blob: 1925a13ac625a29914d28b3812d0c15e9b49e7f8 [file] [log] [blame]
/*
* Copyright (c) 2015-2020, ARM Limited and Contributors. All rights reserved.
* Portions copyright (c) 2021-2022, ProvenRun S.A.S. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <stdbool.h>
#include <arch.h>
#include <arch_helpers.h>
#include <common/debug.h>
#include <common/interrupt_props.h>
#include <drivers/arm/gic_common.h>
#include <drivers/arm/gicv2.h>
#include <lib/spinlock.h>
#include "../common/gic_common_private.h"
#include "gicv2_private.h"
static const gicv2_driver_data_t *driver_data;
/*
* Spinlock to guard registers needing read-modify-write. APIs protected by this
* spinlock are used either at boot time (when only a single CPU is active), or
* when the system is fully coherent.
*/
static spinlock_t gic_lock;
/*******************************************************************************
* Enable secure interrupts and use FIQs to route them. Disable legacy bypass
* and set the priority mask register to allow all interrupts to trickle in.
******************************************************************************/
void gicv2_cpuif_enable(void)
{
unsigned int val;
assert(driver_data != NULL);
assert(driver_data->gicc_base != 0U);
/*
* Enable the Group 0 interrupts, FIQEn and disable Group 0/1
* bypass.
*/
val = CTLR_ENABLE_G0_BIT | FIQ_EN_BIT | FIQ_BYP_DIS_GRP0;
val |= IRQ_BYP_DIS_GRP0 | FIQ_BYP_DIS_GRP1 | IRQ_BYP_DIS_GRP1;
/* Program the idle priority in the PMR */
gicc_write_pmr(driver_data->gicc_base, GIC_PRI_MASK);
gicc_write_ctlr(driver_data->gicc_base, val);
}
/*******************************************************************************
* Place the cpu interface in a state where it can never make a cpu exit wfi as
* as result of an asserted interrupt. This is critical for powering down a cpu
******************************************************************************/
void gicv2_cpuif_disable(void)
{
unsigned int val;
assert(driver_data != NULL);
assert(driver_data->gicc_base != 0U);
/* Disable secure, non-secure interrupts and disable their bypass */
val = gicc_read_ctlr(driver_data->gicc_base);
val &= ~(CTLR_ENABLE_G0_BIT | CTLR_ENABLE_G1_BIT);
val |= FIQ_BYP_DIS_GRP1 | FIQ_BYP_DIS_GRP0;
val |= IRQ_BYP_DIS_GRP0 | IRQ_BYP_DIS_GRP1;
gicc_write_ctlr(driver_data->gicc_base, val);
}
/*******************************************************************************
* Per cpu gic distributor setup which will be done by all cpus after a cold
* boot/hotplug. This marks out the secure SPIs and PPIs & enables them.
******************************************************************************/
void gicv2_pcpu_distif_init(void)
{
unsigned int ctlr;
assert(driver_data != NULL);
assert(driver_data->gicd_base != 0U);
gicv2_secure_ppi_sgi_setup_props(driver_data->gicd_base,
driver_data->interrupt_props,
driver_data->interrupt_props_num);
/* Enable G0 interrupts if not already */
ctlr = gicd_read_ctlr(driver_data->gicd_base);
if ((ctlr & CTLR_ENABLE_G0_BIT) == 0U) {
gicd_write_ctlr(driver_data->gicd_base,
ctlr | CTLR_ENABLE_G0_BIT);
}
}
/*******************************************************************************
* Global gic distributor init which will be done by the primary cpu after a
* cold boot. It marks out the secure SPIs, PPIs & SGIs and enables them. It
* then enables the secure GIC distributor interface.
******************************************************************************/
void gicv2_distif_init(void)
{
unsigned int ctlr;
assert(driver_data != NULL);
assert(driver_data->gicd_base != 0U);
/* Disable the distributor before going further */
ctlr = gicd_read_ctlr(driver_data->gicd_base);
gicd_write_ctlr(driver_data->gicd_base,
ctlr & ~(CTLR_ENABLE_G0_BIT | CTLR_ENABLE_G1_BIT));
/* Set the default attribute of all SPIs */
gicv2_spis_configure_defaults(driver_data->gicd_base);
gicv2_secure_spis_configure_props(driver_data->gicd_base,
driver_data->interrupt_props,
driver_data->interrupt_props_num);
/* Re-enable the secure SPIs now that they have been configured */
gicd_write_ctlr(driver_data->gicd_base, ctlr | CTLR_ENABLE_G0_BIT);
}
/*******************************************************************************
* Initialize the ARM GICv2 driver with the provided platform inputs
******************************************************************************/
void gicv2_driver_init(const gicv2_driver_data_t *plat_driver_data)
{
unsigned int gic_version;
assert(plat_driver_data != NULL);
assert(plat_driver_data->gicd_base != 0U);
assert(plat_driver_data->gicc_base != 0U);
assert(plat_driver_data->interrupt_props_num > 0 ?
plat_driver_data->interrupt_props != NULL : 1);
/* Ensure that this is a GICv2 system */
gic_version = gicd_read_pidr2(plat_driver_data->gicd_base);
gic_version = (gic_version >> PIDR2_ARCH_REV_SHIFT)
& PIDR2_ARCH_REV_MASK;
/*
* GICv1 with security extension complies with trusted firmware
* GICv2 driver as far as virtualization and few tricky power
* features are not used. GICv2 features that are not supported
* by GICv1 with Security Extensions are:
* - virtual interrupt support.
* - wake up events.
* - writeable GIC state register (for power sequences)
* - interrupt priority drop.
* - interrupt signal bypass.
*/
assert((gic_version == ARCH_REV_GICV2) ||
(gic_version == ARCH_REV_GICV1));
driver_data = plat_driver_data;
/*
* The GIC driver data is initialized by the primary CPU with caches
* enabled. When the secondary CPU boots up, it initializes the
* GICC/GICR interface with the caches disabled. Hence flush the
* driver_data to ensure coherency. This is not required if the
* platform has HW_ASSISTED_COHERENCY or WARMBOOT_ENABLE_DCACHE_EARLY
* enabled.
*/
#if !(HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
flush_dcache_range((uintptr_t) &driver_data, sizeof(driver_data));
flush_dcache_range((uintptr_t) driver_data, sizeof(*driver_data));
#endif
INFO("ARM GICv2 driver initialized\n");
}
/******************************************************************************
* This function returns whether FIQ is enabled in the GIC CPU interface.
*****************************************************************************/
unsigned int gicv2_is_fiq_enabled(void)
{
unsigned int gicc_ctlr;
assert(driver_data != NULL);
assert(driver_data->gicc_base != 0U);
gicc_ctlr = gicc_read_ctlr(driver_data->gicc_base);
return (gicc_ctlr >> FIQ_EN_SHIFT) & 0x1U;
}
/*******************************************************************************
* This function returns the type of the highest priority pending interrupt at
* the GIC cpu interface. The return values can be one of the following :
* PENDING_G1_INTID : The interrupt type is non secure Group 1.
* 0 - 1019 : The interrupt type is secure Group 0.
* GIC_SPURIOUS_INTERRUPT : there is no pending interrupt with
* sufficient priority to be signaled
******************************************************************************/
unsigned int gicv2_get_pending_interrupt_type(void)
{
assert(driver_data != NULL);
assert(driver_data->gicc_base != 0U);
return gicc_read_hppir(driver_data->gicc_base) & INT_ID_MASK;
}
/*******************************************************************************
* This function returns the id of the highest priority pending interrupt at
* the GIC cpu interface. GIC_SPURIOUS_INTERRUPT is returned when there is no
* interrupt pending.
******************************************************************************/
unsigned int gicv2_get_pending_interrupt_id(void)
{
unsigned int id;
assert(driver_data != NULL);
assert(driver_data->gicc_base != 0U);
id = gicc_read_hppir(driver_data->gicc_base) & INT_ID_MASK;
/*
* Find out which non-secure interrupt it is under the assumption that
* the GICC_CTLR.AckCtl bit is 0.
*/
if (id == PENDING_G1_INTID)
id = gicc_read_ahppir(driver_data->gicc_base) & INT_ID_MASK;
return id;
}
/*******************************************************************************
* This functions reads the GIC cpu interface Interrupt Acknowledge register
* to start handling the pending secure 0 interrupt. It returns the
* contents of the IAR.
******************************************************************************/
unsigned int gicv2_acknowledge_interrupt(void)
{
assert(driver_data != NULL);
assert(driver_data->gicc_base != 0U);
return gicc_read_IAR(driver_data->gicc_base);
}
/*******************************************************************************
* This functions writes the GIC cpu interface End Of Interrupt register with
* the passed value to finish handling the active secure group 0 interrupt.
******************************************************************************/
void gicv2_end_of_interrupt(unsigned int id)
{
assert(driver_data != NULL);
assert(driver_data->gicc_base != 0U);
/*
* Ensure the write to peripheral registers are *complete* before the write
* to GIC_EOIR.
*
* Note: The completion gurantee depends on various factors of system design
* and the barrier is the best core can do by which execution of further
* instructions waits till the barrier is alive.
*/
dsbishst();
gicc_write_EOIR(driver_data->gicc_base, id);
}
/*******************************************************************************
* This function returns the type of the interrupt id depending upon the group
* this interrupt has been configured under by the interrupt controller i.e.
* group0 secure or group1 non secure. It returns zero for Group 0 secure and
* one for Group 1 non secure interrupt.
******************************************************************************/
unsigned int gicv2_get_interrupt_group(unsigned int id)
{
assert(driver_data != NULL);
assert(driver_data->gicd_base != 0U);
return gicd_get_igroupr(driver_data->gicd_base, id);
}
/*******************************************************************************
* This function returns the priority of the interrupt the processor is
* currently servicing.
******************************************************************************/
unsigned int gicv2_get_running_priority(void)
{
assert(driver_data != NULL);
assert(driver_data->gicc_base != 0U);
return gicc_read_rpr(driver_data->gicc_base);
}
/*******************************************************************************
* This function sets the GICv2 target mask pattern for the current PE. The PE
* target mask is used to translate linear PE index (returned by platform core
* position) to a bit mask used when targeting interrupts to a PE (for example
* when raising SGIs and routing SPIs).
******************************************************************************/
void gicv2_set_pe_target_mask(unsigned int proc_num)
{
assert(driver_data != NULL);
assert(driver_data->gicd_base != 0U);
assert(driver_data->target_masks != NULL);
assert(proc_num < GICV2_MAX_TARGET_PE);
assert(proc_num < driver_data->target_masks_num);
/* Return if the target mask is already populated */
if (driver_data->target_masks[proc_num] != 0U)
return;
/*
* Update target register corresponding to this CPU and flush for it to
* be visible to other CPUs.
*/
if (driver_data->target_masks[proc_num] == 0U) {
driver_data->target_masks[proc_num] =
gicv2_get_cpuif_id(driver_data->gicd_base);
#if !(HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
/*
* PEs only update their own masks. Primary updates it with
* caches on. But because secondaries does it with caches off,
* all updates go to memory directly, and there's no danger of
* secondaries overwriting each others' mask, despite
* target_masks[] not being cache line aligned.
*/
flush_dcache_range((uintptr_t)
&driver_data->target_masks[proc_num],
sizeof(driver_data->target_masks[proc_num]));
#endif
}
}
/*******************************************************************************
* This function returns the active status of the interrupt (either because the
* state is active, or active and pending).
******************************************************************************/
unsigned int gicv2_get_interrupt_active(unsigned int id)
{
assert(driver_data != NULL);
assert(driver_data->gicd_base != 0U);
assert(id <= MAX_SPI_ID);
return gicd_get_isactiver(driver_data->gicd_base, id);
}
/*******************************************************************************
* This function enables the interrupt identified by id.
******************************************************************************/
void gicv2_enable_interrupt(unsigned int id)
{
assert(driver_data != NULL);
assert(driver_data->gicd_base != 0U);
assert(id <= MAX_SPI_ID);
/*
* Ensure that any shared variable updates depending on out of band
* interrupt trigger are observed before enabling interrupt.
*/
dsbishst();
gicd_set_isenabler(driver_data->gicd_base, id);
}
/*******************************************************************************
* This function disables the interrupt identified by id.
******************************************************************************/
void gicv2_disable_interrupt(unsigned int id)
{
assert(driver_data != NULL);
assert(driver_data->gicd_base != 0U);
assert(id <= MAX_SPI_ID);
/*
* Disable interrupt, and ensure that any shared variable updates
* depending on out of band interrupt trigger are observed afterwards.
*/
gicd_set_icenabler(driver_data->gicd_base, id);
dsbishst();
}
/*******************************************************************************
* This function sets the interrupt priority as supplied for the given interrupt
* id.
******************************************************************************/
void gicv2_set_interrupt_priority(unsigned int id, unsigned int priority)
{
assert(driver_data != NULL);
assert(driver_data->gicd_base != 0U);
assert(id <= MAX_SPI_ID);
gicd_set_ipriorityr(driver_data->gicd_base, id, priority);
}
/*******************************************************************************
* This function assigns group for the interrupt identified by id. The group can
* be any of GICV2_INTR_GROUP*
******************************************************************************/
void gicv2_set_interrupt_type(unsigned int id, unsigned int type)
{
assert(driver_data != NULL);
assert(driver_data->gicd_base != 0U);
assert(id <= MAX_SPI_ID);
/* Serialize read-modify-write to Distributor registers */
spin_lock(&gic_lock);
switch (type) {
case GICV2_INTR_GROUP1:
gicd_set_igroupr(driver_data->gicd_base, id);
break;
case GICV2_INTR_GROUP0:
gicd_clr_igroupr(driver_data->gicd_base, id);
break;
default:
assert(false);
break;
}
spin_unlock(&gic_lock);
}
/*******************************************************************************
* This function raises the specified SGI to requested targets.
*
* The proc_num parameter must be the linear index of the target PE in the
* system.
******************************************************************************/
void gicv2_raise_sgi(int sgi_num, bool ns, int proc_num)
{
unsigned int sgir_val, target;
assert(driver_data != NULL);
assert(proc_num >= 0);
assert(proc_num < (int)GICV2_MAX_TARGET_PE);
assert(driver_data->gicd_base != 0U);
/*
* Target masks array must have been supplied, and the core position
* should be valid.
*/
assert(driver_data->target_masks != NULL);
assert(proc_num < (int)driver_data->target_masks_num);
/* Don't raise SGI if the mask hasn't been populated */
target = driver_data->target_masks[proc_num];
assert(target != 0U);
sgir_val = GICV2_SGIR_VALUE(SGIR_TGT_SPECIFIC, target, ns, sgi_num);
/*
* Ensure that any shared variable updates depending on out of band
* interrupt trigger are observed before raising SGI.
*/
dsbishst();
gicd_write_sgir(driver_data->gicd_base, sgir_val);
}
/*******************************************************************************
* This function sets the interrupt routing for the given SPI interrupt id.
* The interrupt routing is specified in routing mode. The proc_num parameter is
* linear index of the PE to target SPI. When proc_num < 0, the SPI may target
* all PEs.
******************************************************************************/
void gicv2_set_spi_routing(unsigned int id, int proc_num)
{
unsigned int target;
assert(driver_data != NULL);
assert(driver_data->gicd_base != 0U);
assert((id >= MIN_SPI_ID) && (id <= MAX_SPI_ID));
/*
* Target masks array must have been supplied, and the core position
* should be valid.
*/
assert(driver_data->target_masks != NULL);
assert(proc_num < (int)GICV2_MAX_TARGET_PE);
assert(driver_data->target_masks_num < INT_MAX);
assert(proc_num < (int)driver_data->target_masks_num);
if (proc_num < 0) {
/* Target all PEs */
target = GIC_TARGET_CPU_MASK;
} else {
/* Don't route interrupt if the mask hasn't been populated */
target = driver_data->target_masks[proc_num];
assert(target != 0U);
}
gicd_set_itargetsr(driver_data->gicd_base, id, target);
}
/*******************************************************************************
* This function clears the pending status of an interrupt identified by id.
******************************************************************************/
void gicv2_clear_interrupt_pending(unsigned int id)
{
assert(driver_data != NULL);
assert(driver_data->gicd_base != 0U);
/* SGIs can't be cleared pending */
assert(id >= MIN_PPI_ID);
/*
* Clear pending interrupt, and ensure that any shared variable updates
* depending on out of band interrupt trigger are observed afterwards.
*/
gicd_set_icpendr(driver_data->gicd_base, id);
dsbishst();
}
/*******************************************************************************
* This function sets the pending status of an interrupt identified by id.
******************************************************************************/
void gicv2_set_interrupt_pending(unsigned int id)
{
assert(driver_data != NULL);
assert(driver_data->gicd_base != 0U);
/* SGIs can't be cleared pending */
assert(id >= MIN_PPI_ID);
/*
* Ensure that any shared variable updates depending on out of band
* interrupt trigger are observed before setting interrupt pending.
*/
dsbishst();
gicd_set_ispendr(driver_data->gicd_base, id);
}
/*******************************************************************************
* This function sets the PMR register with the supplied value. Returns the
* original PMR.
******************************************************************************/
unsigned int gicv2_set_pmr(unsigned int mask)
{
unsigned int old_mask;
assert(driver_data != NULL);
assert(driver_data->gicc_base != 0U);
old_mask = gicc_read_pmr(driver_data->gicc_base);
/*
* Order memory updates w.r.t. PMR write, and ensure they're visible
* before potential out of band interrupt trigger because of PMR update.
*/
dmbishst();
gicc_write_pmr(driver_data->gicc_base, mask);
dsbishst();
return old_mask;
}
/*******************************************************************************
* This function updates single interrupt configuration to be level/edge
* triggered
******************************************************************************/
void gicv2_interrupt_set_cfg(unsigned int id, unsigned int cfg)
{
gicd_set_icfgr(driver_data->gicd_base, id, cfg);
}