blob: 1f4d784683c7e87e27fca8208dddd2889bdabb53 [file] [log] [blame]
/*
* Copyright (c) 2013, ARM Limited and Contributors. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of ARM nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <string.h>
#include <assert.h>
#include <arch_helpers.h>
#include <platform.h>
#include <bl_common.h>
/* Included only for error codes */
#include <psci.h>
unsigned char platform_normal_stacks[PLATFORM_STACK_SIZE][PLATFORM_CORE_COUNT]
__attribute__ ((aligned(PLATFORM_CACHE_LINE_SIZE),
section("tzfw_normal_stacks")));
/*******************************************************************************
* This array holds the characteristics of the differences between the three
* FVP platforms (Base, A53_A57 & Foundation). It will be populated during cold
* boot at each boot stage by the primary before enabling the MMU (to allow cci
* configuration) & used thereafter. Each BL will have its own copy to allow
* independent operation.
******************************************************************************/
static unsigned long platform_config[CONFIG_LIMIT];
/*******************************************************************************
* TODO: Check page table alignment to avoid space wastage
******************************************************************************/
/*******************************************************************************
* Level 1 translation tables need 4 entries for the 4GB address space accessib-
* le by the secure firmware. Input address space will be restricted using the
* T0SZ settings in the TCR.
******************************************************************************/
static unsigned long l1_xlation_table[ADDR_SPACE_SIZE >> 30]
__attribute__ ((aligned((ADDR_SPACE_SIZE >> 30) << 3)));
/*******************************************************************************
* Level 2 translation tables describe the first & second gb of the address
* space needed to address secure peripherals e.g. trusted ROM and RAM.
******************************************************************************/
static unsigned long l2_xlation_table[NUM_L2_PAGETABLES][NUM_2MB_IN_GB]
__attribute__ ((aligned(NUM_2MB_IN_GB << 3)));
/*******************************************************************************
* Level 3 translation tables (2 sets) describe the trusted & non-trusted RAM
* regions at a granularity of 4K.
******************************************************************************/
static unsigned long l3_xlation_table[NUM_L3_PAGETABLES][NUM_4K_IN_2MB]
__attribute__ ((aligned(NUM_4K_IN_2MB << 3)));
/*******************************************************************************
* Helper to create a level 1/2 table descriptor which points to a level 2/3
* table.
******************************************************************************/
static unsigned long create_table_desc(unsigned long *next_table_ptr)
{
unsigned long desc = (unsigned long) next_table_ptr;
/* Clear the last 12 bits */
desc >>= FOUR_KB_SHIFT;
desc <<= FOUR_KB_SHIFT;
desc |= TABLE_DESC;
return desc;
}
/*******************************************************************************
* Helper to create a level 1/2/3 block descriptor which maps the va to addr
******************************************************************************/
static unsigned long create_block_desc(unsigned long desc,
unsigned long addr,
unsigned int level)
{
switch (level) {
case LEVEL1:
desc |= (addr << FIRST_LEVEL_DESC_N) | BLOCK_DESC;
break;
case LEVEL2:
desc |= (addr << SECOND_LEVEL_DESC_N) | BLOCK_DESC;
break;
case LEVEL3:
desc |= (addr << THIRD_LEVEL_DESC_N) | TABLE_DESC;
break;
default:
assert(0);
}
return desc;
}
/*******************************************************************************
* Helper to create a level 1/2/3 block descriptor which maps the va to output_
* addr with Device nGnRE attributes.
******************************************************************************/
static unsigned long create_device_block(unsigned long output_addr,
unsigned int level,
unsigned int ns)
{
unsigned long upper_attrs, lower_attrs, desc;
lower_attrs = LOWER_ATTRS(ACCESS_FLAG | OSH | AP_RW);
lower_attrs |= LOWER_ATTRS(ns | ATTR_DEVICE_INDEX);
upper_attrs = UPPER_ATTRS(XN);
desc = upper_attrs | lower_attrs;
return create_block_desc(desc, output_addr, level);
}
/*******************************************************************************
* Helper to create a level 1/2/3 block descriptor which maps the va to output_
* addr with inner-shareable normal wbwa read-only memory attributes.
******************************************************************************/
static unsigned long create_romem_block(unsigned long output_addr,
unsigned int level,
unsigned int ns)
{
unsigned long upper_attrs, lower_attrs, desc;
lower_attrs = LOWER_ATTRS(ACCESS_FLAG | ISH | AP_RO);
lower_attrs |= LOWER_ATTRS(ns | ATTR_IWBWA_OWBWA_NTR_INDEX);
upper_attrs = UPPER_ATTRS(0ull);
desc = upper_attrs | lower_attrs;
return create_block_desc(desc, output_addr, level);
}
/*******************************************************************************
* Helper to create a level 1/2/3 block descriptor which maps the va to output_
* addr with inner-shareable normal wbwa read-write memory attributes.
******************************************************************************/
static unsigned long create_rwmem_block(unsigned long output_addr,
unsigned int level,
unsigned int ns)
{
unsigned long upper_attrs, lower_attrs, desc;
lower_attrs = LOWER_ATTRS(ACCESS_FLAG | ISH | AP_RW);
lower_attrs |= LOWER_ATTRS(ns | ATTR_IWBWA_OWBWA_NTR_INDEX);
upper_attrs = UPPER_ATTRS(XN);
desc = upper_attrs | lower_attrs;
return create_block_desc(desc, output_addr, level);
}
/*******************************************************************************
* Create page tables as per the platform memory map. Certain aspects of page
* talble creating have been abstracted in the above routines. This can be impr-
* oved further.
* TODO: Move the page table setup helpers into the arch or lib directory
*******************************************************************************/
static unsigned long fill_xlation_tables(meminfo *tzram_layout,
unsigned long ro_start,
unsigned long ro_limit,
unsigned long coh_start,
unsigned long coh_limit)
{
unsigned long l2_desc, l3_desc;
unsigned long *xt_addr = 0, *pt_addr, off = 0;
unsigned long trom_start_index, trom_end_index;
unsigned long tzram_start_index, tzram_end_index;
unsigned long flash0_start_index, flash0_end_index;
unsigned long flash1_start_index, flash1_end_index;
unsigned long vram_start_index, vram_end_index;
unsigned long nsram_start_index, nsram_end_index;
unsigned long tdram_start_index, tdram_end_index;
unsigned long dram_start_index, dram_end_index;
unsigned long dev0_start_index, dev0_end_index;
unsigned long dev1_start_index, dev1_end_index;
unsigned int idx;
/*****************************************************************
* LEVEL1 PAGETABLE SETUP
*
* Find the start and end indices of the memory peripherals in the
* first level pagetables. These are the main areas we care about.
* Also bump the end index by one if its equal to the start to
* allow for regions which lie completely in a GB.
*****************************************************************/
trom_start_index = ONE_GB_INDEX(TZROM_BASE);
dev0_start_index = ONE_GB_INDEX(TZRNG_BASE);
dram_start_index = ONE_GB_INDEX(DRAM_BASE);
dram_end_index = ONE_GB_INDEX(DRAM_BASE + DRAM_SIZE);
if (dram_end_index == dram_start_index)
dram_end_index++;
/*
* Fill up the level1 translation table first
*/
for (idx = 0; idx < (ADDR_SPACE_SIZE >> 30); idx++) {
/*
* Fill up the entry for the TZROM. This will cover
* everything in the first GB.
*/
if (idx == trom_start_index) {
xt_addr = &l2_xlation_table[GB1_L2_PAGETABLE][0];
l1_xlation_table[idx] = create_table_desc(xt_addr);
continue;
}
/*
* Mark the second gb as device
*/
if (idx == dev0_start_index) {
xt_addr = &l2_xlation_table[GB2_L2_PAGETABLE][0];
l1_xlation_table[idx] = create_table_desc(xt_addr);
continue;
}
/*
* Fill up the block entry for the DRAM with Normal
* inner-WBWA outer-WBWA non-transient attributes.
* This will cover 2-4GB. Note that the acesses are
* marked as non-secure.
*/
if ((idx >= dram_start_index) && (idx < dram_end_index)) {
l1_xlation_table[idx] = create_rwmem_block(idx, LEVEL1,
NS);
continue;
}
assert(0);
}
/*****************************************************************
* LEVEL2 PAGETABLE SETUP
*
* Find the start and end indices of the memory & peripherals in the
* second level pagetables.
******************************************************************/
/* Initializations for the 1st GB */
trom_start_index = TWO_MB_INDEX(TZROM_BASE);
trom_end_index = TWO_MB_INDEX(TZROM_BASE + TZROM_SIZE);
if (trom_end_index == trom_start_index)
trom_end_index++;
tdram_start_index = TWO_MB_INDEX(TZDRAM_BASE);
tdram_end_index = TWO_MB_INDEX(TZDRAM_BASE + TZDRAM_SIZE);
if (tdram_end_index == tdram_start_index)
tdram_end_index++;
flash0_start_index = TWO_MB_INDEX(FLASH0_BASE);
flash0_end_index = TWO_MB_INDEX(FLASH0_BASE + TZROM_SIZE);
if (flash0_end_index == flash0_start_index)
flash0_end_index++;
flash1_start_index = TWO_MB_INDEX(FLASH1_BASE);
flash1_end_index = TWO_MB_INDEX(FLASH1_BASE + FLASH1_SIZE);
if (flash1_end_index == flash1_start_index)
flash1_end_index++;
vram_start_index = TWO_MB_INDEX(VRAM_BASE);
vram_end_index = TWO_MB_INDEX(VRAM_BASE + VRAM_SIZE);
if (vram_end_index == vram_start_index)
vram_end_index++;
dev0_start_index = TWO_MB_INDEX(DEVICE0_BASE);
dev0_end_index = TWO_MB_INDEX(DEVICE0_BASE + DEVICE0_SIZE);
if (dev0_end_index == dev0_start_index)
dev0_end_index++;
dev1_start_index = TWO_MB_INDEX(DEVICE1_BASE);
dev1_end_index = TWO_MB_INDEX(DEVICE1_BASE + DEVICE1_SIZE);
if (dev1_end_index == dev1_start_index)
dev1_end_index++;
/* Since the size is < 2M this is a single index */
tzram_start_index = TWO_MB_INDEX(tzram_layout->total_base);
nsram_start_index = TWO_MB_INDEX(NSRAM_BASE);
/*
* Fill up the level2 translation table for the first GB next
*/
for (idx = 0; idx < NUM_2MB_IN_GB; idx++) {
l2_desc = INVALID_DESC;
xt_addr = &l2_xlation_table[GB1_L2_PAGETABLE][idx];
/* Block entries for 64M of trusted Boot ROM */
if ((idx >= trom_start_index) && (idx < trom_end_index))
l2_desc = create_romem_block(idx, LEVEL2, 0);
/* Single L3 page table entry for 256K of TZRAM */
if (idx == tzram_start_index) {
pt_addr = &l3_xlation_table[TZRAM_PAGETABLE][0];
l2_desc = create_table_desc(pt_addr);
}
/* Block entries for 32M of trusted DRAM */
if ((idx >= tdram_start_index) && (idx <= tdram_end_index))
l2_desc = create_rwmem_block(idx, LEVEL2, 0);
/* Block entries for 64M of aliased trusted Boot ROM */
if ((idx >= flash0_start_index) && (idx < flash0_end_index))
l2_desc = create_romem_block(idx, LEVEL2, 0);
/* Block entries for 64M of flash1 */
if ((idx >= flash1_start_index) && (idx < flash1_end_index))
l2_desc = create_romem_block(idx, LEVEL2, 0);
/* Block entries for 32M of VRAM */
if ((idx >= vram_start_index) && (idx < vram_end_index))
l2_desc = create_rwmem_block(idx, LEVEL2, 0);
/* Block entries for all the devices in the first gb */
if ((idx >= dev0_start_index) && (idx < dev0_end_index))
l2_desc = create_device_block(idx, LEVEL2, 0);
/* Block entries for all the devices in the first gb */
if ((idx >= dev1_start_index) && (idx < dev1_end_index))
l2_desc = create_device_block(idx, LEVEL2, 0);
/* Single L3 page table entry for 64K of NSRAM */
if (idx == nsram_start_index) {
pt_addr = &l3_xlation_table[NSRAM_PAGETABLE][0];
l2_desc = create_table_desc(pt_addr);
}
*xt_addr = l2_desc;
}
/*
* Initializations for the 2nd GB. Mark everything as device
* for the time being as the memory map is not final. Each
* index will need to be offset'ed to allow absolute values
*/
off = NUM_2MB_IN_GB;
for (idx = off; idx < (NUM_2MB_IN_GB + off); idx++) {
l2_desc = create_device_block(idx, LEVEL2, 0);
xt_addr = &l2_xlation_table[GB2_L2_PAGETABLE][idx - off];
*xt_addr = l2_desc;
}
/*****************************************************************
* LEVEL3 PAGETABLE SETUP
*****************************************************************/
/* Fill up the level3 pagetable for the trusted SRAM. */
tzram_start_index = FOUR_KB_INDEX(tzram_layout->total_base);
tzram_end_index = FOUR_KB_INDEX(tzram_layout->total_base +
tzram_layout->total_size);
if (tzram_end_index == tzram_start_index)
tzram_end_index++;
/* Reusing trom* to mark RO memory. */
trom_start_index = FOUR_KB_INDEX(ro_start);
trom_end_index = FOUR_KB_INDEX(ro_limit);
if (trom_end_index == trom_start_index)
trom_end_index++;
/* Reusing dev* to mark coherent device memory. */
dev0_start_index = FOUR_KB_INDEX(coh_start);
dev0_end_index = FOUR_KB_INDEX(coh_limit);
if (dev0_end_index == dev0_start_index)
dev0_end_index++;
/* Each index will need to be offset'ed to allow absolute values */
off = FOUR_KB_INDEX(TZRAM_BASE);
for (idx = off; idx < (NUM_4K_IN_2MB + off); idx++) {
l3_desc = INVALID_DESC;
xt_addr = &l3_xlation_table[TZRAM_PAGETABLE][idx - off];
if (idx >= tzram_start_index && idx < tzram_end_index)
l3_desc = create_rwmem_block(idx, LEVEL3, 0);
if (idx >= trom_start_index && idx < trom_end_index)
l3_desc = create_romem_block(idx, LEVEL3, 0);
if (idx >= dev0_start_index && idx < dev0_end_index)
l3_desc = create_device_block(idx, LEVEL3, 0);
*xt_addr = l3_desc;
}
/* Fill up the level3 pagetable for the non-trusted SRAM. */
nsram_start_index = FOUR_KB_INDEX(NSRAM_BASE);
nsram_end_index = FOUR_KB_INDEX(NSRAM_BASE + NSRAM_SIZE);
if (nsram_end_index == nsram_start_index)
nsram_end_index++;
/* Each index will need to be offset'ed to allow absolute values */
off = FOUR_KB_INDEX(NSRAM_BASE);
for (idx = off; idx < (NUM_4K_IN_2MB + off); idx++) {
l3_desc = INVALID_DESC;
xt_addr = &l3_xlation_table[NSRAM_PAGETABLE][idx - off];
if (idx >= nsram_start_index && idx < nsram_end_index)
l3_desc = create_rwmem_block(idx, LEVEL3, NS);
*xt_addr = l3_desc;
}
return (unsigned long) l1_xlation_table;
}
/*******************************************************************************
* Enable the MMU assuming that the pagetables have already been created
*******************************************************************************/
void enable_mmu()
{
unsigned long mair, tcr, ttbr, sctlr;
unsigned long current_el = read_current_el();
/* Set the attributes in the right indices of the MAIR */
mair = MAIR_ATTR_SET(ATTR_DEVICE, ATTR_DEVICE_INDEX);
mair |= MAIR_ATTR_SET(ATTR_IWBWA_OWBWA_NTR,
ATTR_IWBWA_OWBWA_NTR_INDEX);
write_mair(mair);
/*
* Set TCR bits as well. Inner & outer WBWA & shareable + T0SZ = 32
*/
tcr = TCR_SH_INNER_SHAREABLE | TCR_RGN_OUTER_WBA |
TCR_RGN_INNER_WBA | TCR_T0SZ_4GB;
if (GET_EL(current_el) == MODE_EL3) {
tcr |= TCR_EL3_RES1;
/* Invalidate EL3 TLBs */
tlbialle3();
} else {
/* Invalidate EL1 TLBs */
tlbivmalle1();
}
write_tcr(tcr);
/* Set TTBR bits as well */
assert(((unsigned long)l1_xlation_table & (sizeof(l1_xlation_table) - 1)) == 0);
ttbr = (unsigned long) l1_xlation_table;
write_ttbr0(ttbr);
sctlr = read_sctlr();
sctlr |= SCTLR_WXN_BIT | SCTLR_M_BIT | SCTLR_I_BIT;
sctlr |= SCTLR_A_BIT | SCTLR_C_BIT;
write_sctlr(sctlr);
return;
}
void disable_mmu(void)
{
/* Zero out the MMU related registers */
write_mair(0);
write_tcr(0);
write_ttbr0(0);
write_sctlr(0);
/* Flush the caches */
dcsw_op_all(DCCISW);
return;
}
/*******************************************************************************
* Setup the pagetables as per the platform memory map & initialize the mmu
*******************************************************************************/
void configure_mmu(meminfo *mem_layout,
unsigned long ro_start,
unsigned long ro_limit,
unsigned long coh_start,
unsigned long coh_limit)
{
assert(IS_PAGE_ALIGNED(ro_start));
assert(IS_PAGE_ALIGNED(ro_limit));
assert(IS_PAGE_ALIGNED(coh_start));
assert(IS_PAGE_ALIGNED(coh_limit));
fill_xlation_tables(mem_layout,
ro_start,
ro_limit,
coh_start,
coh_limit);
enable_mmu();
return;
}
/* Simple routine which returns a configuration variable value */
unsigned long platform_get_cfgvar(unsigned int var_id)
{
assert(var_id < CONFIG_LIMIT);
return platform_config[var_id];
}
/*******************************************************************************
* A single boot loader stack is expected to work on both the Foundation FVP
* models and the two flavours of the Base FVP models (AEMv8 & Cortex). The
* SYS_ID register provides a mechanism for detecting the differences between
* these platforms. This information is stored in a per-BL array to allow the
* code to take the correct path.Per BL platform configuration.
******************************************************************************/
int platform_config_setup(void)
{
unsigned int rev, hbi, bld, arch, sys_id, midr_pn;
sys_id = mmio_read_32(VE_SYSREGS_BASE + V2M_SYS_ID);
rev = (sys_id >> SYS_ID_REV_SHIFT) & SYS_ID_REV_MASK;
hbi = (sys_id >> SYS_ID_HBI_SHIFT) & SYS_ID_HBI_MASK;
bld = (sys_id >> SYS_ID_BLD_SHIFT) & SYS_ID_BLD_MASK;
arch = (sys_id >> SYS_ID_ARCH_SHIFT) & SYS_ID_ARCH_MASK;
assert(rev == REV_FVP);
assert(arch == ARCH_MODEL);
/*
* The build field in the SYS_ID tells which variant of the GIC
* memory is implemented by the model.
*/
switch (bld) {
case BLD_GIC_VE_MMAP:
platform_config[CONFIG_GICD_ADDR] = VE_GICD_BASE;
platform_config[CONFIG_GICC_ADDR] = VE_GICC_BASE;
platform_config[CONFIG_GICH_ADDR] = VE_GICH_BASE;
platform_config[CONFIG_GICV_ADDR] = VE_GICV_BASE;
break;
case BLD_GIC_A53A57_MMAP:
platform_config[CONFIG_GICD_ADDR] = BASE_GICD_BASE;
platform_config[CONFIG_GICC_ADDR] = BASE_GICC_BASE;
platform_config[CONFIG_GICH_ADDR] = BASE_GICH_BASE;
platform_config[CONFIG_GICV_ADDR] = BASE_GICV_BASE;
break;
default:
assert(0);
}
/*
* The hbi field in the SYS_ID is 0x020 for the Base FVP & 0x010
* for the Foundation FVP.
*/
switch (hbi) {
case HBI_FOUNDATION:
platform_config[CONFIG_MAX_AFF0] = 4;
platform_config[CONFIG_MAX_AFF1] = 1;
platform_config[CONFIG_CPU_SETUP] = 0;
platform_config[CONFIG_BASE_MMAP] = 0;
platform_config[CONFIG_HAS_CCI] = 0;
break;
case HBI_FVP_BASE:
midr_pn = (read_midr() >> MIDR_PN_SHIFT) & MIDR_PN_MASK;
if ((midr_pn == MIDR_PN_A57) || (midr_pn == MIDR_PN_A53))
platform_config[CONFIG_CPU_SETUP] = 1;
else
platform_config[CONFIG_CPU_SETUP] = 0;
platform_config[CONFIG_MAX_AFF0] = 4;
platform_config[CONFIG_MAX_AFF1] = 2;
platform_config[CONFIG_BASE_MMAP] = 1;
platform_config[CONFIG_HAS_CCI] = 1;
break;
default:
assert(0);
}
return 0;
}
unsigned long plat_get_ns_image_entrypoint(void) {
return NS_IMAGE_OFFSET;
}