk *clk = s32cc_get_arch_clk(mux->source_id);
int ret;
ret = update_stack_depth(depth);
if (ret != 0) {
return ret;
}
if (clk == NULL) {
ERROR("Mux (id:%" PRIu8 ") without a valid source (%lu)\n",
mux->index, mux->source_id);
return -EINVAL;
}
return set_module_rate(&clk->desc, rate, orate, depth);
}
static int set_dfs_div_freq(const struct s32cc_clk_obj *module, unsigned long rate,
unsigned long *orate, unsigned int *depth)
{
struct s32cc_dfs_div *dfs_div = s32cc_obj2dfsdiv(module);
const struct s32cc_dfs *dfs;
int ret;
ret = update_stack_depth(depth);
if (ret != 0) {
return ret;
}
if (dfs_div->parent == NULL) {
ERROR("Failed to identify DFS divider's parent\n");
return -EINVAL;
}
/* Sanity check */
dfs = s32cc_obj2dfs(dfs_div->parent);
if (dfs->parent == NULL) {
ERROR("Failed to identify DFS's parent\n");
return -EINVAL;
}
if ((dfs_div->freq != 0U) && (dfs_div->freq != rate)) {
ERROR("DFS DIV frequency was already set to %lu\n",
dfs_div->freq);
return -EINVAL;
}
dfs_div->freq = rate;
*orate = rate;
return ret;
}
static int set_module_rate(const struct s32cc_clk_obj *module,
unsigned long rate, unsigned long *orate,
unsigned int *depth)
{
int ret = 0;
ret = update_stack_depth(depth);
if (ret != 0) {
return ret;
}
ret = -EINVAL;
switch (module->type) {
case s32cc_clk_t:
ret = set_clk_freq(module, rate, orate, depth);
break;
case s32cc_osc_t:
ret = set_osc_freq(module, rate, orate, depth);
break;
case s32cc_pll_t:
ret = set_pll_freq(module, rate, orate, depth);
break;
case s32cc_pll_out_div_t:
ret = set_pll_div_freq(module, rate, orate, depth);
break;
case s32cc_fixed_div_t:
ret = set_fixed_div_freq(module, rate, orate, depth);
break;
case s32cc_clkmux_t:
ret = set_mux_freq(module, rate, orate, depth);
break;
case s32cc_shared_clkmux_t:
ret = set_mux_freq(module, rate, orate, depth);
break;
case s32cc_dfs_t:
ERROR("Setting the frequency of a DFS is not allowed!");
break;
case s32cc_dfs_div_t:
ret = set_dfs_div_freq(module, rate, orate, depth);
break;
default:
break;
}
return ret;
}
static int s32cc_clk_set_rate(unsigned long id, unsigned long rate,
unsigned long *orate)
{
unsigned int depth = MAX_STACK_DEPTH;
const struct s32cc_clk *clk;
int ret;
clk = s32cc_get_arch_clk(id);
if (clk == NULL) {
return -EINVAL;
}
ret = set_module_rate(&clk->desc, rate, orate, &depth);
if (ret != 0) {
ERROR("Failed to set frequency (%lu MHz) for clock %lu\n",
rate, id);
}
return ret;
}
static struct s32cc_clk_obj *get_no_parent(const struct s32cc_clk_obj *module)
{
return NULL;
}
typedef struct s32cc_clk_obj *(*get_parent_clb_t)(const struct s32cc_clk_obj *clk_obj);
static struct s32cc_clk_obj *get_module_parent(const struct s32cc_clk_obj *module)
{
static const get_parent_clb_t parents_clbs[12] = {
[s32cc_clk_t] = get_clk_parent,
[s32cc_osc_t] = get_no_parent,
[s32cc_pll_t] = get_pll_parent,
[s32cc_pll_out_div_t] = get_pll_div_parent,
[s32cc_clkmux_t] = get_mux_parent,
[s32cc_shared_clkmux_t] = get_mux_parent,
[s32cc_dfs_t] = get_dfs_parent,
[s32cc_dfs_div_t] = get_dfs_div_parent,
[s32cc_part_t] = get_no_parent,
[s32cc_part_block_t] = get_part_block_parent,
[s32cc_part_block_link_t] = get_part_block_link_parent,
};
uint32_t index;
if (module == NULL) {
return NULL;
}
index = (uint32_t)module->type;
if (index >= ARRAY_SIZE(parents_clbs)) {
ERROR("Undefined module type: %d\n", module->type);
return NULL;
}
if (parents_clbs[index] == NULL) {
ERROR("Undefined parent getter for type: %d\n", module->type);
return NULL;
}
return parents_clbs[index](module);
}
static int s32cc_clk_get_parent(unsigned long id)
{
struct s32cc_clk *parent_clk;
const struct s32cc_clk_obj *parent;
const struct s32cc_clk *clk;
unsigned long parent_id;
int ret;
clk = s32cc_get_arch_clk(id);
if (clk == NULL) {
return -EINVAL;
}
parent = get_module_parent(clk->module);
if (parent == NULL) {
return -EINVAL;
}
parent_clk = s32cc_obj2clk(parent);
if (parent_clk == NULL) {
return -EINVAL;
}
ret = s32cc_get_clk_id(parent_clk, &parent_id);
if (ret != 0) {
return ret;
}
if (parent_id > (unsigned long)INT_MAX) {
return -E2BIG;
}
return (int)parent_id;
}
static int s32cc_clk_set_parent(unsigned long id, unsigned long parent_id)
{
const struct s32cc_clk *parent;
const struct s32cc_clk *clk;
bool valid_source = false;
struct s32cc_clkmux *mux;
uint8_t i;
clk = s32cc_get_arch_clk(id);
if (clk == NULL) {
return -EINVAL;
}
parent = s32cc_get_arch_clk(parent_id);
if (parent == NULL) {
return -EINVAL;
}
if (!is_s32cc_clk_mux(clk)) {
ERROR("Clock %lu is not a mux\n", id);
return -EINVAL;
}
mux = s32cc_clk2mux(clk);
if (mux == NULL) {
ERROR("Failed to cast clock %lu to clock mux\n", id);
return -EINVAL;
}
for (i = 0; i < mux->nclks; i++) {
if (mux->clkids[i] == parent_id) {
valid_source = true;
break;
}
}
if (!valid_source) {
ERROR("Clock %lu is not a valid clock for mux %lu\n",
parent_id, id);
return -EINVAL;
}
mux->source_id = parent_id;
return 0;
}
void s32cc_clk_register_drv(void)
{
static const struct clk_ops s32cc_clk_ops = {
.enable = s32cc_clk_enable,
.disable = s32cc_clk_disable,
.is_enabled = s32cc_clk_is_enabled,
.get_rate = s32cc_clk_get_rate,
.set_rate = s32cc_clk_set_rate,
.get_parent = s32cc_clk_get_parent,
.set_parent = s32cc_clk_set_parent,
};
clk_register(&s32cc_clk_ops);
}